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Abstract

This paper proposes a new framework for estimating the
Manhattan Frame (MF) of an indoor scene from a single
RGB-D image. Our technique formulates this problem as
the estimation of a rotation matrix that best aligns the nor-
mals of the captured scene to a canonical world axes. By
introducing sparsity constraints, our method can simultane-
ously estimate the scene MF, the surfaces in the scene that
are best aligned to one of three coordinate axes, and the
outlier surfaces that do not align with any of the axes. To
test our approach, we contribute a new set of annotations to
determine ground truth MFs in each image of the popular
NYUvV2 dataset. We use this new benchmark to experimen-
tally demonstrate that our method is more accurate, faster,
more reliable and more robust than the methods used in the
literature. We further motivate our technique by showing
how it can be used to address the RGB-D SLAM problem
in indoor scenes by incorporating it into and improving the
performance of a popular RGB-D SLAM method.

1. Introduction

The representation of indoor scenes using the Manhat-
tan world assumption [4] has been widely used in applica-
tions of computer vision and robotics. These applications
take advantage of this assumption, by simplifying the rep-
resentation of objects with respect to the whole scene lay-
out. This simplification states that most objects in an in-
door scene are composed of planar surfaces aligned to one
of three orthogonal directions. This set of orthogonal di-
rections is referred to as the Manhattan Frame (MF) of the
scene. In this paper, we are interested in determining the
MF of an indoor scene. Our motivation is that an accurate
estimation of the MF can assist in addressing a variety of
3D problems, such as RGB-D SLAM and 3D understand-
ing of objects and their spatial relations, as well as, speedup
the pipeline of indoor scene understanding methods.

In this work, we propose an accurate, fast, reliable, and
robust method to estimate the MF of an indoor scene using a
single RGB-D image. In order to evaluate the properties of

our method, we introduce a new evaluation benchmark that
comprises ground truth MFs (logged as rotation matrices)
for the NYUvV2 dataset [19]. Using this new benchmark,
we compare our method against several popular MF algo-
rithms in the literature, and show that our approach outper-
forms state-of-the-art techniques in terms of accuracy and
speed. Furthermore, we perform controlled tests to evalu-
ate the repeatability and robustness of our method in a va-
riety of scenarios. We also show how our method can be
used in addressing the RGB-D SLAM problem. We do this
by incorporating it into and improving the performance of
a popular RGB-D SLAM method. Finally, we present a
framework of assessment for any MF estimation method,
and make our code and results publicly available for future
use. To the best of our knowledge, no prior work provides
such detailed evaluation and benchmarking for the task of
MF estimation.

Figure [I] presents the pipeline of our approach. Given
an RGB-D image pair, we first compute normals at every
pixel. Given the point normals and the Manhattan assump-
tion on the scene, we formulate an optimization problem to
estimate a rotation matrix that transforms most of the nor-
mals to be aligned with a coordinate direction (i.e. either
the x, y, or z axis). This process is equivalent to finding a
rotation that converts the original normals into the sparsest
set of directions in 3D. We use this sparsity intuition in our
solution, and show how it yields accurate results in a fast
and robust manner. With this solution, we are also able to
estimate outliers in the scene, i.e., points with normals that
are not aligned with one of the principal directions of the
scene. We present the details of our method in Section [3|
and a comparative evaluation in Section 4]

2. Related Work

We now review the most common approaches in the lit-
erature that estimate MFs in indoor scenes. Here, we note
that most previous work usually presents comprehensive ap-
proaches that focus on a higher-level end task (e.g. indoor
scene semantic labeling of objects, free-space and support
surface estimation, etc.), however, all of these methods for-
mulate a module to estimate the MF of the scene, and use
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Figure 1: Overview of our method. RGB-D Top: Original RGB image. Bottom: Inpainted depth image from NYUv2 dataset.
Originals Top: Original normals. Bottom: Original 3D point cloud. Rotated Top: Normals after alignment with our method.
Bottom: Aligned 3D point cloud, where the wall, sofas, and tables are well aligned with the MF of the scene. Rotated Inliers
Top: Our algorithm estimates as inliers those normals that can be aligned to one of the coordinate axes. Here, we color-code
inlier normals according to the axis they are aligned to; black pixels are outliers. Bottom: Aligned 3D point cloud with
color-coded inliers; outliers (non-planar objects, surfaces that cannot be aligned) retain their original RGB color. All figures
are best viewed in color and are included in the supplementary material.

it as an essential part of their process. We categorize the
relevant MF estimation techniques based on whether their
inputs are RGB or RGB-D images.

