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Abstract

Many visual recognition problems can be approached
by counting instances. To determine whether an event is
present in a long internet video, one could count how many
frames seem to contain the activity. Classifying the activity
of a group of people can be done by counting the actions
of individual people. Encoding these cardinality relation-
ships can reduce sensitivity to clutter, in the form of irrele-
vant frames or individuals not involved in a group activity.
Learned parameters can encode how many instances tend
to occur in a class of interest. To this end, this paper devel-
ops a powerful and flexible framework to infer any cardinal-
ity relation between latent labels in a multi-instance model.
Hard or soft cardinality relations can be encoded to tackle
diverse levels of ambiguity. Experiments on tasks such as
human activity recognition, video event detection, and video
summarization demonstrate the effectiveness of using cardi-
nality relations for improving recognition results.

1. Introduction

A number of visual recognition problems involve exam-
ining a set of instances, such as the people in an image or
frames in a video. For example, in group activity recogni-
tion (e.g. [6]) the prominent approach to analyzing the ac-
tivity of a group of people is to look at the actions of indi-
viduals in a scene. A number of impressive methods have
been developed for modeling the structure of a group activ-
ity [18, 5, 3], capturing spatio-temporal relations between
people in a scene. However, these methods do not directly
consider cardinality relations about the number of people
that should be involved in an activity. These cardinality re-
lations vary per activity. An activity such as a fall in a nurs-
ing home [18] is different in composition from an activity
such as queuing [5], involving different numbers of people
(one person falls, many people queue). Further, clutter, in
the form of people in a scene performing unrelated actions,
confounds recognition algorithms. In this paper we present

a framework built on a latent structured model to encode
these cardinality relations and deal with the ambiguity or
clutter in the data.

Another example is unconstrained internet video analy-
sis. Detecting events in internet videos [21] or determining
whether part of of a video is interesting [10] are challeng-
ing for many reasons, including temporal clutter – videos
often contain frames unrelated to the event of interest or
that are difficult to classify. Two broad approaches exist
for video analysis, either relying on holistic bag-of-words
models or building temporal models of events. Again,
successful methods for modeling temporal structure exist
(e.g. [8, 28, 25, 29]). Our method builds on these successes,
but directly considers cardinality relations, counting how
many frames of a video appear to contain a class of interest,
and using soft and intuitive constraints such as “the more,
the better” to enhance recognition.

Fig. 1 shows an overview of our method. We encode
our intuition about these counting relations in a multiple in-
stance learning framework. In multiple instance learning,
the input to the algorithm is a set of labeled bags containing
instances, where the instance labels are not given. We ap-
proach this problem by modeling the bag with a probabilis-
tic latent structured model. Here, we highlight the major
contributions of this paper.

• Showing the importance of cardinality relations for
visual recognition. We show in different applications
that encoding cardinality relations, either hard (e.g. ma-
jority) or soft (e.g. the more, the better), can help to en-
hance recognition performance and increase robustness
against labeling ambiguity.

• A kernelized framework for classification with car-
dinality relations. We use a latent structured model,
which can easily encode any type of cardinality con-
straint on instance labels. A novel kernel is defined on
these probabilistic models. We show that our proposed
kernel method is effective, principled, and has efficient
and exact inference and learning methods.
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(a) What is the collective activity? (b) What is this video about? (c) Is this video segment interesting?

Figure 1. Encoding cardinality relations can improve visual recognition. (a) An example of collective activity recognition. Three people are
waiting, and two people are walking (passing by in the street). Using only spatial relations, it is hard to infer what the dominant activity is,
but encoding the cardinality constraint that the collective activity tends to be the majority action helps to break the tie and favor “waiting”
over “walking”. (b) A “birthday party” video from the TRECVID MED11 dataset [21]. Some parts of the video are irrelevant to birthdays
and some parts share similarity with other events such as “wedding”. However, encoding soft cardinality constraints such as “the more
relevant parts, the more confident decision”, can enhance event detection. (c) A video from the SumMe summarization dataset [10]. The
left image shows an important segment, where the chef is stacking up a cone. The right image shows the human-judged interesting-ness
score of each frame. Even based on human judgment, not all parts of an important segment are equally interesting. Due to uncertainty in
labeling the start and end of a segment, the cardinality potential might be non-monotonic.

