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Abstract

A video dataset that is designed to study fine-grained cat-
egorisation of pedestrians is introduced. Pedestrians were
recorded “in-the-wild” from a moving vehicle. Annotations
include bounding boxes, tracks, 14 keypoints with occlu-
sion information and the fine-grained categories of age (5
classes), sex (2 classes), weight (3 classes) and clothing
style (4 classes). There are a total of 27,454 bounding box
and pose labels across 4222 tracks. This dataset is designed
to train and test algorithms for fine-grained categorisation
of people; it is also useful for benchmarking tracking, detec-
tion and pose estimation of pedestrians. State-of-the-art al-
gorithms for fine-grained classification and pose estimation
were tested using the dataset and the results are reported as
a useful performance baseline.

1. Introduction

People are an important component of a machine’s en-
vironment. Detecting, tracking, and recognising people,
interpreting their behaviour and interacting with them is a
valuable capability for machines. Using vision to estimate
human attributes such as: age, sex, activity, social status,
health, pose and motion patterns is useful for interpreting
and predicting behaviour. This motivates our interest in
fine-grained categorisation of people.

Visual classification involves recognising basic cate-
gories (e.g. ‘birds’ vs. ‘chairs’) and fine-grained cate-
gories, also called subcategories (e.g. ‘barn swallow’ vs.
‘marten’) [5]. Since subcategories are similar in appearance
subtle differences are often crucial. This is in contrast to ba-
sic categorisation where categories are visually distinct and
therefore broad statistics of the image are often sufficient.

While research in broad categorisation is well-supported
by large datasets comprising thousands of categories [11,
24], fine-grained categorisation has so far been explored in
a small number of domains including: animal breeds and
species [6, 21, 39], plant species [30], objects [37, 26] and,

Figure 1: Three examples from the CRP dataset. Anno-
tations include a bounding box, tracks, parts, occlusion, sex,
age, weight and clothing style.

what will be the focus of this work, people [7, 9, 4, 42]. The
availability of good-quality, large annotated datasets cover-
ing as many domains as possible is crucial for progress in
fine-grained categorisation.

Prior work on the fine-grained categorisation1 of people
has typically focused on faces with subcategories includ-
ing: identity, age, sex, clothing type, facial hair and skin
colour [10, 15, 29, 36, 1, 22].

Fine-grained classification using the entire human body
is still a relatively unexplored area. The current bench-
mark using images is “The Attributes of People Dataset” [4]
which was introduced in 2011. It includes 9 subcategories
and has large variations in viewpoint and occlusion. This
dataset has been useful for researchers working on human

1In the literature, fine-grained categorisation is more commonly re-
ferred to as attribute recognition in the human domain.
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Number of Frames Sent to MTURK 38,708
Number of Frames with at least 1 Pedestrian 20,994
Number of Bounding Box Labels 32,457
Number of Pose Labels 27,454
Number of Tracks 4,222

Table 1: Dataset Statistics

attribute recognition [4, 42] but is limited by: a) its size, par-
ticularly when training deep networks [42]; b) only bound-
ing box annotations are provided and c) all subcategories
are binary.

There are also a number of video-based benchmark
datasets [35, 18, 27] that are geared towards gait recog-
nition. These datasets are limited by: a) the raw video
footage is difficult to obtain with only silhouettes being
readily available; b) subjects are cooperative (they know
they are being filmed); c) the background is static and un-
cluttered; d) viewpoints are all profile; and e) subcategories
are limited to identity and sex.

In this work, we introduce a public video dataset—
Caltech Roadside Pedestrians (CRP)—to further ad-
vance the state-of-the-art in fine-grained categorisation
of people using the entire human body. Its novel and dis-
tinctive features are:

1. Size (27,454 bounding box and pose labels) – making
it suitable for training deep-networks.

2. Natural behaviour – subjects are unaware, and behave
naturally.

3. Viewpoint – Pedestrians are viewed from front, profile,
back and everything in between.

4. Moving camera – More general and challenging than
surveillance video with static background.

5. Realism – There is a variety of outdoor background
and lighting conditions; examples can be found in Fig-
ure 8.

6. Multi-class subcategories – age, clothing style and
body shape.

7. Detailed annotation – bounding boxes, tracks and 14
pose keypoints with occlusion information; examples
can be found in Figure 1. Each bounding box is
also labelled with the fine-grained categories of age (5
classes), sex (2 classes), weight (3 classes) and cloth-
ing type (4 classes).

