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Abstract

In this paper, we propose a definition of Generalized

Tensor Total Variation norm (GTV) that considers both the

inhomogeneity and the multi-directionality of responses to

derivative-like filters. More specifically, the inhomogeneity

simultaneously preserves high-frequency signals and sup-

presses noises, while the multi-directionality ensures that,

for an entry in a tensor, more information from its neigh-

bors is taken into account. To effectively and efficiently seek

the solution of the GTV minimization problem, we design a

novel Augmented Lagrange Multiplier based algorithm, the

convergence of which is theoretically guaranteed. Exper-

iments are conducted to demonstrate the superior perfor-

mance of our method over the state of the art alternatives

on classic visual data recovery applications including com-

pletion and denoising.

1. Introduction
In real data analysis applications, we often have to face

handling dirty observations, say incomplete or noisy data.
Recovering the missing or noise-free data from such ob-
servations thus becomes crucial to provide us more precise
information to refer to. Besides, compared to 1-D vectors
and 2-D matrices, the data encountered in real world appli-
cations is more likely to be high order, for instance a multi-
spectral image is a 3-D tensor and a color video is a 4-D
tensor. This work concentrates on the problem of visual
data recovery, i.e. restoring tensors of visual data from pol-
luted observations. However, without additional priors, the
problem is intractable as it usually has infinitely many solu-
tions and thus, it is apparently impossible to identify which
of these candidate solutions is indeed the “correct” one.

Mathematically, under some assumptions, one would
want to recover a n-order tensor T 2 RD1⇥D2⇥···⇥Dn from
an observation O 2 RD1⇥D2⇥···⇥Dn in presence of noise
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N 2 RD1⇥D2⇥···⇥Dn by solving the following problem:

min

T ,N
�(T ) + � (N ) s. t. P⌦(O) = P⌦(T +N ), (1)

where P⌦(·) is the orthogonal projection operator on the
support ⌦ 2 {0, 1}D1⇥D2⇥···⇥Dn that indicates which el-
ements are observed.  (N ) is a penalty with respect to
noise, which usually adopts `1 norm that is optimal for
Laplacian noise, or Frobenius norm for Gaussian noise. The
non-negative parameter � provides a trade-off between the
noise sensitivity and closeness to the observed signal. And
�(T ) stands for the assumption to make the ill-posed ten-
sor recovery problem well-defined. In literature, there are
mainly two lines about the assumption, i.e. the low rank-
ness and the low total variation.

The low-rank nature of visual data, say �(T )

:

=

rank(T ), has been focus of considerable research in past
years, the effectiveness of which has been witnessed by nu-
merous applications, such as image colorization [15], rec-
tification [18], denoising [5], depth enhancement [10] and
subspace learning [13]. As for the tensor recovery task,
specifically, Liu et al. [9] first introduce the trace norm
for tensors to achieve the goal. More recently, Wang et

al. [14] simultaneously impose the low rank prior and the
spatial-temporal consistency for completing videos. Zhang
et al. [17] design a hybrid singular value thresholding s-
trategy for enhancing the low rankness of the underlying
tensors. Although these methods produce very promising
results on the visual data with strong global structure, the
performance of which would degrade on general tensors of
visual data. To mitigate the over-strict constraint, [3] us-
es factor priors to simultaneously decompose and complete
tensors, which follows the tensor factorization framework
proposed in [11]. Actually, [3] instead enforces the low
rank constraint on the low dimensional representation (sub-
manifold) of the data.

Alternatively, the visual tensor to be recovered should
be piece-wise smooth, that is �(T )

:

= kT kTV . In last
decades, the advances in matrix Total Variation (TV) min-
imization have demonstrated its significance as a theoretic
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foundation for this problem. The TV model was first intro-
duced in [12] as a regularizer to remove noises and handle
proper edges in images. A variety of applications [2, 6] have
proven its great benefit. Although the TV norm has been
extensively studied for matrices, there is not much work
on tensors. Yang et al. [16] simply extend the TV norm
for matrices to higher-order tensors and design an efficient
algorithm to solve the optimization problem. But, it only
takes care of the variations along fibers (see the definition
below), and breaks the original problem into a set of 1-D
vector problems [4] to accelerate the procedure, which lim-
its its flexibility (multi-directionality).