2. Related Work

This paper presents a novel model for cardinality re-
lations in visual recognition, in particular for the analy-
sis of video sequences. Existing video analysis methods
generally focus on structured spatio-temporal models, com-
plementary to our proposed approach. For instance, pio-
neering work was done by Gupta et al. [8] in analyzing
structured videos by creating “storyline” models populated
from AND-OR graph representations. Related models have
proven effective at analyzing scenes of human activity more
broadly in work by Amer et al. [3]. A series of recent papers
has focused on the problem of group activity recognition,
inferring an activity that is performed by a set of people in
a scene. Choi et al. [6, 5], Lan et al. [18], and Khamis et
al. [13] devised models for spatial and temporal relations
between the individuals involved in a putative interaction.
Zhu et al. [33] consider contextual relations between hu-
mans and objects in a scene to detect interactions of inter-
est. The structural relations exploited by these methods are
a key component of activity understanding, but present dif-
ferent information from the cardinality relations we study.

Analogous approaches have been studied for “uncon-
strained” internet video analysis. Methods to capture the
temporal structure of high-level events need to be robust to
the presence of irrelevant frames. Successful models in-
clude Tian et al. [28] and Niebles et al. [20], who extend
latent variable models in the temporal domain. Tang et
al. [25] develop hidden Markov models with variable du-
ration states to account for the temporal length of action
segments. Vahdat et al. [29] compose a test video with a
set of kernel matches to training videos. Tang et al. [26] ef-
fectively combine informative subsets of features extracted

from videos to improve event detection. Bojanowski et
al. [4] label videos with sequences of low-level actions. Pir-
siavash and Ramanan [22] develop stochastic grammars for
understanding structured events. Xu et al. [31] propose a
feature fusion method based on utilizing related exemplars
for event detection. Lai et al. [17] apply multiple instance
learning to video event detection by representing a video as
multi-granular temporal video segments. Our work is sim-
ilar in spirit, but contributes richer cardinality relations and
more powerful kernel representations; empirically we show
these can deliver superior performance.

The continued increase in the amount of video content
available has rendered the summarization of unconstrained
internet videos an important task. Kim et al. [15] build
structured storyline-type representations for the events in a
day. Khosla et al. [14] use web images as a prior for select-
ing good summaries of internet videos. Popatov et al. [23]
learn the important components of videos of high-level
events. Gygli et al. [10] propose a benchmark dataset for
measuring interesting-ness of video clips and explore a set
of high-level semantic features along with superframe seg-
mentation for detecting interesting video clips. We demon-
strate that our cardinality-based methods can be effective
for this task as well, scoring a clip by the number of inter-
esting frames it contains.

2.1. Multi-Instance Learning

We develop an algorithm based on multiple instance
learning, where an input example consists of a bag of in-
stances, such as a video represented as a bag of frames. The
traditional assumption is that a bag is positive if it contains
at least one positive instance, while in a negative bag all



the instances are negative. However, this is a very weak
assumption, and recent work has developed advanced algo-
rithms with different assumptions [19, 12, 11, 17].

For example, Li et al. [19] formulated a prior on the num-
ber of positive instances in a bag, and used an iterative cut-
ting plane algorithm with heuristics to approximate the re-
sultant learning problem. Yu et al. [32] proposed∝SVM for
learning from instance proportions, and showed promising
results on video event recognition [17]. Our work improves
on this approach by permitting more general cardinality re-
lations with an efficient and exact training scheme.

Our approach models a bag of instances with a proba-
bilistic model with a cardinality-based clique potential be-
tween the instance labels. This cardinality potential facili-
tates defining any cardinality relations between the instance
labels and efficient and exact solutions for both maximum
a posteriori (MAP) and sum-product inference [9, 27]. For
example, Hajimirsadeghi et al. [11] used cardinality-based
models to embed different ratio-based multiple instance as-
sumptions. Here we extend these lines of work by develop-
ing a novel kernel-based learning algorithm that enhances
classification performance.