8. Availability – All videos and annotations are publicly
available2

2. Related work
Existing fine-grained datasets on birds [6, 38, 3],

dogs [21, 25, 33], cats [33], butterflies [39], flies [28],

2http://vision.caltech.edu/˜dhall/projects/CRP
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Figure 2: (Left) The 14 body parts used as keypoints for
pose annotation: a) top of the head; b) chin; c) right shoul-
der; d) left shoulder; e) right elbow; f) left elbow; g) right
hip; h) left hip; i) right wrist; j) left wrist; k) right knee; l)
left knee; m) right ankle and n) left ankle. (Right) The pos-
sible class labels for each of the four subcategories: sex,
age, weight and clothing style

leaves [23], flowers [30, 31], aircraft [26] and cars [37],
cover a single subcategory (usually species, breed or type)
but have hundreds of classes.

Fine-grained categorisation of people, however, began
with a focus on the single binary subcategory of sex. Us-
ing neural networks, SEXNET [15] and EMPATH [10] were
the first efforts to classify sex from faces; methods using
support vector machines [29] and boosting [36, 1] soon
followed. Work on classifying age and race from faces
can also be found in the literature, with in-depth surveys
available [14, 13]. The first attempt at collecting a face
dataset with multiple, multi-class subcategories was Face-
Tracer [22]. It captured seven subcategories relevant to peo-
ple, these included: sex, age (4 classes) and race (3 classes).
Each subcategory had between 1000-4000 examples.

In low resolution situations and particularly surveillance
settings, faces are not suitable for fine-grained categori-
sation. This has led to work that looks at using the en-
tire body, which presents additional cues such as clothing,
body shape and motion patterns. Cao [7] took the exist-
ing MIT pedestrian dataset [32] and manually annotated it
with sex labels; this was repeated by [9] who also labelled
the VIPeR [16] dataset. It wasn’t until “The Attributes of

http://vision.caltech.edu/~dhall/projects/CRP


Figure 3: (Left) A histogram of the height and width of the bounding boxes in the dataset. The mean bounding box size
is 71 pixels wide by 201 pixels high. The resolution is twice as large as Caltech Pedestrians [12] but 2.5 times smaller than
the “Attributes of People Dataset”, which is currently used for fine-grained classification [4]. (Middle) A histogram of the
number of bounding boxes in each of the labelled frames in the dataset. 63% of frames have only a single person in
them, the remainder have two or more. (Right) A histogram of the track length. Since only every 5th frame is labelled,
each pedestrian takes an average of 32.5 frames or 1.1 seconds to move through the field of view of the camera.

People Dataset” [4] was released in 2011, that a full-body
dataset, with more than a single subcategory, was publicly
available. This dataset has 9 binary subcategories across
8035 images, with large variations in viewpoint and occlu-
sion. Bounding box annotations are also provided. The
dataset has a high resolution with an average bounding box
size of 532 x 298 pixels and is the current benchmark. More
recently, the “Attributes 25K Dataset” [42] was collected; it
is a large dataset with 24,963 examples and the same sub-
categories as [4], however, it is not publicly available.

The gait recognition community utilise the temporal in-
formation available in video for fine-grained categorisation,
with a particular focus on identity. The task here is to infer
the identity of someone from the way they walk. State-of-
the-art methods for gait recognition extract a sequence of
silhouettes of a particular person. A Gait Energy Image [17]
or a Gait Entropy Image [2] is then computed from the se-
quence of silhouettes once an estimate of the gait period is
determined. These features are then used for classification.