1.1. Notations and Tensor Basics

We first define the notations used in this paper. Lower-
case letters (a, b, ...) mean scalars and bold lowercase let-
ters (a, b, ...) vectors. Bold uppercase letters (A,B, ...) s-
tand for matrices. The vectorization operation of a matrix
vec(A) is to convert a matrix into a vector. For brevity, Aj

stands for the jth column of A. While bold calligraphic up-
percase letters (A,B, ...) represent high order tensors. A 2
RD1⇥D2⇥···⇥Dn denotes an n-order tensor, whose elements
are represented by ad1,d2,...,dn 2 R, where 1  dk  Dk

and 1  k  n. ad1,...,dk�1,:,dk+1,...,dn 2 RDk means the
mode-k fiber of A at {d1, ..., dk�1, dk+1, ..., dn}, which is
the higher order analogue of matrix rows and columns.

The Frobenius, `1 and `0 norms of A are respec-
tively defined as kAkF :

=

qP
d1,d2,··· ,dn

a2d1,d2,...,dn
,

kAk1 :

=

P
d1,d2,··· ,dn

|ad1,d2,...,dn | and kAk0 :

=P
d1,d2,··· ,dn

ad1,d2,...,dn 6= 0. The inner product of t-
wo tensors with identical size is computed as hA,Bi :

=P
d1,d2,··· ,dn

ad1,d2,...,dn · bd1,d2,...,dn . A � B mean-
s the element-wise product of two tensors with same
size. The mode-k unfolding of A is to convert a ten-
sor A into a matrix, i.e. unfold(A, k) = A[k] 2
RDk⇥

Q
i 6=k Di , while the mode-k folding reshapes A[k]

back to A, say fold(A[k], k) = A. It is clear that, for
any k, kAkF = kA[k]kF , kAk1 = kA[k]k1, kAk0 =

kA[k]k0, and hA,Bi = hA[k],B[k]i. S![A] represents
the uniform shrinkage operator on tensors, the definition of
which is that, for each element in A, S![ad1,d2,...,dn ]

:

=

sgn(ad1,d2,...,dn) ·max(|ad1,d2,...,dn |�!, 0). More general-
ly, the non-uniform shrinkage SW [A] extends the uniform
one by performing the shrinkage on the elements of A with
thresholds given by corresponding entries of W .

1.2. Motivations of This Work

A natural extension of the TV norm for matrices to
higher-order tensors has the following shape [16]:

kT kTV :

= kf⇡
2
⇤ [vec(T [1])| vec(T [2])|...| vec(T [n])]kp,

(2)

where k · kp can be either `1 norm corresponding to the
anisotropic tensor TV norm, or `2,1 the isotropic one. f⇡

2
is

the derivative filter in the vertical (✓ =

⇡
2 ) direction and ⇤ is

the operator of convolution. It is obvious that the TV norms
for vectors and matrices are two examples of this definition.

However, in practical scenarios, this definition (2) is in-
adequate mainly due to the following limitations:

� The homogeneous penalty leads to the over-
smoothness on high-frequency signal, such as
corners and edges in visual data, and creates heavy
staircase artifacts, which would significantly disturb
the perception of visual data.

� It only considers the variations along fibers, which
might miss important information in other directions.
Although the responses to multi-directional derivative-
like filters can be approximately represented by the
gradients, the gap between them remains.

The above two limitations motivate us to propose a more
general tensor TV norm for boosting the performance on
the visual data recovery problem.

1.3. Contributions of This Work

The contributions of this work are summarized as:

• We propose a Generalized Tensor Total Variation nor-
m (GTV) concerning both the inhomogeneity and the
multi-directionality.

• We design an Augmented Lagrange Multiplier based
algorithm to efficiently and effectively seek the solu-
tion of the GTV minimization problem, the conver-
gence of which is theoretically guaranteed.

• To demonstrate the efficacy and the superior perfor-
mance of the proposed algorithm in comparison with
state-of-the-art alternatives, extensive experiments on
several visual data recovery tasks are conducted.