Kernel methods for multiple instance learning include
Gärtner et al.’s [7] MI-Kernel, which is obtained by sum-
ming up the instance kernels between all instance pairs of
two bags. Hence, all instances of a bag contribute to bag
classification equally, although they are not equally impor-
tant in practice. To alleviate this problem, Kwok and Che-
ung [16] proposed marginalized MI-Kernel. This kernel
specifies the importance of an instance pair of two bags ac-
cording to the consistency of their probabilistic instance la-
bels. In our work, we also use the idea of marginalizing
joint kernels, but we propose a unified framework to com-
bine instance label inference and bag classification within a
probabilistic graph-structured kernel.

3. Proposed Method: Cardinality Kernel
We propose a novel kernel for modeling cardinality re-

lations, counting instance labels in a bag – for example the
number of people in a scene who are performing an action.
We start with a high-level overview of the method, follow-
ing the depiction in Fig. 2.

The method operates in a multiple instance setting,
where the input is bags of instances, and the task is to label
each bag. For concreteness, Fig. 2(a) shows video event de-
tection. Each video is a bag comprised of individual frames.
The goal is to label a video according to whether a high-
level event of interest is occurring in the video or not. Tem-
poral clutter, in the form of irrelevant frames, is a challenge.
Some frames may be directly related to the event of interest,
while others are not.

Fig. 2(b) shows a probabilistic model defined over each
video. Each frame of a video can be labeled as containing

the event of interest, or not. Ambiguity in this labeling is
pervasive, since the low-level features defined on a frame
are generally insufficient to make a clear decision about a
high-level event label. The probabilistic model handles this
ambiguity and a counting of frames – parameters encode
the appearance of low-level features and the intuition that
more frames relevant to the event of interest makes it more
likely that the video as a whole should be given the event
label.

A kernel is defined over these bags, shown in Fig. 2(c).
Kernels compute a similarity between any two videos. In
our case, this similarity is based on having similar cardi-
nality relations, such as two videos having similar counts
of frames containing an event of interest. Finally, this ker-
nel can be used in any kernel method, such as an SVM for
classification, Fig. 2(d).

3.1. Cardinality Model

A cardinality potential is defined in terms of counts of
variables which take some particular values. For example,
with binary variables, it is defined in terms of the number
of positively and negatively labeled variables. Given a set
of binary random variables y = {y1, y2, · · · , ym} (yi ∈
{0, 1}), the cardinality potential model is described by the
joint probability

P (y) =
C(
∑

i yi)
∏

i exp (ϕiyi)∑
y C(

∑
i yi)

∏
i exp (ϕiyi)

, (1)

which consists of one cardinality potential C(·) over all
the variables and unary potentials exp (ϕiyi) on fea-
tures ϕi on each single variable. Maximum a posteriori
(MAP) inference of this model is straight-forward and takes
O (m logm) time [9]. Sum-product inference is more in-
volved, but efficient algorithms exist [27], computing all
marginal probabilities of this model in O

(
m log2m

)
time.

In problems with multiple instances, there are assump-
tions or constraints which are defined on the counts of in-
stance labels. For example, the standard multi-instance as-
sumption states that at least one instance in a positive bag
is positive. So, it is intuitive that these constraints can be
modeled by a cardinality potential over the instance labels.
This modeling helps to have exact and efficient solutions for
MIL problems, using existing state-of-the-art inference and
learning algorithms.

Using this cardinality potential model as the core, a
probabilistic model of the likelihood of a bag of instances
X = {x1,x2, · · · ,xm} with the bag label Y ∈ {−1,+1}
and the instance labels y with model parameters θ, is built
(c.f. [27]):

P (Y,y|X;θ) ∝ φC(Y,y)
∏
i

φIθ(xi, yi). (2)



(a) Preparing Training Data as Positive
and Negative Bags of Instances
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(b) Learning the Cardinality
Model

(c) Computing Cardinality Kernels
for all Bag Pairs

Kernel 
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(d) Using a Kernel Method to
Train a Classifier

Figure 2. The high-level scheme of the proposed kernel method for bag classification.

