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Abstract

This paper addresses the problem of reconstructing the
surface shape of transparent objects. The difficulty of this
problem originates from the viewpoint dependent appear-
ance of a transparent object, which quickly makes recon-
struction methods tailored for diffuse surfaces fail disgrace-
fully. In this paper, we develop a fixed viewpoint ap-
proach for dense surface reconstruction of transparent ob-
jects based on refraction of light. We introduce a simple
setup that allows us alter the incident light paths before
light rays enter the object, and develop a method for recov-
ering the object surface based on reconstructing and trian-
gulating such incident light paths. Our proposed approach
does not need to model the complex interactions of light as it
travels through the object, neither does it assume any para-
metric form for the shape of the object nor the exact num-
ber of refractions and reflections taken place along the light
paths. It can therefore handle transparent objects with a
complex shape and structure, with unknown and even inho-
mogeneous refractive index. Experimental results on both
synthetic and real data are presented which demonstrate the
feasibility and accuracy of our proposed approach.

1. Introduction
Reconstructing a 3D model of an object from its 2D im-

ages has always been a hot topic in the field of computer

vision. It has many important applications in robotics, aug-

mented reality, video games, movie production, reverse en-

gineering, etc. Despite the problem of 3D model recon-

struction has virtually been solved for opaque objects with a

diffuse surface, reconstruction of transparent objects is still

very challenging and remains an open problem. The view-

point dependent appearance of a transparent object quickly
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Figure 1. Real reconstruction setup and examples of transparent

objects.

renders reconstruction methods tailored for diffuse surfaces

useless. The literature is relatively sparse when it comes

to shape recovery of transparent objects, and most of the

existing methods are still highly theoretical. In fact, even

with restrictive assumptions and special hardware setups,

state-of-the-art methods can only handle transparent objects

with very simple shape. Meanwhile, it is not difficult to see

that there exist many transparent objects in our world (e.g.,

liquids, glass, plastics, crystals and diamonds). Hence,

the study of 3D model reconstruction cannot be considered

completed without taking transparent objects into accounts.

As mentioned previously, the difficulty of reconstructing

a transparent object originates from its viewpoint dependent

appearance. A transparent object may alter a light path by

reflection, refraction, absorption and scattering at both its

exterior surface as well as its interior structure. A number

of existing work attempted to reconstruct a transparent ob-

ject by exploiting specular highlights produced on the ob-

ject surface [9, 10]. This approach considers only reflection

of light taken place at the object surface, and greatly sim-

plifies the problem by making it not necessary to consider

the complex interactions of light as it travels through the ob-

ject. However, refraction of light is indeed an important and

unique characteristic of transparent objects. It provides in-
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formation on surface shape and should not be ignored. On

the other hand, methods based on reflection of light often

work only under very restrictive assumptions and precisely

controlled environments, making them not very practical.

In this paper, we focus our study in dense surface recon-

struction of transparent objects. We introduce a fixed view-

point approach for recovering the surface of a transparent

object based on refraction of light. Like those methods that

are based on specular highlights, our fixed viewpoint ap-

proach does not need to model explicitly the complex inter-

actions of light as it travels through the object. We present

a simple setup that allows us alter the incident light paths

before light rays enter the object, and develop a method

for recovering the surface of a transparent object based on

reconstructing and triangulating these incident light paths.

Compared with existing methods, our proposed method has

the following benefits:

• It does not assume any parametric form for the shape

of a transparent object.

• It can handle a transparent object with a complex struc-

ture, with an unknown and even inhomogeneous re-

fractive index.

• It considers only the incident light paths before light

rays enter a transparent object, and makes no assump-

tion on the exact number of refractions and reflections

taken place as light travels through the object.

• The proposed setup is simple and inexpensive.

The rest of the paper is organized as follows. Section 2

briefly reviews existing techniques in the literature for shape

recovery of transparent objects. Section 3 describes our pro-

posed approach for dense surface reconstruction of trans-

parent objects in detail. Experimental results on both syn-

thetic and real data are presented in Section 4, followed by

conclusion in Section 5.