2. Methodology
2.1. Definition and Formulation

Suppose we have a matrix A 2 RD1⇥D2 , the response of
A to a directional derivative-like filter f✓⇤ can be comput-
ed by f✓⇤ ⇤A. The traditional TV norm takes into account
only the responses to derivative filters along fibers. In oth-
er words, it potentially ignores important details from oth-
er directions. One may wonder if the multi-directional re-
sponse can be represented by the gradients. Indeed, for dif-
ferentiable functions, the directional derivatives along some
directions have an equivalent relationship with the gradi-
ents. However, for tensors of visual data, this relationship
no longer holds as the differentiability is violated. Based on



this fact, we here propose a definition of the responses of a
matrix to m-directional derivative-like filters as follows:

Definition 1. (RMDF: Response to Multi-directional

Derivative-like Filters.) The response of a matrix to m
derivative-like filters in ✓m directions with weights �m is

defined as R(A,�) 2 RD1D2⇥m
:

=

⇥
�1 vec(f✓1 ⇤A)

���2 vec(f✓2 ⇤A)

�� · · ·
���m vec(f✓m ⇤A)

⇤
,

where � = [�1,�2, · · · ,�m] with 8j 2 [1, ...,m] �j � 0

and

Pm
j=1 �j = 1.

Another drawback of the traditional TV is its homogene-
ity to all elements in tensors, which favors piecewise con-
stant solutions. This property would result in oversmooth-
ing high-frequency signals and introducing staircase effects.
Intuitively, in visual data, the high-frequency signals should
be preserved to maintain the perceptual details, while the
low-frequency ones could be smoothed to suppress noises.
This intuition inspires us to differently treat the variations.
Considering both the multi-directionality and the inhomo-
geneity gives the definition of generalized tensor TV as:

Definition 2. (GTV: Generalized Tensor Total Variation

Norm.) The GTV norm of an n-order tensor A 2
RD1⇥···⇥Dn

is:

kAkGTV :

=

nX

k=1

↵kkW k �R(A[k],�
k
)kp,

where ↵ = [↵1, ...,↵k, ...,↵n
] is the non-negative coef-

ficient balancing the importance of k-mode matrices and

satisfying

Pn
k=1 ↵

k
= 1, and p could be either 1 or 2, 1

corresponding to the anisotropic total variation (`1) and

the isotropic one (`2,1), respectively. In addition, W k 2
R

Qn
i=1 Di⇥m

acts as the non-negative weight matrix, the el-

ements of which correspond to those of R(A[k],�
k
).

It is apparent that GTV satisfies the properties that a nor-
m should do, and the traditional TV norm is a specific case
of GTV. With the definition of GTV, the visual data recov-
ery problem can be naturally formulated as:

argmin

T ,N

nX

k=1

↵kkW k�R(T [k],�
k
)kp + � (N )

s. t. P⌦(O) = P⌦(T +N ).

(3)

In the next sub-section, we will introduce a novel algorithm
to efficiently and effectively solve this problem.

2.2. Optimization

In Eq. (3),  (N ) can adopt various forms. In this work,
we consider that the noise is either dense Gaussian noise

(`2) or sparse (Laplacian) noise1 (`1). To be more general
for the `1 case, we further employ kWN � N k1. By set-
ting all entries in WN to 1, it reduces to kN k1. Although
 (N ) and p have different options, we do not distinguish
them until necessarily. In addition, for the weights W ks,
if they are set wisely, the recovery results would be signif-
icantly improved, the goal of which is to encourage sharp
structured signals by small weights while to discourage s-
mooth regions via large weights. But it is impossible to
construct the precise weights without knowing the intrin-
sic tensors themselves. The situation of WN is analogue.
Thus, we need to iteratively refine the weights. In this part,
we focus on the problem with the weights fixed (inner loop).
The reweighting strategy (outer loop) will be discussed in
the next section.

As can be seen from Eq. (3), it is difficult to directly op-
timize because the GTV regularizer breaks the linear struc-
ture of T . To efficiently and effectively solve the problem,
we introduce auxiliary variables for making the problem
separable, which gives the following optimization problem:

argmin

T ,N

nX

k=1

↵kkW k�Qkkp + � (N )

s. t.P⌦(O) = P⌦(T +N ); 8k Qk
= R(T [k],�

k
).