A graphical representation of the model is shown in
Fig. 2(b). In our framework, we call this the “Cardinal-
ity Model”, and the details of its components are described
as follows:
Cardinality clique potential φC(Y,y): a clique potential
over all the instance labels and the bag label. This is used to
model multi-instance or label proportion assumptions and is
formulated as φC(Y,y) = C(Y )(

∑
i yi). C(+1) and C(−1)

are cardinality potentials for positive and negative bag la-
bels, and in general could be expressed by any cardinality
function. In this paper we work with the “normal” model in
(3) and the “ratio-constrained” model in (4).

C(+1)(c) = exp
(
−(

c

m
− µ)2/2σ2

)
C(−1)(c) = exp

(
−(

c

m
)2/2σ2

)
.

(3)

C(+1)(c) = 1(
c

m
>= ρ)

C(−1)(c) = 1(
c

m
< ρ).

(4)

The parameter µ in the normal model or ρ in the ratio-
constrained model controls the proportion of positive la-
beled instances in a bag. The Normal model does not im-
pose hard constraints on the number of positive instances,
and consequently a positive bag can have any proportion of
positive instances but it is more likely to be around µ. On
the other hand, the ratio-constrained model makes a hard
constraint, assuming a bag must have at least a certain ratio
(ρ) of positive instances.
Instance-label potential φIθ(xi, yi): represents the poten-
tial between each instance and its label. Essentially, this po-
tential describes how likely it is for an instance (e.g. video
frame) to receive a certain label (e.g. relevant or not to an
event). It is parameterized as:

φIθ(xi, yi) = exp (θtxi yi) (5)

With these potential functions, the joint probability in (2)
can be rewritten as

P (Y,y|X;θ) ∝ C(Y )(
∑
i

yi)
∏
i

exp (θtxi yi). (6)

And finally, the bag label likelihood, is obtained by

P (Y |X;θ) =
∑
y

P (Y,y|X;θ) =
Z(Y )∑
Y ′ Z(Y ′)

, (7)

whereZ(Y ) =
∑
y

(
C(Y )(

∑
i

yi)
∏
i

exp (θtxi yi)

)
(8)

is the partition function of a standard cardinality potential
model, which can be computed efficiently.

In summary, we have a unified probabilistic model that
states the probability that a bag (e.g. video) receives a la-
bel based on classifying individual instances (e.g. frames),
and a cardinality potential that prefers certain counts of pos-
itively labeled instances.

3.1.1 Parameter Learning

Since only the bag labels, and not the instance labels, are
provided in training, this Cardinality Model is a hidden con-
ditional random field (HCRF). A commonly used algorithm
for parameter learning is maximum a posteriori estimation
of the parameters given the parameter prior distributions by
maximizing the log likelihood function:

L(θ) =
∑
i

logP (Yi|Xi;θ)− λ r(θ). (9)

This is maximum likelihood optimization of a HCRF with
parameter regularization (r(θ) = ‖θ‖n for Ln-norm reg-
ularization). Gradient ascent is used to find the optimal
parameters, where the gradients are obtained efficiently in
terms of marginal probabilities [24].

3.2. Cardinality Kernel

This section presents the proposed probabilistic kernel
for multi-instance classification. Kernels operate over a pair
of inputs, in this case two bags. This kernel is defined using
the Cardinality Models defined above. Each bag has its own
set of instances, and a probabilistic model is defined over



each bag. A kernel over bags is formed by marginalizing
over latent instance labels.