There are a number of video datasets available, the first
being the USF HumanID Dataset [35]. It contains 1870 se-
quences of 122 individuals. It is collected outdoors with
a static background. Participants are cooperating subjects,
aware of being filmed, who are asked to walk a predefined
elliptical path, with only the back portion used ensuring the
viewpoint is always profile. Silhouettes are available for
immediate download while the entire video collection can
take up to 3 months to obtain. A more recent example is the
Large Population Dataset [18]. It contains 4016 subjects
who each occur in 2 sequences. It is collected indoors with
a green screen background. Participants walk a predefined
path, however, the viewpoint varies from nearly-frontal to
profile. Sex and age labels were also collected however
these have not yet been released. Only silhouettes are avail-

able for download but only after authorisation is granted by
the authors.

3. Dataset Collection
In this section we describe in detail, the method in which

the videos of the dataset were collected and annotated. Due
to the large number of annotations required it was important
to develop an efficient and cost effective pipeline. For this
reason, crowdsourcing, using workers from Amazon’s Me-
chanical Turk (MTURK) was used for all of the annotation
tasks.

3.1. Video Collection

This dataset contains 7 videos. Each video is captured
by mounting a rightwards-pointing, GoPro Hero3 camera
to the roof of a car. The car then completes three laps of a
ring road within a park where there are many walkers and
joggers. The videos were shot using a wide-angle mode,
at a resolution of 1280x720 pixels, and a frame rate of 30
fps. Each video has on average, 37,000 frames, for a total
of 261,645 frames in the entire dataset. Each video was
recorded at 8AM on different days of the week, over a 9
month period.

3.2. Bounding Box Annotation

For each video, the first task was to annotate all of the
pedestrians with bounding boxes. To make this a cost-
effective task, a coarse-to-fine approach was used. Every
10th frame was sent to MTURK where three workers were
instructed to draw a bounding box around every pedestrian
in the image. The bounding boxes from each worker were
then combined into a single set of bounding box labels for
each frame using clustering. For this stage, a total of 26,168
frames were sent for annotation.



Figure 4: (Left) The percentage of labels that are occluded for each keypoint. The top of the head is rarely occluded,
followed by the left and right ankles. The wrists, shoulders, elbows, hips and chin are all occluded around 25% of the time.
(Right) The number of labels for each class in the four fine-grained categories of the dataset. For all subcategories there
is quite a large class imbalance. Very few children, teenagers, under weight or well-dressed people were seen. Given the
setting, this is not surprising. The remaining classes have a reasonable number of labels.

A further set of frames were sent for annotation so that
every 5th frame of the video would be labelled. To avoid
sending empty frames, the results from the coarse labelling
attempt were used. For every frame x that had a set of
bounding box labels (the image actually contained pedestri-
ans), two frames were sent to MTURK for labelling, frames
x + 5 and x − 5. These frames were again annotated by
three workers and a single set of bounding box labels were
generated as before. For this stage, 12,540 frames were sent
for annotation. A total of 32,457 bounding box annotations
were collected.

3.3. Track Annotation

The next task was to create tracks (the time trajectory
of an individual) from the bounding boxes. To do this, a
worker was given a cropped image of a person from frame
x (obtained using the bounding box labels). They were then
instructed to make a selection from the set of cropped peo-
ple from frame x+5 that matched the original image. There
was also an option to select that there was no match. Every
person with a bounding box over 100 pixels in height was
labelled by three workers. The workers’ annotations were
combined using a majority vote. If there was disagreement
between all three workers, the bounding box was assigned
a no-match label. Tracks were formed by chaining together
the bounding boxes until a no-match label was encountered.
Tracks were then verified by an expert annotator. Their task
was to eliminate short tracking gaps and to correct any other
mistakes. A total of 4,222 tracks were collected.

3.4. Pose Annotation

To represent the pose of a human body, 14 body parts
were used as keypoints which can found in Figure 2. These
are the same parts used in existing datasets [20, 34]. To
annotate the parts, workers were given a cropped image of
a person (obtained using the bounding box labels but with
some extra padding) and instructed to click on one of the 14
body parts. If the part was occluded in any way, the work-
ers were asked to right click where they thought the part
was located. It was also possible to indicate if a part was
not in the image. Every person with a bounding box over
100 pixels in height was labelled by three workers for each
of the 14 keypoints. The workers annotations were com-
bined by taking the median of the labels. A total of 27,454
pose annotations with 14 keypoints and occlusion informa-
tion were collected. The pose annotations were then used
to refine the bounding box labels since the worker labelled
bounding boxes were not always tight. The refined bound-
ing box is the tightest box that covers the set of keypoints.