(4)
The Augmented Lagrange Multiplier (ALM) with Alternat-
ing Direction Minimizing (ADM) strategy can be employed
for solving the above problem [8, 7]. The augmented La-
grangian function of (4) is:

L(T ,N ,Qk
)

:

=

nX

k=1

↵kkW k �Qkkp + � (P⌦(N ))+

�(X ,O � T �N ) +

nX

k=1

�(Y k,Qk �R(T [k],�
k
)),

(5)
with the definition �(Z,C) := µ

2 kCk2F + hZ,Ci, where µ

is a positive penalty scalar. X and Y k are the Lagrangian
multipliers. Besides the Lagrangian multipliers, there are
T ,N and Qk to solve. The solver iteratively updates one
variable at a time by fixing the others. Fortunately, each step
has a simple closed-form solution, and hence can be com-
puted efficiently. Below, the solutions of the subproblems
are given in the following:
T -subproblem: With other terms fixed, we have:

argmin

T
�(X (t),O � T �N (t)

)+

nX

k=1

�(Y k(t),Qk(t) �R(T
(t)
[k],�

k
)).

(6)

1The sparse noise is usually modeled as kNk0, which is non-convex
and difficult to approximate (NP-hard), the widely used convex relaxation
is to replace `0 norm with `1 that is the tightest convex proxy of `0. With
the replacement, the sparse and Laplacian noises have the same form.



For computing T (t+1), we take derivative of (6) with re-
spect to T and set it to zero. By applying n-D FFT tech-
niques on this problem, we can efficiently obtain:

T (t+1)
= F�1

✓
F(G(t)

)

1+

Pn
k=1

Pm
j=1 |F(F k

j )|2

◆
, (7)

where, for brevity, we denote G(t)
:

= O �N (t)
+

X (t)

µ +

Pn
k=1 fold

�Pm
j=1(F

k
j )

T
(Q

k(t)
j +

Y k(t)
j

µ ), k
�
, and F(·) and

F�1
(·) stand for the n-D FFT and the inverse n-D FFT op-

erators, respectively. The division in (7) is element-wise.
Please notice that F k

j is the functional matrix correspond-
ing to the directional derivative-like filter �k

j f
k
✓j

.
N -subproblem. By dropping unrelated terms, we can up-
date N (t+1) by minimizing the following problem:

argmin

N
� (P⌦(N )) + �(X (t),O � T (t+1) �N ). (8)

1) Case Dense Noise  (P⌦(N ))

:

= kP⌦(N )k2F : Taking
derivative of (8) with respect to N provides:

N (t+1)
=

X (t)
+ µ(O � T (t+1)

)

2�⌦+ µ
, (9)

where the division operates element-wisely.
2) Case Sparse Noise  (P⌦(N ))

:

= kP⌦(WN �N )k1:
With the help of the non-uniform shrinkage operator, the
closed form solution for this case is:

N (t+1)
= SP⌦(�WN )

µ


O � T (t+1)

+

X (t)

µ

�
. (10)

Qk-subproblem: For each Qk, the update can be done via
minimizing the following problem:

argmin

Qk

↵kkW k �Qkkp + �(Y k(t),Qk �R(T
(t+1)
[k] ,�k

)).

(11)
1) Case Anisotropic p :

= 1: The solution of this case can
be efficiently computed via:

Qk(t+1)
= S↵kWk

µ


R(T

(t+1)
[k] ,�k

)� Y k(t)

µ

�
. (12)

2) Case Isotropic p :

= 2, 1: Alternatively, the update for
this case can be done through:

Qk(t+1)
= S ↵kWk

µZk(t)

[1]�
✓
R(T

(t+1)
[k] ,�k

)� Y k(t)

µ

◆
,

(13)
where 1 is the matrix with the same size as W k, as well
all its elements are 1, and the division on the weight per-
forms component-wisely. The m columns of Zk(t) are all

Algorithm 1: GTV Minimization
Input: The observed tensor O 2 RD1⇥···⇥Dn and its

support ⌦ 2 {0, 1}D1⇥···⇥Dn ; � � 0;
8k 2 [1, .., n] ↵k  0 and

Pn
k=1 ↵

k
= 1;

�k ⌫ 0 and
Pm

j=1 �
k
j = 1.