Given two bags Xp and Xq , a joint kernel is defined be-
tween the combined instance features and instance labels
for these bags zp = (Xp,yp) and zq = (Xq,yq):

kz(zp, zq) =

mp∑
i=1

mq∑
j=1

kx(xpi,xqj)ky(ypi, yqj), (10)

where kx(·, ·) is a standard kernel between single instances,
and ky(·, ·) is a kernel defined on discrete instance labels1.
By marginalizing the joint kernel w.r.t. the hidden instance
labels and with independence assumed between the bags, a
kernel is defined on the bags as:

k̃(Xp,Xq) =
∑
yp,yq

P (yp|Xp)P (yq|Xq)kz(zp, zq). (11)

Combining the fully observed label instance kernel (10)
with the probabilistic version (11), it can be shown that the
marginalized joint kernel is reduced to

mp∑
i=1

mq∑
j=1

∑
yp,yq

(
kx(xpi,xqj)ky(ypi, yqj)

P (ypi|Xp)P (yqj |Xq)
)
.

(12)

In our proposed framework, P (ypi|Xp) and P (yqj |Xq) are
obtained by

P (yi|X) =
∑
Y

P (yi|Y,X)P (Y |X), (13)

where P (yi|Y,X) are the marginal probabilities of a stan-
dard cardinality potential model, which can be computed
efficiently in O(m log2m) time. Also P (Y |X) is the bag
label likelihood introduced in (7).

In general, any kernel for discrete spaces can be used
as ky . The most commonly used discrete kernel is
ky(ypi, yqj) = 1(ypi = yqj). However, since throughout
this paper we are dealing with binary instance labels and
we are interested in performing recognition with the most
salient and positively relevant instances of a bag, ky is as-
sumed to be

ky(ypi, yqj) = 1(ypi = 1) · 1(yqj = 1). (14)

Using this, the kernel in (12) is simplified as:

k̃(Xp,Xq) =
mp∑
i=1

mq∑
j=1

kx(xpi,xqj)P (ypi = 1|Xp)P (yqj = 1|Xq).

(15)

1If ky(·, ·) is set to 1, the resulting kernel will be equivalent to MI-
Kernel [7]. Also, note that since the joint kernel is obtained by summing
and multiplying the base kernels, it is proved to be a kernel, has all kernel
properties, and can be safely plugged into kernel methods.

It is interesting to note that this kernel in (15) can be
rewritten as

k̃(Xp,Xq) =( mp∑
i=1

P (ypi = 1|Xp)Ψ(xpi)
)( mq∑

j=1

P (yqj = 1|Xq)Ψ(xqj)
)
,

(16)

where Ψ(x) is the mapping function that maps the instances
to the underlying feature space of the instance kernel kx.
This proves that the unnormalized cardinality kernel in the
original feature space corresponds to weighted sum of the
instances in the induced feature space of kx, where the
weights are the marginal probabilities inferred from the Car-
dinality Model in the original space. It can be also shown
that in the more general case of ky(ypi, yqj) = 1(ypi =
yqj), the resulting cardinality kernel would correspond to
weighted sum of all the instances which take the same in-
stance label in the mapped feature space and concatenating
them altogether.

Finally, to avoid bias towards the bags with large num-
bers of instances, the kernel is normalized as [7]:

k(Xp,Xq) =
k̃(Xp,Xq)√

k̃(Xp,Xp)
√
k̃(Xq,Xq)

. (17)

We call the resulting kernel the “Cardinality Kernel”. By
using this kernel in the standard kernel SVM, we propose
a method for multi-instance classification with cardinality
relations.

3.3. Algorithm Summary

The proposed algorithm is summarized as follows. First
the parameters θ of the Cardinality Model are learned
(Sec. 3.1). These parameters control the classification of
individual instances and the cardinality relations for bag
classification. Next, the marginal probabilities of instance
labels under this model are inferred and used in the ker-
nel function in (15). Finally, the kernel is normalized and
plugged into an SVM classifier2.

A comprehensive analysis of the computational com-
plexity of the proposed algorithm can be found in the sup-
plementary material. In short, the kernel in (15) can be
evaluated in O(mpmqd+mp log2mp +mq log2mq) time,
where the basic kernel kx takes O(d) time to compute, and
the number of instances in each bag are mp and mq .

4. Experiments
We provide empirical results on three tasks: group activ-

ity recognition, video event detection, and video interesting-
ness analysis.

2For the parameter setting guidelines, see the supplementary material.