3.5. Fine-Grained Category Annotation

As mentioned in Section 1, using vision to estimate hu-
man attributes is useful for interpreting and predicting be-
haviour. In this dataset we look at four fine-grained cate-
gories of people: sex, age, weight and clothing style. The
possible class labels for these subcategories are shown in
Figure 2. While the classes for sex, age and weight were
intuitive for us, those for clothing style were not. The 4
clothing style classes: workout, light athletic, comfortable
casual and well-dressed (or dressy), were chosen in consul-
tation with a fashion expert. The ‘workout class’ groups



Figure 5: (Left) An estimate of keypoint location error as a fraction of body height. Given an image of a person, pose
error is the distance between all of the workers keypoint locations, normalised by the height of the sample. The green band
is where error is less than 3%, the yellow band between 3-15% and the red band is greater than 15% (See Section 4.1).
(Right) Estimates of the fine-grained labelling error for each subcategory. The histograms correspond to the entropy
of 30 workers labelling 180 randomly selected tracks from the dataset. The yellow line corresponds to our statistical model
as described in Section 4.2. The noise values in the model are 0.07, 0.15, 0.11 and 0.23 for sex, age, weight and clothing
respectively. They need to be compared to the size of the bins, which depends on the number of classes in the subcategory.
Bin sizes are equal to 0.5, 0.2, 0.33 and 0.25 respectively.

people wearing spandex, singlet tops or no shirt at all. The
‘light athletic’ class include people who are wearing yoga
pants and tracksuits. The ‘comfortable casual’ class con-
tains people wearing shorts or items of clothing that would
be typically worn in a casual setting. The ‘well-dressed’
class are of people with button-up or collared shirts and
dresses. Examples of these classes can be found in Figure 8

To annotate the fine-grained categories, workers were
given 4 examples of a person, sampled from one of the
tracks. This allowed the worker to see the person from all
possible viewpoints. They were then asked to select the best
class label for one of the subcategories. For the clothing
style task, workers were also shown examples of each class.
The workers fine-grained labels were combined by taking a
majority vote. If there was complete disagreement between
workers a further 2 workers labelled the track and another
majority vote was taken.

4. Dataset Analysis

In this section, we analyse labelling error and explore the
properties of the dataset. A summary of the dataset’s statis-
tics can be found in Table 1. The distribution of bounding
box widths and heights; the number of people per frame;
and the distribution of track lengths can be found in Fig-
ure 3. Occlusion statistics for pose keypoints; and a break-
down of the the number of labels for each class in each of
the four subcategories can be found in Figure 4.

Since the final bounding box estimates were derived
from the pose labels and the tracks were verified by an or-

acle, the analysis of labelling error is focused on keypoints
and fine-grained classes.

4.1. Pose Error

To estimate pose error, we take a keypoint from a partic-
ular sample (an image of a person). Since the location (x
and y co-ordinates) of this keypoint was labelled by 3 dif-
ferent workers, the distance between each of the 3 locations
can then be computed. The distance is normalised with re-
spect to the height of the bounding box for the sample. The
distribution of these distances across all samples, for each
of the 14 keypoints can be found in Figure 5.

The results indicate that workers tended to agree the
most about the location of the chin. This is expected since
the chin is a sharp, well defined, point on the face. The
most disagreement occurred for the left shoulder and right
hip. Both of these body parts are harder to localise since
they are not sharp points.

The keypoints are classified into 3 error classes - ex-
cellent (the green band) where error is less than 3%, good
(yellow band) where error is between 3-15% and poor (red
band) where error is greater than 15%. The poor errors tend
to occur when workers incorrectly exchange left and right
labels.