RGB Methods. Single image RGB methods rely on per-
spective cues such as vanishing points and lines, and as-
sociate each line to one of 3 main vanishing points. In
the work by Furukawa et al. [6], the authors plot normal-
ized coordinates of the line segments in a hemisphere, and
find three orthogonal directions as the 3 main clusters in the
hemisphere plot. Hedau et al. [9] propose an algorithm to
estimate the MF parameters, by using structured learning to
predict the best solution based on global perspective cues.
Lee et al. [12]] estimate MF by creating hypotheses based
on vanishing points and line segments, and geometric rea-
soning on how corners and wall intersections are present in
real scenes. A similar approach is presented by Del Pero et
al. [13]], with added geometric assumptions for robustness.
Schwing et al. present the same framework as [9)]
but with a more efficient structured learning approach. The
works in [10l [T1], are extensions of [9] [12] respec-
tively, where the authors use enhanced hypotheses to simul-
taneously estimate the MF of the scene and its objects. Del
Pero et al. propose a statistical model to compute MF
that integrates camera parameters, room layout, and object
hypotheses. Finally, the work of Chao et al. [T} 3] follows
the procedure of MF estimation as [9], but enhances vanish-
ing point estimation by considering humans in the scene.

RGB-D Methods. More recent approaches use RGB-D

images to obtain better MF estimates. Silberman er al. [19]
propose a method where 3D perspective cues are comple-
mented by point normals to estimate the principal directions
of a scene. They are motivated by the fact that most surfaces
in a Manhattan environment are aligned with one of the 3
principal directions. This approach exhaustively searches
among a set of candidates and chooses the best one accord-
ing to a scoring heuristic. This incurs a substantial compu-
tational burden. The MF results are used to do object seg-
mentation and support relation estimation. Taylor et al.
use depth information to estimate room geometry and lay-
out given that the scene has a large number of visible walls
and floor. Zhang et al. [25] present an approach similar to
[16]], where scene objects are modeled as clutter and are es-
timated with the help of depth information. Gupta et al.
address the problem of semantic segmentation in indoor
scenes. The authors do not compute a complete MF of the
scene, instead, they only estimate a gravity vector (y-axis)
by taking candidates from point normal estimated from the
depth image. Recently, Straub et al. [20] propose a method
to estimate a Mixture of Manhattan Frame (MMF) model.
In this method, the authors work on the idea that Manhattan
scenes can be represented by multiple frames, and propose
a technique to estimate all these frames. This idea relaxes
the constraint that all planar surfaces are aligned to one set
of orthogonal directions, and allows instead for a mixture of
sets; however, our experiments show that this method lacks
accuracy when computing the MF of an indoor scene.
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This brief review shows the diversity of applications that
estimate the MF of an indoor scene. Most RGB methods
rely on structured learning approaches, rendering their es-
timation slow. RGB-D methods have the advantage of 3D
information and are expected to perform better. Unfortu-
nately, the accuracy and robustness of all these methods is
unclear from the literature. To the best of our knowledge,
there is no available benchmark evaluation in the literature
to assess indoor MF estimation methods.

Contributions. The contributions of this work are three-
fold. (i) We present a robust and efficient algorithm to esti-
mate the MF of an indoor scene from a single RGB-D im-
age, using concepts of sparsity and convex optimization. (ii)
We present an extensive comparison of most MF estima-
tion techniques, by contributing ground truth MFs for the
NYUv2 dataset [19] and comparing these methods against
it. We also perform sensitivity analysis to gauge repeatabil-
ity and robustness. We make all our data and code publicly
available for use with future methods (iii) We show how our
MF estimation method can be used to enhance the perfor-
mance of RGB-D SLAM.

3. Methodology

In this section, we give a detailed description of the
RGB-D MF estimation problem and our proposed method
for robust MF estimation.

3.1. Problem Statement

The aim of indoor scene MF estimation is to determine
the three dominant directions, along which most surfaces
and possibly lines are oriented. Similar to previous work,
we study indoor scenes that have an inherent Manhattan
structure, i.e. where most surfaces are oriented along the
dominant directions. In Manhattan scenes, these directions
form an orthonormal system that is assumed without loss of
generality to be right-handed. Therefore, estimating the MF
becomes equivalent to computing the best 3D rotation ma-
trix R € SO(3) that transforms surface normals (and line
directions if available) in the scene to the three unit direc-
tions or their reflections about the center (i.e. [+1,0,0]7,
[0,£1,0]7, and [0,0,+1]T). Note that SO(3) defines the
rotation group such that each element R € SO(3) satisfies
the following properties: R™! = R” and det(R) = +1.
In fact, the rows of R define the dominant directions of the
scene in the original coordinate system. These rows are ex-
actly the vectors v1, v2, and v3 estimated in [[19].