4.1. Collective Activity Recognition

The Collective Activity Dataset [6] comprises 44 videos
(about 2500 video frames) of crossing, waiting, queuing,
walking, and talking. Our goal is to classify the collective
activity in each frame. To this end, we model the scene as
a bag of people represented by the action context feature
descriptors3 developed in [18]. We use our proposed algo-
rithms with the ratio-constrained cardinality model in (4)
with ρ = 0.5, to encode a majority cardinality relation. We
follow the same experimental settings as used in [18], i.e.,
the same 1/3 of the video clips were selected for test and
the rest for training. The one-versus-all technique was em-
ployed for multi-class classification. We applied l2-norm
regularization in likelihood maximization of the Cardinal-
ity Model and simply used linear kernels as the instance
kernels in our method. The results of our Cardinality Ker-
nel are shown in Table 1 and compared with the follow-
ing methods4: (1) SVM on global bag-of-words, (2) Graph-
structured latent SVM method in [18], (3) MI-Kernel [7],
(4) Cardinality Model of Section 3.1 (our own baseline).

Table 1. Comparison of classification accuracies of different al-
gorithms on collective activity dataset. Both multi-class accuracy
(MCA) and mean per-class (MPC) accuracy are shown because of
class size imbalance.

Method MCA MPCA
Global bag-of-words with SVM [18] 70.9 68.6
Latent SVM with optimized graph [18] 79.7 78.4
Cardinality Model 79.5 78.7
MI-Kernel 80.3 78.4
Cardinality Kernel (our proposed method) 83.4 81.9

Our simple Cardinality Model can achieve results com-
parable to the structure-optimized models by replacing spa-
tial relations with cardinality relations. Further, the pro-
posed Cardinality Kernel can significantly improve classi-
fication performance of the Cardinality Model. Finally, our
Cardinality Kernel is considerably better than MI-Kernel,
showing the advantage of using importance weights (i.e.
probability of being positive) of each instance for non-
uniform aggregation of instance kernels.

Fig. 3(a) illustrates the effect of ρ in the ratio-constrained
cardinality model on classification accuracy of the Cardinal-
ity Kernel. It can be seen that as expected, the best result is
achieved with ρ = 0.5. We also provide the confusion ma-
trix for the Cardinality Kernel method in Fig. 3(b). Finally,
two examples of recognition with the Cardinality Model for
crossing and waiting activities are visualized in Fig. 4.

3These features are based on a spatio-temporal context region around a
person. So by using our cardinality-based model, the spatio-temporal and
cardinality information are combined.

4All these methods follow the standard evaluation protocol introduced
in [5]. See the supplementary material to find the comparison with the
methods in [3, 2, 1], which use a different evaluation setting.

(a) (b)

Figure 3. Performance of the Cardinality Kernel on collective ac-
tivity dataset. (a) Classification accuracy with different values of
ρ in the ratio-constrained cardinality model. (b) Confusion matrix
with ρ = 0.5 (rows are the true labels, and columns are predicated
labels)

Figure 4. Examples of recognition with the proposed model. The
annotation of each person shows the true activity label of the scene
with a tuple, indicating the MAP-inferred action label and the cor-
responding marginal probability w.r.t. the the scene activity label.
-1 values denote “not” of the corresponding category; people per-
forming other actions (left: two people not waiting, right: people
not crossing the street) are correctly given -1 labels.

4.2. Event Detection

We evaluate our proposed method for event detection on
the TRECVID MED11 dataset [21]. Because of temporal
clutter in the videos, not all parts of a video are relevant to
the underlying event, and the video segments might have
unequal contributions to event detection. Our framework
can deal with this temporal ambiguity, i.e., when the evi-
dence of an event is occurring in a video and what the de-
gree of discrimination or importance of each temporal seg-
ment is. We represent each video as a bag of ten tempo-
ral video segments, where each segment is represented by
pooling the features inside it. As the cardinality potential,
we use the Normal model in (3) with µ = 1 and σ = 0.1
to embed a soft and intuitive constraint on the number of
positive instances: the more relevant segments in a video,
the higher the probability of occurring the event.