4.2. Fine-Grained Label Error

To estimate the error in the fine-grained labels, 180
tracks were randomly selected from the dataset and sent to
MTURK to be labelled by 30 workers. The same process as



Figure 6: The most ambiguous cases to label for sex (far left), age (centre left), weight (centre right), and clothing style (far
right), based on the entropy from the set of images labelled by 30 workers.

outlined in Section 3.5 was followed except for the increase
in annotators.

Given a sample track, for each subcategory, the empirical
probability distribution of its classes was calculated from
the 30 worker labels. The normalised entropy for the sample
was then computed using this distribution. A histogram of
entropies for each subcategory across the 180 examples can
be found in Figure 5. Low entropies indicate high agree-
ment amongst annotators.

The fine-grained label error may be modelled statisti-
cally. Each one of the attributes we considered may be
thought as varying in one dimension; thus, we assume that
the L class labels of a given attribute are the result of dis-
cretising a uniformly distributed continuous variable (e.g.
age ranges from 0 to 100 years, and it is binned into five
age categories).

We assume that each annotator may estimate the under-
lying continuous variable, with the addition of some ‘anno-
tator noise’ and produce a label by binning their continuous
estimate. We model annotator noise as zero-mean with a
free parameter σ, which we assume constant over the popu-
lation of the annotators (a more sophisticated point of view
may be found in [40]). In order to estimate σ we fit this
model to the empirical labelling results for each of the four
subcategories (for convenience we rescaled the range of the
underlying continuous variable to (0, 1)). Results are shown
in Figure 5. The noise values that best fit the data are 0.07,
0.15, 0.11 and 0.23 for sex, age, weight and clothing re-
spectively. This has to be compared to the size of the bins,
which depends on the number of classes and is thus equal

to 0.5, 0.2, 0.33 and 0.25 for each subcategory respectively.
This means that the annotators’ estimates of sex are excel-
lent, quite consistent for weight, and somewhat vague for
age and clothing, as one might expect. Figure 6 contains
examples of the 3 most ambiguous samples for each of the
four subcategories.

5. Baseline Experiments

In this section we present a set of baseline experiments
for fine-grained categorisation and human pose estimation.
The dataset is split into a training/validation set containing
4 videos, with the remaining 3 videos forming the test set.
Since each video was collected on a unique day, different
images of the same person do not appear in both the train-
ing and testing sets. While it is conceivable that a person
appears in different videos while wearing the same clothes
and in the same lighting conditions, we consider this to be
unlikely.

5.1. Fine-Grained Categorisation

The fine-grained categorisation benchmark uses ’pose
normalised deep convolutional nets’ as proposed by Bran-
son et al. [5]. In this framework, features are extracted by
applying deep convolutional nets to image regions that are
normalised by pose. It has state-of the-art performance on
bird species categorisation and we believe that it will gen-
eralise to the people dataset. To elaborate, given a sample,
image regions are extracted, then warped so that they are
aligned to a set of prototypical models. Each warped region



Parts Head Torso U.Arms L.Arms U.Legs L.Legs Mean

CRPa 40.6 59.7 26.1 13.6 31.2 21.5 32.1
CRPb 66.2 88.1 60.7 30.2 71.9 60.9 63.0
LSP 92.7 87.8 69.2 55.4 82.9 77.0 75.0

Table 2: Pose estimation results. We report the PCP for
the parts in our dataset using the method described in Sec-
tion 5.2. CRPa corresponds to the pose model trained using
the LSP dataset [20] but tested on CRP. CRPb correponds
to the case when the CRP dataset is used for both training
and testing. Performance is best on the torso, with the lower
arms and lower legs performing the most poorly. For com-
parison, results for a pose model trained and tested using the
LSP dataset - the current pose estimation benchmark - are
provided. The errors for our dataset are worse than those
on the LSP dataset. This suggests that ours is a challenging
dataset for pose estimation.

is then fed through a deep convolutional network where fea-
tures are extracted from certain layers. The features from
each warped region are then concatenated and used in a
classifier.

For this benchmark, given an image containing a person,
two regions were extracted: 1) the full bounding box and 2)
the portion of the bounding box that contains the shoulders,
the hips and the head. Region (2) was then warped to a
hand-defined prototype using a similarity alignment model,
which was suggested by Branson et al. to work best [5].
The ground-truth keypoints for the left and right shoulder,
the left and right hip, the top of the head, and the chin were
used to compute the warping.