Initi.: h = 0; WN
(h)

= 1 2 RD1⇥···⇥Dn ;
8k 2 [1, .., n] W k(h)

= 1 2 R
Qn

i=1 Di⇥m;
while not converged do

t = 0; set T (t), N (t) and X (t) to
0 2 RD1⇥···⇥Dn , 8k 2 [1, ..., n] Qk(t) to
0 2 R

Qn
i=1 Di⇥m, µ > 0;

while not converged do
Update T (t+1) via Eq. (7);
Update N (t+1) via either Eq. (9) for cases
with dense Gaussian noises or Eq. (10) sparse
noises;
Update Qk(t+1) via either Eq. (12) for the
anisotropic GTV or Eq. (13) the isotropic one;
Update multipliers via Eq. (14);
t = t+ 1;

end
Update W k(h+1)s and WN

(h+1) through the
way discussed in Proposition 2;
h = h+ 1;

end
Output: T ⇤

= T (t�1),N ⇤
= N (t�1)

s
Pm

j=1

����

✓
R(T

(t+1)
[k] ,�k

)� Y k(t)

µ

◆

j

����
2

, where the opera-

tions are also component-wise.
Multipliers and µ: Besides, there are the multipliers and µ
need to be updated, which can be simply accomplished by:

X (t+1)
= X (t)

+ µ(O � T (t+1) �N (t+1)
);

Y k(t+1)
= Y k(t)

+ µ(Qk(t+1) �R(T
(t+1)
[k] ,�k

).
(14)

For clarity, the procedure of solving the problem (3) is
summarized in Algorithm 1. The outer loop terminates
when the change of the recovered results between neighbor-
ing iterations is sufficiently small or the maximal number of
outer iterations is reached. The inner loop is stopped when
kO�T (t+1)�N (t+1)kF  �kOkF with � = 10

�6 or the
maximal number of inner iterations is reached. It is worth
nothing that any type of derivative-like filters, such as (di-
rectional) first/second derivative, Gaussian and Laplacian,
can be readily applied to the proposed general framework.

3. Theoretical Analysis
In this section, we give two key propositions about the

convergence and the weight updating strategy to show the



theoretical guarantee of the proposed Algorithm 1.

Proposition 1. The inner loop of Algorithm 1 for solving

the problem (4) converges at a linear rate.

Proof. Recall the standard form of minimizing a separable
convex function subject to linear equality constraints:

min

qX

i=1

gi(xi) s. t.
qX

i=1

Eixi = b. (15)

It has proven to be with a linear convergence rate using
an ALM-ADM based algorithm, when gi(·)s are convex
functions, Eis are the operation matrices, and b is con-
stant [7]. To establish the convergence of the inner loop
of Algorithm 1, we transform the problem (4) into the stan-
dard form (15). It is easy to connect g(N )

:

=  (N ) and
gk(Q

k
)

:

= ↵kkW k �Qkkp. Before transforming the con-
straints, we here denote that o :

= vec(O[1]), t := vec(T [1])

and n :

= vec(N [1]), respectively. Now the following con-
straint is equivalent to those of (4):
2

6664

⌦
0
...
0

3

7775
o =

2

6664

⌦
F 1

1
...

F n
m

3

7775
t+

2

6664

⌦
0
...
0

3

7775
n�

2

6664

0
Q1

1
...

Qn
m

3

7775
, (16)

where ⌦ performs the same with P⌦(·) and 0s are zero ma-
trices with proper sizes. We can see that the problem (4) is
a specific case of (15), and thus this proposition holds.

Proposition 2. With the weights, W k
s and WN , updat-

ed via concave functions, the result can be iteratively im-

proved, and the (local) optimality of Algorithm 1 is guaran-

teed.

Proof. Although our algorithm might involves two kinds of
weight, i.e. WN for the sparse noise term and W k for
the GTV related term, they are separable. That means we
only need to analyze the case kW � Akp here, where p
can be either 1 or 2, 1. Similar to [1], our thought of it-
eratively reweighted scheme falls into the general class of
Majorization-Minimization framework, i.e.:

argmin

v
g(v) s. t. v 2 C (17)

where C is a convex set. As aforementioned, we expect to p-
reserve the sharp structure information meanwhile suppress
the noise effect. To this end, the function g(·) should be
concave, which yields the local linearization to achieve the
minimizing goal. Consequently, we have:

v(t+1)
= argmin

v2C
g(v(t)

) + hrg(v(t)
),v � v(t)i

= argmin

v2C
hrg(v(t)

),vi.
(18)

Monarch 

Sail 

Peppers Mandril 

Frymire 

Facade 

Lena 

Barbara 

Serrano 

Tulips 

Figure 1: Benchmark images used in the experiments.