We follow the evaluation protocol used in [29, 25].
The DEV-T split of MED11 dataset is used for validation
and finding the hyper-parameters such as the regulariza-
tion weights in learning the Cardinality Model and SVM.
Then, we evaluate the methods on the DEV-O test collec-
tion (32061 videos), containing the events 6 to 15 and a
large number of null (or background events). For training,



an Event-Kit collection of roughly 150 videos per event is
used, and as in [29, 25], the classifiers are trained for each
event versus all the others.

We compare our methods with the kernelized latent
SVM methods in [29], applied to a structured model where
the temporal location and scene type of the salient video
segments are modeled as latent variables. To have a fair
comparison, we use the same set of features: HOG3D,
sparse SIFT, dense SIFT, HOG2x2, self-similarity descrip-
tors (ssim), and color histograms, which are simply con-
catenated to a single feature vector5. For training the Cardi-
nality Model regularized maximum likelihood is used with
l1-norm regularization, and for the Cardinality Kernel his-
togram intersection kernel is plugged as the instance kernel.
The results in terms of average precision (AP) are shown in
Fig. 5. It can be observed that based on mean AP, our pro-
posed Cardinality Kernel clearly outperforms the baselines:

• The Cardinality Model of Sec. 3.1.
• Kernelized SVM (KSVM) and multiple kernel learn-

ing SVM (MKL-SVM), which are kernel methods with
global bag-of-words models.

• MI-Kernel [7], which is a multi-instance kernel method
with uniform aggregation of the instance kernels.

On the other hand, our method is comparable to the kernel-
ized latent SVM (KLSVM) methods in [29]. However, our
model is considerably less complicated, and unlike these
methods, our proposed framework has exact and efficient
inference and learning algorithms. For example the training
time for our method is about 35 minutes per event, but those
methods takes about 30 hours per event6. In addition, based
on comparison on individual events, our proposed method
achieves the best AP in 6 out of 10 events.

Recently, Lai et al. [17] proposed a multi-instance frame-
work for video event detection, by treating a video as a bag
of temporal video segments of different granularity. Since
this is the closest work to ours, we run another experiment
on TRECVID MED11 to evaluate performance of our algo-
rithm compared to [17]. We use exactly the same settings
as before, but since Lai et al. [17] used dense SIFT features,
we also extract dense SIFT features quantized into a 1500-
dimensional bag-of-words vector for each video segment7,
where the video segments are given by dividing each video
into 10 equal parts. This is slightly different from the multi-
granular approach in [17], where both the single frames and
temporal video segments are used as the instances (single–
g ∝SVM uses only single frames and multi–g ∝SVM uses

5In the experiments of this section we compare our method with the
most relevant methods, which use the same features. By using, combining,
or fusing other sets of features, better results can be achieved (e.g. [26, 31])

6We performed our experiments on an Intel(R) Core(TM) i7-2600 CPU
@ 3.40GHz, and compared to our previous work [29].

7We use VLFeat, as in [17], though with fewer codewords (5000 in
[17]). See the supplementary material for the results with more codewords.

both the single frames and video segments). The results
are shown in Table (2). Our method outperforms multi–g
∝SVM (which is the best in [17]) by around 20%. In addi-
tion, our algorithm is more efficient, and training takes only
about half an hour per event.

Table 2. Comparing our proposed Cardinality Kernel method with
∝SVM algorithms in [17] on TRECVID MED11. The best AP for
each event is highlighted in bold

Event
single–g

∝SVM [17]
multi–g

∝SVM [17]
Cardinality

Kernel
6 1.9 % 3.8 % 2.8 %
7 2.6 % 5.8 % 5.8 %
8 11.5 % 11.7 % 17.0 %
9 4.9 % 5.0 % 8.8 %
10 0.8 % 0.9 % 1.3 %
11 1.8 % 2.4 % 3.4 %
12 4.8 % 5.0 % 10.7 %
13 1.7 % 2.0 % 4.7 %
14 10.5 % 11.0 % 4.9 %
15 2.5 % 2.5 % 1.4 %
mAP 4.3 % 5.0 % 6.1 %