2. Related Work
In [19, 20], Murase reconstructed a rippling water sur-

face from the average observed coordinates of an underwa-

ter pattern under orthographic projection. Morris and Ku-

tulakos [17] solved a similar problem with an unknown re-

fractive index of the liquid using two calibrated cameras and

a known reference pattern. In [6], Hata et al. used struc-

tured light and Genetic Algorithm to estimate the shape of

a transparent paste drop on a board. Ben-Ezra and Nayar

[1] assumed a parametric form for the shape of a transpar-

ent object and estimated the shape parameters under the

assumptions of known camera motion and distant back-

ground. In [25], Wetzstein et al. proposed a single image

approach for reconstructing thin refractive surfaces using

light field probes. In [12, 13], Kutulakos and Steger charac-

terized the class of reconstructible specular scenes, and de-

veloped algorithms for depth map computation in the cases

where refraction/reflection of light occurs exactly once and

twice respectively. In [4], Eren et al. determined the sur-

face shape of glass objects using laser surface heating and

thermal imaging. In [18], Morris and Kutulakos introduced

scatter-trace of a pixel and recovered the exterior surface

of a transparent object using the non-negligible specular re-

flection component. Similarly, Yeung et al. [26] exploited

specular highlights and proposed a dual-layered graph-cut

method to reconstruct the surface of a solid transparent ob-

ject. In [8], Ihrke et al. dyed water with a fluorescent chem-

ical and presented a level set method for reconstructing a

free flowing water surface from multi-video input data by

minimizing a photo-consistency error computed using ray-

tracing. Miyazaki and Ikeuchi [16] proposed an iterative

method to estimate the front surface shape of a transparent

object by minimizing the difference between observed po-

larization data and polarization raytracing result under the

assumptions of a known refractive index, illumination dis-

tribution and back surface shape. In [24], Trifonov et al. in-

troduced a visible light tomographic reconstruction method

by immersing the transparent object into a fluid with a sim-

ilar refractive index. The 3D shape was recovered by build-

ing the light paths within the fluid and object. In [7], Hullin

et al. embedded the transparent objects into fluorescence.

The object surfaces were reconstructed by detecting the in-

tersections of the visible laser sheets with the visual rays.

Similar light sheet range scanning approach was introduced

by Narasimhan et al. in [21] to acquire object geometry in

the presence of scattering media. In [22], O’Toole et al. de-

veloped the Structured Light Transport (SLT) technique.

Based on SLT, they implemented an imaging device that

allows one-shot indirect-invariant imaging for reconstruct-

ing transparent and mirror surfaces using structured light.

In [23], Shan et al. introduced a framework for optimizing

a refractive height field from a single image under the as-

sumptions of an orthographic camera, known background,

single refractive material and differentiable height field. In

[3], Chari and Sturm introduced a method that integrates

radiometric information into light path triangulation for re-

construction of transparent objects from a single image. In

[15], Ma et al. reformulated the transport of intensity equa-

tion in terms of light fields, and presented a technique for

refractive index field reconstruction using coded illumina-

tion. In [14], Liu et al. proposed a frequency based method

for establishing correspondences on transparent and mirror

surfaces, reconstruction can then be done using any stereo

methods. In [11], Ji et al. reconstructed the refractive index

field of a gas volume by establishing ray-to-ray correspon-

dences using a light field probe and solving the light paths

through the refractive index field with variational method



based on Fermat’s Principle.

Note that existing solutions for surface reconstruction

of transparent objects often work only under restrictive as-

sumptions (e.g., known refractive index, single refractive

material, exact number of refractions, non-negligible reflec-

tion of light, orthographic projection) and special hardware

setups (e.g., light field probes, laser surface heating with

thermal imaging, dying liquids with fluorescent chemical,

immersing objects into liquids with similar refractive in-

dexes), or for a particular class of objects (e.g., with known

parametric model/average shape). There exists no general

solution to this challenging and open problem. In this pa-

per, we develop a fixed viewpoint approach for dense sur-

face reconstruction of transparent objects based on altering

and triangulating the incident light paths before light rays

enter the object. We present a simple setup that allows us

alter the incident light paths by means of refraction of light.

Under this proposed setup, the segment of a light path be-

tween the first entry point on the object surface and the op-

tical center of the camera remains fixed. This allows us

ignore the details of the complex interactions of light inside

the object. Compared with existing methods, our proposed

approach (1) assumes neither a known nor homogeneous

refractive index of the object; (2) places no restriction on

the exact number of refractions and reflections taken place

along a light path; (3) assumes no parametric form for the

shape of the object. This allows our approach to handle

transparent objects with a complex structure. Besides, our

proposed setup is also very simple, and does not depend on

any special and expensive hardware.

3. Shape Recovery of Transparent Objects

3.1. Notations and Problem Formulation

To solve the surface reconstruction problem, we con-

sider a set of light paths originating from a reference pat-

tern placed behind a transparent object, passing through the

object and eventually reaching the image plane. We par-

tition every such light path into two parts, namely (i) the

path before contact (PBC) which originates from the refer-

ence pattern and ends at the first entry point (FEP) on the

object surface (see the red paths in Figure 2(a)) and (ii)

the path after contact (PAC) which originates from the FEP,

passes through the interior of the object and finally termi-

nates at the optical center of the camera (see the green paths

in Figure 2(a)). We can now reformulate the surface recon-

struction problem into estimating the FEP. The approach we

take to tackle this problem is by altering the PBC while fix-

ing the PAC for each light path. This enables us ignore the

details of the complex interactions of light inside the object,

and recover the FEP by triangulating the PBCs. In the next

section, we introduce a simple setup that allows us alter the

PBCs by means of refraction of light.
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Path after contact (PAC)
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Figure 2. (a) A light path through an object is partitioned into two

parts, namely i) the path before contact (PBC) which originates

from the reference pattern to the first entry point (FEP) on the ob-

ject surface (i.e., the red paths) and ii) the path after contact (PAC)

that originates from FEP, passes through the interior of the object

and terminates at the optical center of the camera (i.e., the green

paths). (b) The first entry point can be recovered by filling the tank

with a liquid to alter the PBC and triangulating the two PBCs.