In this work, we determine the MF of a Manhattan scene
using a single RGB-D pair of images I and Ip that are
generated by a calibrated RGB-D sensor (e.g. KINECT).
Similar to previous work [[19], we use conventional methods
(e.g. local plane fitting using RANSAC) to compute 3D sur-
face normals. We ensure that surface normals are oriented
in such a way that their surfaces are visible by the camera,

whose image plane and optical center define the orthonor-
mal coordinate system used to represent these normals. We
concatenate all the unit-norm normals in a single matrix
N € R3*™_ Due to sensor noise/limitations, errors and
noise in surface normal (e.g. at depth discontinuities), and
the presence of non-Manhattan outliers in the scene (e.g.
planar surfaces that do not align with the scene’s dominant
directions), the problem of reliable scene MF estimation is
challenging. To showcase the difficulty of the problem, we
plot vectors in N of an image from the NYUv2 dataset [19]
(refer to Figure Q) In an ideal Manhattan scene, these vec-
tors should cluster around at most 5 points on the unit sphere
corresponding to the five faces of a box, where the sixth
face is not visible to the camera. Clearly, the columns of N
shown in Figure 2] do not follow this ideal setup. Although
there are regions of the sphere where there is a reasonable
density of points, applying conventional clustering methods
to localize the dominant directions of a scene would fail in
general due to the significant amount of noise, the lack of
cluster compactness, and the significant number of outliers.

Figure 2: Distribution of normals (on the unit sphere) from a
sample image in the NYUv2 dataset. In an ideal Manhattan
scene with objects aligned with the main directions, point
normals should cluster in 5 locations, at most. However, due
to noise and outliers, point normals are distributed across
much of the unit sphere. This property of point normals in
real-world scenes renders MF estimation quite challenging.

3.2. Proposed Solution: Robust Manhattan Frame
Estimation (RMFE)

As stated before, estimating the MF of an indoor scene
is equivalent to computing a rotation R that transforms sur-
face normals into the three unit directions or their reflec-
tions about the center. Therefore, applying R to matrix IN
should lead to a matrix X, whose columns are sparse. In the
absence of noise, X should be the sparsest possible matrix
such that | X|lo = ||X][1,1 = m. Equality holds here be-
cause the columns of X have unit norm. This observation
establishes the basis of our proposed solution.

In the presence of noise (e.g. due to noisy depth mea-
surements and normal computation), we incorporate the
above observation to formulate the MF Estimation (MFE)
problem as in Eq (I). Here, the first term penalizes recon-
struction error, while the second term serves as a sparse reg-
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Figure 3: Result of solving RMFE on a sample RGB-D image pair. Note that after the optimal rotation R is applied, the
original normals are transformed so they are aligned to the dominant directions in the scene: x-axis (normal to the side wall;
red), y-axis (normal to the floor; green), and z-axis (normal to the front wall; blue). The columns in X are colored coded
to indicate these directions. Pixels in black designate outliers (non-zero columns of E) and their corresponding normals are
shown on the right. Clearly, the edges and corners of the bed as well as the pillow are detected as outliers. Only the sparsest

rotated normals are included in X.

ularizer. Note that any ¢, , matrix norm of A € R"*™ is

defined as: [|All,, = (30, [[All9) %, where ||A;||, is the
¢, norm of the i row of A. Thus, the regularizer is simply
the sum of the ¢; norms of the columns in X. This spar-
sity inducing ¢; regularizer has been used successfully in
other applications (e.g. face recognition [23]], tracking [13],
and image classification [24]).) to provide robustness against
noise and overfitting. For the MFE problem, this sparsity
term is a crucial and characteristic prior on the dominant
directions of the scene.

(MFE) : min

1
—||RN — X 2 AMIX 1
RESO(3),X 2” 7+ AMX[, (D

Solving Eq @) Since SO(3) is not a convex set, then

Eq (I) is in general non-convex. Although a global min-
imum is not guaranteed, a local minimum is achievable
via alternating optimization, which iterates between up-
dating the current solution for one of the two variables
(X and R) while keeping the other fixed. Given the cur-
rent estimate of R, the current estimate of X is updated
in closed form according to the identity in Eq (2), where
Sx(A;;) = sign(A;;) max(0, |A;;| — A) is the well-known
soft-thresholding operator. Following [22]], the current es-
timate of R is updated according to the identity in Eq @
If U and V are the left and right singular vectors of XN

then K(N,X) = U [diag(l, 1, sign(det(XNT)))} VT,

)

* o1
X" = arg min §||X—RNH%—|—/\HX||1’1 =S (RN) (2)
X

R* = argmin |RN — X||% = K(N, X) A3)
RESO(3)

Initializing variables to reasonable estimates is important
in alternating optimization, so as to avoid undesirable local
minima and expedite convergence. In our case, we initial-
ize R to identity, thus, testing the hypothesis that the depth
sensor is oriented along the dominant directions first. This
initial hypothesis is valid, since most images are taken from

reasonable viewpoints (e.g. the floor and/or ceiling are sim-
ilarly oriented with the second dominant direction).