The two regions were then fed through the pre-trained
ImageNet convolutional neural network [19]. Features were
extracted from the 5th layer after max-pooling (this layer
gave the best performance). Features for each region were
then concatenated and one-vs-all linear SVM’s were used
for classification. We refer to this method as “bbox+body”.

We also consider the case where only the bounding box
is used as the extracted image region (no warping is ap-
plied). This method is referred to as “bbox”.

Experiments were run for each of the subcategories in
the dataset. We report the mean average classification accu-
racy across 10 trials. Each trial corresponded to a different
train/test split. For all the experiments, keypoint occlusion
information was not used and samples with missing parts
were ignored. Training was done using code that was ob-
tained directly from the authors [5]. Results can be found in
Figure 7.

Aside from the sex subcategory, classification accuracy
is low. This suggests that this is a challenging dataset.
The results also show that for clothing style, using only the
bounding box as the extracted image region is better than

Figure 7: Fine-grained classification results. We report
the mean average accuracy across 10 different train/test
splits, for each of the subcategories, using the method of [5].
Refer to Section 5.1 for details. Average accuracy is com-
puted assuming that there is a uniform prior across the
classes. The reference value for each subcategory corre-
sponds to chance. There is great room to improve classifi-
cation accuracy for all subcategories. This suggests that this
is a challenging dataset to work with.

also including the pose aligned region; For weight and sex,
very little difference is seen.

5.2. Pose Estimation

Since most fine-grained categorisation techniques rely
on parts, it is important to look at pose estimation. To
benchmark human pose estimation we used the state-of-the-
art, articulated pose estimator of Chen and Yuille [8]. This
method extends Yang and Ramanan’s work [41] to use deep
features. The code is publicly available.

Two experiments were run using a single train/test split.
In the first experiment, the pose model was trained using
data from the LSP dataset [20]. In the second, training was
done using data from the CRP dataset. In both cases key-
point occlusion information was not used and samples with
missing parts were ignored.

The results are reported using a standard measure - the
stricter interpretation of the percentage of correct parts
(PCP) [34]. The results are shown in Table 2

The results indicate that this dataset is more challeng-
ing than the existing pose estimation benchmark, the LSP
dataset. The mean PCP is approximately 12% lower than
that of LSP. The high amount of occlusion present in our
dataset is contributing to the poorer results.

6. Discussion and Conclusions
We introduce a video dataset designed to study fine-

grained categorisation of people using the entire human



(A) (B) (C)

Figure 8: Class examples. From top to bottom the corresponding class labels for each category are: (A) age - teen, young
adult, middle aged, and senior; (B) weight - under, healthy, over, and over; (C) clothing style - workout, light athletic, casual
comfort and dressy. The examples shown in this figure illustrate the variety of lighting conditions (full sunlight, hazy, front
and back lighting), viewpoints (front, profile, back) and backgrounds.

body. Its novel and distinctive features are size, realism
(natural behaviour, variety in viewpoint, moving camera),
fine-grained multi-label attributes (sex, weight, clothing,
age), detailed annotations, and public availability.

Two sets of experiments were conducted to provide a
performance baseline for the dataset. The first was a fine-
grained categorisation task, where we used a state-of-the-art
pose normalisation + deep network system [5]. The second
was a pose estimation task where we used an articulated
pose model with deep features as the baseline method [20].
We find that for both tasks the baseline method performance
is low, and significantly lower than on other benchmark
datasets. This suggests that our realistic and large dataset is
challenging and will contribute to advance the state-of-the-

art in both fine-grained classification and pose estimation.
A novel feature of our dataset is the occlusion labelling

of the keypoints. Exploiting this information may be the
first step towards improving performance for both tasks.
Exploiting the temporal information is also worth explor-
ing. Most pedestrians in our dataset appear multiple times
over large intervals of time. We are planning on adding an
identity label for each individual, to make our dataset use-
ful for studying individual re-identification [16, 43] from a
moving camera.
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