This clearly indicates rg(v(t)
) can perform as the updated

weight (several special cases will be introduced in experi-
ments), and thus recognizes our reweighting strategy. We
can see that, as the outer loop iterates, the algorithm will be
converged at least at a local optimum.

4. Experiments
In this section, we evaluate the efficacy of our method

on several classic visual data recovery applications, i.e. im-
age/video completion and denoising. Two well-known met-
rics, PSNR and SSIM, are employed to quantitatively mea-
sure the quality of recovery, while the time to reflect the
computational cost. All the experiments are conducted on
a PC running Windows 7 64bit operating system with Intel
Core i7 3.4 GHz CPU and 8.0 GB RAM. All of the involved
algorithms are implemented in Matlab, which assures the
fairness of the time cost comparison. Please notice that the
efficiency of Algorithm 1 can be further improved by grad-
ually increasing µ after each iteration with a relatively small
initialization, e.g. µ(0)

= 1.25, µ(t+1)
= ⇢µ(t), ⇢ > 1, in-

stead of using a constant µ. For the experiments, we use
this strategy to accelerate the procedure.

The first experiment is carried out to reveal the superi-
or performance of our GTV model over the state-of-the-
art methods, including STDC [3] and HaLRTC2 [9], on
the task of color image completion. Figure 1 displays the
benchmark images: one image with global structure Fa-

cade, one poor textural Peppers, and other eight of more
complex and richer textures. The incomplete images and
their corresponding supports ⌦ are generated by random-
ly throwing away a fraction f 2 {0.3, 0.5, 0.7} of pixels.
As our model in Eq. (4) has two options for both  (N )

and p, and various ways to update weights, instead of eval-
uating every possible combination, we only test a specific
case of it in this experiment. The competitors employ the `2
noise penalty, to be fair, our method adopts the same. As for
the type of GTV, the isotropic p :

= 2, 1 is selected for our
method. The updating of W k(h+1) for the (h + 1)

th out-

2Both the codes of STDC and HaLRTC are downloaded from the au-
thors’ websites, the parameters of which are all set as suggested by the
authors to obtain their best possible results.



Table 1: Performance comparison in terms of PSNR(dB)/SSIM/Time(s).

Method Monarch(768x512x3) Mandrill(512x512x3) Frymire(1118x1105x3) Lena(512x512x3) Barbara(256x256x3)

STDC0.3 30.49/.9776/92.02 25.00/.8996/51.32 20.02/.7431/427.6 32.49/.9863/52.12 30.54/.9368/10.11
HaLRTC0.3 32.60/.9873/332.9 26.06/.9194/142.8 20.87/.7856/1083. 34.22/.9906/177.0 31.51/.9465/29.94
`2I-GTV0.3 34.95/.9932/51.77 26.34/.9169/37.12 22.66/.8911/216.2 35.17/.9916/38.02 32.09/.9508/8.85

STDC0.5 28.82/.9706/94.77 22.50/.8259/52.82 17.37/.6832/428.1 30.92/.9800/54.41 28.49/.8997/9.03
HaLRTC0.5 27.86/.9664/351.3 22.82/.8293/155.0 17.81/.7031/1418. 30.08/.9773/169.0 27.55/.8853/31.64
`2I-GTV0.5 31.41/.9867/56.48 23.70/.8465/34.81 19.56/.8418/223.7 32.55/.9854/33.33 29.38/.9198/7.48

STDC0.7 27.21/.9610/97.41 19.99/.7238/52.80 15.03/.6127/438.1 29.51/.9726/52.06 26.46/.8550/9.87
HaLRTC0.7 23.49/.9238/356.3 20.30/.7012/190.6 15.21/.5950/1401. 25.94/.9494/193.5 23.55/.7791/37.01
`2I-GTV0.7 27.61/.9719/53.71 21.63/.7463/34.09 16.96/.7578/219.7 29.68/.9745/33.39 26.54/.8704/7.36

Method Peppers(512x512x3) Sail(768x512x3) Facade(256x256x3) Serrano(629x794x3) Tulips(768x512x3)