Handling Outliers. Since the Frobenius norm (equiva-
lently the /5 norm of a vector) in the reconstruction error
term tends to be sensitive to outliers, the rotation estimated
by Eq (I) might be affected by non-Manhattan surface nor-
mals and line directions. This occurs, for example, when a
boxy object in the scene is not aligned with at least two of
the dominant directions or when this object is not boxy in
the case of a ball, vase, or cup. Most MF estimation meth-
ods enforce the Manhattan assumption on the whole scene,
so they tend to be sensitive to outliers (as we show empir-
ically in Section #3). To handle non-Manhattan outliers
that do not yield a 1-sparse column in X, we refine Eq (T)
to explicitly represent the error as a column-sparse matrix
E € R3*™_ As such, we assume that only a sparse number
of outliers exist in the scene and they are identified as the
non-zero columns of E. This robust refinement of the MFE
problem (denoted as RMFE) is formulated in Eq (), where
the ¢ ; norm is used to encourage column sparsity on E.
In essence, Eq (@) is the same as Eq () but with a different
robust penalty for the reconstruction error.

(RMFE) : min IET loq + M X[1 @)
RESO(3),X,E

subjectto: RN =X+ E

Adding an explicit error term to handle sparse outlier error
has been successfully used in other problems, such as robust
face recognition and image registration [[7]. Moreover,
the {5 1 norm has been used extensively in coupling differ-
ent tasks in a multi-task learning framework [2} 27] 26].

Solving Eq (4). Similar to the MFE problem, we use alter-
nating optimization to reach a desirable local minimum. Eq
(3 is used to update the current estimate of R. Updating
X and E is done jointly by applying the conventional In-
exact Augmented Lagrange Multiplier (IALM) method on
the resulting convex but non-smooth optimization problem.
IALM is an iterative method that augments the traditional
Lagrangian function with quadratic penalty terms and has
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been shown to have attractive convergence properties. The
iterative update of X makes use of the identity in Eq ().
Using the result in [2], the i row of E is updated using the
identity in Eq . The tradeoff parameter A is a function of
the sparsity coefficient A and the increasing IALM param-
eter . Due to space limitations, we leave the optimization
details for the supplementary material.

.1 5
E;, = argmin. 5 Y3 = Al + MYl

i (5)
=max | 0,1 — — | A;
( |Az-||2>

Since solving RMFE is computationally more expensive
than MFE, we initialize the rotation matrix in RMFE us-
ing the final estimate of R in MFE. In other words, we as-
sume that LE quickly converges to a reasonable rotation and
RMEE simply refines this rotation.

Implementation Details. In all our experiments, we se-
lect A = 0.3, which leads to an empirically viable tradeoff
between sparsity and error sensitivity. We use a conven-
tional stopping criterion (i.e. relative change in current esti-
mate) to determine when alternating optimization has con-
verged. A tolerance of 10~% is used. When m = 480 x 640
(size of a KINECT frame), RMFE converges on average in
0.9 seconds on a 3GHz workstation running MATLAB. We
compute normals as a preprocessing step, which takes 0.1
seconds. In our experiments, we do not compute line di-
rections (as in other methods), since they do not improve
MF accuracy. In Figure[3] we plot RMFE results for a sam-
ple RGB-D image from the NYUv2 dataset [19]. Here, we
mention that a box layout can be estimated from the inliers
of the RMFE estimate (i.e. the non-zero columns of X). To
do this, we center the box at the average 3D position of the
3D point cloud and orient it along the estimated dominant
directions. The extent of this box is determined by fitting
a minimum volume box, which encloses all points in the
point cloud having inlier normals in X. In this paper, we
depict the box layout using red borders as in Figure[T}

4. Experimental Results

We assess our MF estimation methodology under three
complimentary perspectives. Unfortunately, due the lack
of rigorous evaluation of MF algorithms, there is no stan-
dardized dataset and ground truth available in the literature.
To fill this gap, we contribute two sets of annotated data
for evaluation. First, we create a new benchmark frame-
work for evaluating algorithms that estimate MF for indoor
scenes from RGB-D images by generating MF ground truth
for the entire NYUV?2 dataset[[19]. This dataset is comprised
of 1449 images of indoor scenes with a variety of difficulty
in terms of clutter and noise. Our new annotations include a
ground truth rotation matrix for every image in the dataset.

Figure 4: Images from the NYUv2 dataset and their cor-
responding ground truth annotation. In the left image, the
floor is visible, so we annotate it first. Since the image on
the right has no visible floor, we choose the two walls and
assign them to the x or z-direction, ensuring the resulting
y-direction to be aligned with the floor.