4.3. Video Summarization by Detecting Interesting
Video Segments

Recently, Gygli et al. [10] proposed a novel method for
creating summaries from user videos by selecting a sub-
set of video segments, which are interesting and informa-
tive. For this purpose, they created a benchmark dataset
(SumMe8) of 25 raw user videos, summarized and anno-
tated by 15 to 18 human subjects. In their proposed method,
each video segment is scored by summing the interesting-
ness score of its frames, estimated by a regression model
learned from human annotations. At the end, a subset of
video segments is selected such that the summary length is
15% of the input video.

Figure 6. Detecting interesting video segments. A video is mod-
eled as a bag of sub-segments.

In this paper, we propose a new approach for creating
segment-level summaries. Instead of predicting the per-
frame scores and using a heuristic aggregation operation
such as “sum”, we use our multi-instance model to directly

8The dataset and evaluation code for computing the f-measure are avail-
able at http://www.vision.ee.ethz.ch/∼gyglim/vsum/



Figure 5. The APs for events 6 to 15 in TRECVID MED 2011. The results for KSVM, MKL-SVM, KLSVM, and MKL-KLSVM are
reported from [29]. MI-Kernel is based on our own implementation of the algorithm in [7].

estimate the interestingness of a video segment. The pro-
posed approach is illustrated in Fig. 6. Each segment is
modeled as a bag of sub-segments, where a positive bag
is a segment which has large overlap with human anno-
tated summaries. To represent each sub-segment, we ex-
tract HSV color histogram (with 8 × 8 bins) and bag-of-
words dense trajectory features [30] (with 4000 words) for
each frame and max-pool the features over the sub-segment.
Here, we summarize our method and the baselines:

• Ours: A segment is divided into 5 sub-segments, and the
proposed Cardinality Kernel with Normal cardinality po-
tential (µ = 1, σ = 0.1) is used to score the segments.

• Global Model: A global representation of each segment
is constructed by max-pooling the features inside it, and
an SVM is trained on the segments.

• Single-Frame SVM: An SVM is trained on the frames,
and the score of each segment is estimated by summing
the frame scores.

• Single-Frame SVR: This is our simulation of the algo-
rithm in [10] but with our own features, fixed length seg-
ments, and using support vector regression.

The top scoring 15% of segments are selected in each.
For all methods a video is segmented into temporal seg-

ments of length Pl = 1.85 seconds (the segment length
given in [10]), and histogram intersection kernel is used
for training the SVMs. To evaluate the methods, the pro-
cedure in [10] is used: leave-one-out validation, compari-
son based on per segment f-measure. The results are shown
in Fig. 7. It can be observed that our method outperforms
the baselines and is competitive with the state-of-the-art re-
sults in [10]. In fact, although we are using general features
(color histogram and dense trajectory) we achieve a per-
formance which is comparable to the performance in [10],
which uses specialized features to represent attention, aes-
thetics, landmarks, etc. Note that the best f-measure in [10]

is obtained by over-segmenting a video into cuttable seg-
ments called superframe, using guidelines from editing the-
ory.

Figure 7. Comparison of different algorithms for segment-level
summarization of the SumMe benchmark videos. The percent
scores are relative to the average human.

5. Conclusion

We demonstrated the importance of cardinality relations
in visual recognition. To this end, a probabilistic structured
kernel method was introduced. This method is constructed
based on a multi-instance cardinality model, which can ex-
plore different levels of ambiguity in instance labels and
model different cardinality-based assumptions. We evalu-
ated the performance of the proposed method on three chal-
lenging tasks: collective activity recognition, video event
detection, and video summarization. The results showed
that encoding cardinality relations and using a kernel ap-
proach with non-uniform (or probabilistic) aggregation of
instances leads to significant improvement of classifica-
tion performance. Further, the proposed method is power-
ful, straightforward to implement, with exact inference and
learning, and can be simply integrated with off-the-shelf
structured learning or kernel learning methods.
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