STDC0.3 34.41/.9904/55.46 28.30/.9310/95.44 32.86/.9552/10.40 26.83/.9675/128.1 30.86/.9268/96.38
HaLRTC0.3 37.31/.9950/180.9 29.96/.9513/348.3 34.88/.9711/27.83 27.36/.9723/343.1 34.36/.9656/339.6
`2I-GTV0.3 35.10/.9942/35.58 31.29/.9620/55.07 29.64/.9211/8.58 30.06/.9873/117.0 35.70/.9720/53.70

STDC0.5 33.07/.9874/53.08 26.31/.8932/98.87 30.59/.9252/10.10 24.90/.9533/122.2 29.40/.9102/97.52
HaLRTC0.5 32.35/.9849/198.9 25.91/.8846/356.8 31.28/.9364/31.36 23.89/.9437/362.6 29.12/.9109/342.5
`2I-GTV0.5 31.36/.9882/33.43 28.22/.9269/56.21 26.48/.8472/6.97 26.78/.9763/113.9 32.27/.9532/55.25

STDC0.7 31.88/.9840/53.94 24.18/.8382/98.12 27.83/.8731/10.47 22.90/.9322/127.6 28.12/.8939/99.77
HaLRTC0.7 27.31/.9581/220.4 22.51/.7772/363.9 27.90/.8740/34.97 20.51/.8886/390.1 24.15/.8047/360.6
`2I-GTV0.7 27.99/.9761/36.45 25.42/.8675/56.76 23.42/.7172/8.05 23.61/.9551/112.8 28.61/.9179/56.44

er iteration is done via W k(h+1)
:

= c
q
exp (�|Qk(h)|),

where c is a positive constant (here we simply use c =

1). This reweighting strategy satisfies the conditions men-
tioned in Proposition 2. Besides, we fix the parameters as
↵ = [1; 0; 0] (3-order, only consider the mode-1 unfold-
ing), �k

= [0.25; 0.25; 0.25; 0.25]T (4-direction, say 0, ⇡
4 ,

⇡
2 , 3⇡

4 ), and � = 20 for all cases. In addition, to save the
computational load, the maximal outer iteration number is
set to 2 (latter we will see that the weights can be updated
sufficiently well through 2 iterations). The model (4) with
this setting is denoted as `2I-GTV.

Table 1 reports the average results of STDC, HaLRTC
and `2I-GTV over 10 independent trials. From the time
comparison, it is easy to see that our method is much more
efficient than the others. Specifically, STDC and HaLRTC
cost about 1.7 times and 5 times as much as `2I-GTV does,
respectively. In terms of PSNR and SSIM, our method sig-
nificantly outperforms the others except for the images Pep-

pers and Facade, please see the Frymire case shown in Fig.
2. The reason for the exceptions may be that these two im-
ages are of either regular (Facade) or poor texture (Pepper-

s), which fit the low-rank prior well. Even though, the qual-
ity of our recovery is still competitive or even better, please
see the Peppers case shown in Fig. 3 for example.

As our model might involve two kinds of weight, W ks
and WN , to validate the benefit of the reweighting strat-
egy (or sparsity enhancing), we thus employ the one with
 (N )

:

= kWN � N k1 and anisotropic GTV. The task

Outer Iter. 4 
PSNR/SSIM: 31.27/.9830 

GTV Weight Update 3 

Noise Weight Update 3 

Outer Iter. 3 
PSNR/SSIM: 31.01/.9821 

Outer Iter. 2 
PSNR/SSIM: 30.12/.9787 

Outer Iter. 1 
PSNR/SSIM: 26.18/.9521 

GTV Weight Update 2 GTV Weight Update 1 Original Lena 

Noise Weight Update 2 Noise Weight Update 1 
Noisy 

PSNR/SSIM: 10.41/.2730 

Figure 4: The benefit of the reweighting strategy. The noisy
image is synthesized by introducing 35% Salt&Pepper
noise into the original. Lighter pixels in weight maps in-
dicate higher probabilities of being high-frequency signals
in the second row or being noises in the third row (lower
weights), while darker ones mean lower probabilities (high-
er weights).

is to restore images from noisy observations (polluted by
Salt & Pepper noise), which is similar to the completion.
But the difference-the unknown support of clean entries-
makes it more difficult. The way to update WN

(h+1) u-



STDC: 20.20/.7481 HaLRTC: 20.86/.7843 GTV: 22.62/.8906 

STDC: 17.37/.6829 HaLRTC: 17.80/.7060 GTV: 19.57/.8412 

STDC: 14.96/.6102 HaLRTC: 15.19/.5943 GTV: 16.94/.7574 

Figure 2: Visual comparison on Frymire. Top row shows the results with 30% information missed. Middle and Bottom
correspond to those with 50% and 70% elements missed, respectively. From Left to Right: input frames, recoverd results
by STDC, Ha LRTC and GTV, respectively. Details can be better observed in zoomed-in patches.