We use this new benchmark to quantitatively compare the
performance of our method against the algorithms available
in the literature. Second, we perform a sensitivity analy-
sis to gauge repeatability and robustness in the presence of
varying amounts of scene rotation, noise and object mis-
alignment in the scene. Finally, we show how our method
can be used in RGB-D SLAM and how it improves a popu-
lar RGB-D SLAM method

4.1. An Indoor Scene MF Estimation Benchmark

To compare and evaluate MF estimation in indoor
scenes, we introduce a new evaluation benchmark that con-
sists of MF ground truth for the NYUv2 dataset. Given an
RGB-D image pair from this dataset, our annotation con-
sists of the three main directions of the captured scene.
Since all the scenes contain planes aligned with the princi-
pal directions, we select two regions corresponding to pla-
nar areas that are orthogonal in 3D. Using the depth im-
age and KINECT’s calibration matrix, we estimate the 3D
points of the selected regions, fit a plane to each, and com-
pute their normals. We associate every computed normal to
one of the main directions of the scene. We only select two
planes, as the third one can be inferred as a cross product to
guarantee orthonormality.

To be consistent in all the scenes, we align the floor di-
rection with the y-axis. To do this, we select an image re-
gion aligned with the floor whenever possible; if no such
regions exist, we make sure the annotation of x and z pre-
serve the desired floor direction. An example of this annota-
tion is presented in Figure[d] On the left, one of the selected
regions corresponds to the actual floor (blue selection) and
we therefore assign its normal to the positive y-direction.
The second annotation can be assigned to either  or z. On
the right, there are no visible surfaces aligned with the floor,
so we select regions from the two visible walls. To main-
tain consistency in the y-direction, we choose the normal
of the red portion to point in the +x-direction and the +z-
direction is assigned to the second region.
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Figure 5: Left: RGB image with user annotation. Mid-
dle: Original point cloud with user annotated region out-
lines (axis-aligned bounding box in red). Right: Rotated
point cloud using ground truth; we see how both annotated
surfaces align with the sides of the axis aligned box.

Annotating an image results in two normalized direc-
tions, with the third being their cross product. Next, we
make sure that the normals are orthogonal, since this might
not always be the case due to sensor noise or small plane
fitting errors. Given three normal vectors vy, vy, and v,
where v3 = v; X Vo, we re-compute v = Vo X Vs, this guar-
antees the 3 vectors to form an orthonormal set. Finally, we
create a rotation matrix R = [v; v5 v3]T. Note that apply-
ing this rotation aligns the scene, such that the normal to the
floor points in the +y-direction. Figure[5|shows an example
of a scene before and after ground truth alignment, with an
axis-aligned bounding box around each two point clouds.

With this ground truth, our benchmark evaluates the MF
estimation error of any MF algorithm. We focus our com-
parison on representative techniques for MF estimation. For
instance, [15} [14]] use the method introduced in [9], so we
use [9] as a proxy for evaluating all of these methods. We
are also constrained by the lack of publicly available data
and code with some of the methods. This left us with 5
techniques to compare against [9, 12} [19} 21, 20]. Some
of the methods use RGB images as input and therefore do
not provide a 3D MF estimate; however, they output 3 clus-
ters of 2D line segments each corresponding to one of the
principal directions of the scene. In order to adapt them
for a fair comparison, we compute the equivalent 3D line
segments using the depth image. For every clustered set of
3D line segments, we compute an average direction by only
considering parallel segments. These directions can be used
to create rotation matrices for comparison.

4.2. Evaluation of MF Estimation

For each RGB-D image, we have a set of rotation matri-
ces {R,;}?_, corresponding to the MF methods to be com-
pared against our rotation matrix R, . Using the ground
truth rotation Ry; as baseline, we compute the error in ro-
tation angles © = [0,, 0,,6.] between each R; and R,.

Since the only alignment restriction is to bring the floor
normal to the +y-axis, different alignments of the other two
directions can still be valid even if they do not match the
ground truth. For example, if a wall is aligned with the
ground truth +z-axis, aligning it with the +z-axis would
still create a valid rotation, given that the floor still points

Table 1: Average angular error in degrees and runtime in
seconds for 6 MF methods. Our method and ES outperform
all other methods, with our method having a slight advan-
tage in 0, and 6,. As for runtime, our method is signifi-
cantly faster than its closest competitor.

Ground Truth Comparison and Runtime

Category RGB RGB-D
Method VP VPGC MPE MMF ES Ours
[ 7.2° 21.4° 26.3° 8.1° 2.3° | 2.3°
0y 9.7° 35.7° 18.1° | 19.6° | 5.6° | 4.7°
0. 24.1° | 20.5° 18.2° 9.8° 2.9° | 2.8°
Runtime (s) 17.2 9.6 2.8 0.1 214 0.9

in the +y-direction. In terms of rotation angles, the differ-
ence of 0, and 6, to ground truth corresponds to changes
in the floor’s orientation, while differences in 6, represent
different orientations of the walls only. To allow for such di-
versity, we create a set R containing several versions of
Rg¢ where 6, has been rotated by 0°, 90°, and £180°.
These rotations will create all possible alignments for a
given scene, without distorting the aligned floor orientation.
We evaluate all 6 rotations by comparing each one with its
closest ground truth rotation.

Table [T| summarizes the comparison-to-ground-truth re-
sults for the RGB-based and RGB-D based techniques. The
RGB methods are based on Vanishing Points (VP) [9], and
Vanishing Points with Geometric Context (VPGC) [12].
The RGB-D methods are based on Exhaustive Search (ES)
[19]], Main Plane Estimation (MPE) [21]], and Mixture of
Manhattan Frames (MMF) [20]. Since the MMF method
computes a mixture of frames, we compare against all the
estimated frames and report the best results. Furthermore,
we analyze the angular errors around each of the axes inde-
pendently and plot error histograms in Figure[6} The results
show how our RMFE method results in small errors when
compared to ground truth. As expected, the RGB methods
underperform due to the limitations that arise from fusing
3D information only at a later stage. Among the RGB-D
methods, MPE is the least competitive, since it assumes that
a large portion of the floor is already visible, which is not
the case in many of the NYUv2 images, and it does not ac-
count well for scene clutter and outliers. The results also
show MMF being significantly less accurate than ES and
our method. ES performs comparably well to our technique,
but its runtime is 20 times slower. We present a comparative
runtime study for all methods in Table[T]

Since our method has a slight advantage over ES on
NVUv2, we conduct two additional experiments to further
assess their performance. The first one looks at the repeata-
bility of the methods with varying initializations of the input
scene, while the second gauges the robustness of both meth-
ods under different scene configurations. We discuss the ro-
bustness experiment in this section and provide details of
the repeatability analysis in the supplementary material.
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Figure 6: First row: Angular error histograms of our method compared to RGB based algorithms. Left: 6,. Middle: 0,.
Right 6,. Yellow corresponds to VP [9], Cyan to VPGC [11]], and Magenta to ours. Second row: Angular error histograms
of our method compared to RGB-D based algorithms. Left: §,. Middle: 6,. Right 6. Yellow corresponds to MMF [20],
Purple to MPE [21]], Green to ES [[19]], and Magenta to ours. MPE performs poorly due to its tight restrictions on scene type
and floor visibility. ES performs comparably to ours; we have a slight advantage with more values in the small error bins.
Also, our RMFE method is faster, more repeatable and robust, as shown later.

Figure 7: An example from the NYUv2 dataset with a mis-
aligned object. Left: Original RGB Image. Middle: Point
cloud aligned using ES. Right: Point cloud aligned using
our method. Since the sofa is diagonally aligned with the
walls, it causes ES to align the scene to the sofa and not
the actual walls of the room. Our method is more robust to
these outliers and aligns the left wall to its proper position.

4.3. Robustness to Outliers

Here, we are interested in evaluating the robustness of ES
and our RMFE in non-ideal Manhattan scenes, i.e. scenes
with non-Manhattan elements in them. Figure [7] is an
NYUv2 example of such scenes. We see how ES performs
poorly in such a scenario. The comparable results of ES

with RMFE on NYUV2 is due to the fact that there are very
few scenes like Figure [7]in the NYUv2 dataset. To gauge
the robustness of MF estimation, we compile a new set of
RGB-D images captured in a room with a varying number
of boxes at varying orientations. Examples are presented
in the first row of Figure 8] This set provides 4 categories
of images: (A): all objects are aligned with the scene, (B):
some objects are aligned, (C): all objects are equally un-
aligned, (D): all objects are unaligned at different orienta-
tions. A total of 131 images were recorded. The difficulty
of these scenes, in terms of MF accuracy, increases from
A-D. Figure [8|shows comparative results w.r.t. ground truth
on the new dataset. We notice that our method incurs much
less angular error than ES over nearly the entire dataset. It
is consistently better in every image of categories A-C. We
expect a degradation in performance on images of category
D, since the amount of unaligned normals is substantially
high. The ES method is not as reliable, since it incurs huge
errors even at the ‘easier” categories A-B, with the angular
error reaching as high as 45° in some cases. It is obvious
that our RMFE method is substantially more robust than
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Table 2: Evaluation of RGB-D SLAM. Columns 1 - 3: Re-
sults of method [5] with no pre-rotation, ES, and our pre-
rotation. Columns 4 - 5: Results of modified SLAM to
compute translation only, with ES and our rotation as in-
put. Our method improves runtime without compromising
on accuracy, since our estimated rotations are a very good
prior to the final rotations estimated by SLAM.