Figure 5: An example of image denoisng. Left: Original
image. Mid-Left: Polluted image by 40% Salt & Pep-
per noise (PSNR/SSIM: 8.71dB/0.1488). Rest: Recovered
results by traditional TV (27.86dB/0.9144) and `1A-GTV
(29.08dB/0.9234), respectively.

tilizes 1
|N (h)|+✏

, where the division is element-wise and ✏ is
a positive constant to avoid zero-valued denominators and
provide stability. The updating of W k(h+1) and, the set-
tings of ↵ and �k follow the previous experiment. Due to
the importance of � to the restoration, we design an adaptive
updating scheme for the sake of robustness. That is, at the
1

st outer iteration, a relative small � (0.2 for the rest exper-
iments) is first set, then iteratively refine it to be inversely

Figure 6: Two examples of video inpainting. From Left to
Right: Original frames, corrupted frames, detected corrup-
tions and recovered results by `1A-GTV, respectively.

proportional to kN (h)k1Q
i Di

. We denote this setting of our mod-
el as `1A-GTV. It can be seen from the results shown in Fig.
4 that, as the outer loop iterates, both the visual quality of
recovery and the accuracy of weights increase. Please note
that, the 2

nd outer iteration significantly improves the 1

st



STDC: 34.37/.9903 HaLRTC: 37.36/.9950 GTV: 35.58/.9945 

STDC: 33.32/.9872 HaLRTC: 32.32/.9848 GTV: 31.53/.9883 

STDC: 31.87/.9839 HaLRTC: 27.36/.9581 GTV: 28.13/.9766 

Figure 3: Visual comparison on Peppers. Top row shows the results with 30% information missed. Middle and Bottom
correspond to those with 50% and 70% elements missed, respectively. From Left to Right: input frames, recoverd results
by STDC, Ha LRTC and GTV, respectively. Details can be better observed in zoomed-in patches.

with very promising result. In other words, the outer loop
converges rapidly. In addition, the inner loop of all the ex-
periments can be converged within 40-50 iterations.

Figure 5 shows an example on image denoising to
demonstrate the superior performance of GTV over the tra-
ditional TV [16, 2]. The middle-right picture in Fig. 5
is the best possible result of the traditional TV by tuning
� 2 {0.1, 0.2, ..., 1.0}, while the right is automatically ob-
tained by `1A-GTV. The recovered details are the clear and
convincing evidences on the advance of GTV.

To further show the ability of `1A-GTV, we apply it to
video inpainting. Different to the previous setting of `1A-
GTV, the parameter ↵ for this task adopts [0; 1; 1] to re-
veal the power of temporal information. Two examples are
shown in Fig. 6, as can be viewed, our method can suc-
cessfully detect and repair the corruption in the video se-
quence. For the upper case in Fig. 6, the original frame
is scratched arbitrarily, the PSNR/SSIM of the corrupted
frame is 18.66dB/.8442. Our inpainting for this case gives

34.91dB/.9168 high-quality recovery. While a larger area
of the frame in the lower row is perturbed (13.99dB/.7076),
the repaired result of which is with 29.36dB/.9026.

5. Conclusion
Visual data recovery is an important, yet highly ill-posed

problem. The piece-wise smooth nature of visual data
makes the problem well-posed. This paper has proposed
a novel generalized tensor total variation norm (GTV) defi-
nition to exploit the underlying structure of visual data. We
have formulated a class of GTV minimization problems in a
unified optimization framework, and designed an effective
algorithm to seek the optimal solution with the theoretical
guarantee. The experimental results on visual data comple-
tion, denoising and inpainting have demonstrated the clear
advantages of our method over the state-of-the-art alterna-
tives. It is positive that our proposed GTV can be widely
applied to many other visual data restoration tasks, such as
deblurring, colorization and super resolution.
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