Performance of RGB-D SLAM

Image number

Figure 8: First row: Images from the new dataset for ro-
bustness assessment. There are four different categories of
scenes with increasing difficulty. (A): all objects are aligned
with the scene, (B): some objects are aligned, (C): all ob-
jects are equally unaligned, (D): all objects are unaligned
at different orientations. Second row: Estimation error
around the y-axis. Red curve: Ours. Green curve: ES.
Our method performs consistently better in A-C. Category
D consists of more difficult images and we see the down-
grade in performance on both methods.

ES to misalignment of scene objects, since it is designed to
handle non-Manhattan outliers.

4.4. Application: RGB-D SLAM

In this section, we show how MF estimation can be used
to improve RGB-D SLAM methods. The aim of SLAM is
to map a scene by imaging it at different locations using an
agent (usually a robot), while keeping track of the agent’s
location. This is usually achieved by mounting an imaging
sensor on the robot and using the frame-to-frame informa-
tion to estimate the structure of the scene and the motion of
the agent. This motion is generally expressed as a frame-
to-frame rotation and translation. When using an RGB-D
sensor, SLAM can better estimate motion with the help of
3D information provided by the depth frames. The perfor-
mance of SLAM depends on the misalignment of consecu-
tive frames. If the robot is moving inside an indoor scene,
we can use RMFE to align every depth image before ap-
plying SLAM. This means that the input depth frames of
SLAM will be aligned to a big extent, and most computa-
tional effort will go towards estimating the frame-to-frame
translations. To illustrate this advantage, we consider a pop-
ular RGB-D SLAM method by Endres et al. [S], where the
authors evaluate using different indoor scenes. Performance
is evaluated by runtime, translation Root Mean Squared Er-
ror (RMSE), and rotation RMSE. We choose a sequence
from [5] that covers an entire scene, with a total of 745
frames. We perform two different experiments. (i) We pre-
rotate every depth frame using ES and RMFE and then run
SLAM. (ii) We pre-rotate every depth frame using ES and
RMEE and run a simplified SLAM where only the transla-

Method SLAM R+T SLAMT
Pre-rotation None ES Ours ES Ours
Trans RMSE | 0.103m | 0.113m | 0.107m | 0.125m | 0.108m
Rot RMSE 3.41° 3.39° 3.37° 22.3° 4.61°
Runtime 145s 141s 112s 141s 112s

tions are computed. We present the results of these experi-
ments in Table 2] Pre-rotating the scenes does not improve
the accuracy of the SLAM method, however, our method
decreases runtime significantly (by 23%), without degrad-
ing performance much. For experiment (ii), we modify the
motion estimation module of SLAM to compute only the
frame-to-frame translations. Given a proper initial align-
ment of all the frames, we expect this modified SLAM ver-
sion to still perform competitively with its complete coun-
terpart, since all the frames are from the same scene and
therefore share the same MF. We see how in this exper-
iment our method yields similar accuracy, while ES per-
forms poorly. This is mainly due to the fact that RMFE
robustly and consistently estimates the MF of each frame,
while ES fails in several cases.

The results presented in this section suggest that our MF
estimation method can be used as a strong initialization for
RGB-D SLAM methods on indoor scenes, as it yields sim-
ilar accuracy, but decreases runtime significantly.

5. Conclusion

In this paper, we present a new formulation for estimat-
ing the Manhattan frame of indoor scenes from an RGB-D
image. The main advantages of our technique are its ro-
bustness, speed, reliability and accuracy, which we evaluate
experimentally with our contributed evaluation benchmark.
We show how our method can be used in an RGB-D SLAM
framework, where it enhances its performance. We con-
tribute our code to the community, encouraging interested
authors to incorporate it as a preprocessing module for in-
door scene understanding and RGB-D SLAM.

For future work, we are interested in extending our pro-
posed formulation to multiple Manhattan frames in the
same scene. We also would like to incorporate our MF esti-
mation into an end-to-end scene understanding pipeline.
Acknowledgments: This work was supported by compet-
itive research funding from King Abdullah University of
Science and Technology (KAUST). JCN is supported by a
Microsoft Research Faculty Fellowship.

3779




References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(1]

[12]

[13]

[14]

Y.-W. Chao, W. Choi, C. Pantofaru, and S. Savarese. Layout
estimation of highly cluttered indoor scenes using geometric
and semantic cues. In Proceedings of the International Con-
ference on Image Analysis and Processing, pages 489—499,
2013.

X. Chen and W. P. J. T. K. J. G. Carbonell. Accelerated
gradient method for multi-task sparse learning problem. In
International Conference on Data Mining, pages 746-751,
2009.

W. Choi, Y. W. Chao, C. Pantofaru, and S. Savarese. Un-
derstanding indoor scenes using 3d geometric phrases. In
Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, pages 33-40, 2013.

J. M. Coughlan and A. L. Yuille. Manhattan world: Compass
direction from a single image by bayesian inference. In Pro-
ceedings of the IEEE International Conference on Computer
Vision, pages 941-947, 1999.

F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and
W. Burgard. An evaluation of the rgb-d slam system. In Pro-
ceedings of the IEEE International Conference on Robotics
and Automation, pages 1691-1696, 2012.

Y. Furukawa, B. Curless, S. M. Seitz, and R. Szeliski.
Manhattan-world stereo. In Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition, pages 1422—
1429, 2009.

B. Ghanem, T. Zhang, and N. Ahuja. Robust video regis-
tration applied to field-sports video analysis. In Proceedings
of the IEEE International Conference on Acoustics, Speech,
and Signal Processing, 2012.

S. Gupta, P. Arbelaez, and J. Malik. Perceptual organiza-
tion and recognition of indoor scenes from rgb-d images. In
Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, pages 564-571, 2013.

V. Hedau, D. Hoiem, and D. A. Forsyth. Recovering the
spatial layout of cluttered rooms. In Proceedings of the IEEE
International Conference on Computer Vision, pages 1849—
1856, 2009.

V. Hedau, D. Hoiem, and D. A. Forsyth. Thinking inside the
box: Using appearance models and context based on room
geometry. In Proceedings of European Conference on Com-
puter Vision, pages 224-237, 2010.

D. C. Lee, A. Gupta, M. Hebert, and T. Kanade. Estimating
spatial layout of rooms using volumetric reasoning about ob-
jects and surfaces. In Advances in Neural Information Pro-
cessing Systems, pages 1288—1296, 2010.

D. C. Lee, M. Hebert, and T. Kanade. Geometric reason-
ing for single image structure recovery. In Proceedings of
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 21362143, 2009.

X. Mei and H. Ling. Robust visual tracking and vehicle
classification via sparse representation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 33(11):2259—
2272, 2011.

L. D. Pero, J. Bowdish, D. Fried, B. Kermgard, E. Hartley,
and K. Barnard. Bayesian geometric modeling of indoor
scenes. In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition, 2012.

[15]

(16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

(24]

(25]

[26]

(27]

3780

L. D. Pero, J. Guan, E. Brau, J. Schlecht, and K. Barnard.
Sampling bedrooms. In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, 2011.

A. G. Schwing, S. Fidler, M. Pollefeys, and R. Urtasun. Box
in the box: Joint 3d layout and object reasoning from single
images. In Proceedings of the IEEE International Confer-
ence on Computer Vision, 2013.

A. G. Schwing, T. Hazan, M. Pollefeys, and R. Urtasun. Ef-
ficient structured prediction for 3d indoor scene understand-
ing. In Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition, 2012.

A. G. Schwing and R. Urtasun. Efficient exact inference for
3d indoor scene understanding. In Proceedings of European
Conference on Computer Vision, 2012.

N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor
segmentation and support inference from rgbd images. In
Proceedings of European Conference on Computer Vision,
2012.

J. Straub, G. Rosman, O. Freifeld, J. J. Leonard, and J. W.
Fisher. A mixture of manhattan frames: Beyond the manhat-
tan world. In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition, pages 3770-3777, 2014.
C.J. Taylor and A. Cowley. Parsing indoor scenes using rgb-
d imagery. In Robotics: Science and Systems, 2012.

S. Umeyama. Least-squares estimation of transformation pa-
rameters between two point patterns. /[EEE Transactions on
Pattern Analysis and Machine Intelligence, 1991.

J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma.
Robust face recognition via sparse representation. I[EEE
Transactions on Pattern Analysis and Machine Intelligence,
31(2):210-227, 2009.

J. Yang, K. Yu, Y. Gong, and T. Huang. Linear spatial pyra-
mid matching using sparse coding for image classification.
In Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, 2009.

J. Zhang, C. Kan, A. G. Schwing, and R. Urtasun. Estimating
the 3d layout of indoor scenes and its clutter from depth sen-
sors. In Proceedings of the IEEE International Conference
on Computer Vision, 2013.

T. Zhang, B. Ghanem, S. Liu, and N. Ahuja. Robust visual
tracking via multi-task sparse learning. In Proceedings of
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 2042-2049, 2012.

T. Zhang, B. Ghanem, S. Liu, and N. Ahuja. Robust visual
tracking via structured multi-task sparse learning. Interna-
tional Journal of Computer Vision, 101(2):367-383, 2013.