3.2. Setup and Assumptions

In our proposed setup, a camera is used to capture im-

ages of a transparent object in front of a reference pattern.

The camera and the object are kept fixed with respect to

each other. This will ensure the PACs remain unchanged

for all the image points of the object. The reference pat-

tern is used here to reconstruct the PBCs, and is placed in

two distinct positions. As mentioned before, our approach

is based on altering the PBCs. To achieve this, we employ

a water tank to immerse part of the object surface into a liq-

uid so as to alter the PBCs by means of refraction of light

(see Figure 2(b)). Two images of the transparent object

are acquired for each position of the reference pattern, one

without liquid in the tank and one with liquid in the tank.

By establishing correspondences between image points of

the object and points on the reference pattern, we can con-

struct two PBCs for each image point, one in air and one in

the liquid respectively. The FEP can then be recovered by

triangulating these two PBCs.

Note that our proposed approach does not require the

prior knowledge of the refractive indices of the object or

that of the liquid. If, however, the refractive index of the

liquid is known a priori, it is possible to also recover the

surface normal at each FEP. The only assumption made in

our approach is that the PACs remain unchanged when the

object is partially immersed into the liquid. This assump-

tion implies that a light ray should not reenter into the liquid

medium after its FEP. This generally holds true for transpar-

ent objects with a convex shape, and for objects with holes

completely enclosed inside the object. This assumption al-

lows us to handle object with inhomogeneous refractive in-

dex. In practice, our method can also handle objects with

shallow concavities as long as the previous assumption is



satisfied.

3.3. Dense Refraction Correspondences

Before we can triangulate PBCs to recover the FEP, we

first need to construct the PBCs from the images. Since

the two distinct positions of the reference pattern have been

calibrated, it is straightforward to construct the PBC for an

image point by locating a correspondence point on the ref-

erence pattern under each of the two distinct positions in

the same medium (i.e., with/without liquid in the tank). It

is obvious that the quality of the correspondences will have

a direct effect on the quality of the reconstruction. There

exist many methods for establishing correspondences, such

as Gray Code, Phase Shift, etc. However, these methods

often can only provide sparse correspondences with limited

precisions (e.g., a small patch of pixels is mapped to a small

region on a reference plane due to finite discretization). In

this work, we would like to establish close-to point-to-point

correspondences between the image and the reference pat-

tern. We employ a portable display screen (e.g., an iPad)

to serve as the reference pattern, and show a sequence of a

thin stripe sweeping across the screen in vertical direction

and then in horizontal direction (see Figure 3). We capture

an image for each of the positions of the sweeping stripe.

For each image point, its correspondence on the reference

pattern can then be solved by examining the sequence of

intensity values of the image point for each sweeping di-

rection and locating the peak intensity value. The position

of the stripe that produces the peak intensity value in each

sweeping direction then gives us the position of the corre-

spondence on the reference pattern. In order to improve the

accuracy, we also fit a quadratic curve to the intensity profile

in the neighborhood of the peak value to locate the peak.

Figure 3. The upper row shows images of a transparent hemisphere

captured in front of a gray background (from left to right: refer-

ence pattern at higher position and without water, reference pat-

tern at higher position and with water, reference pattern at lower

position and without water, and reference pattern at lower position

and with water). The lower row shows images of the hemisphere

captured in front of a sweeping stripe (in the same order).
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Figure 4. PBC construction and FEP estimation. The correspon-

dences of an image point q on the reference pattern under position

0 and position 1 define a PBC. Given two PBCs in two different

media, the FEP for q can be obtained by triangulating the PBCs.

3.4. Light Path Triangulation

Suppose high quality correspondences have been estab-

lished between the images and the reference pattern under

each of the two distinct positions and in each of the two me-

dia (i.e., with and without liquid in the tank). We can then

construct two PBCs for each image point of the transparent

object using the calibrated positions of the reference pattern.

The FEP can then be recovered as the point of intersection

between the two PBCs. Below we derive a simple solution

for the FEP based on the established correspondences of an

image point.

Consider an image point q of the transparent object. Sup-

pose M0 and M1 denote its correspondences on the refer-

ence pattern under position 0 and position 1 with liquid in

the tank, respectively. Similarly, let N0 and N1 denote its

correspondences on the reference pattern under position 0

and position 1 without liquid in the tank, respectively (see

Figure 4). The PBCs for q in liquid and in air, respectively,

can be expressed as

LM : M(s) = M0 + sU, (1)

LN : N(t) = N0 + tV, (2)

where U = M1−M0
‖M1−M0‖ and V = N1−N0

‖N1−N0‖ . Under a perfect

situation, the FEP for q is given by the point of intersection

between LM and LN .

Due to noise, however, LM and LN often may not inter-

sect with each other at a point. In this situation, we seek the

point Mc = M(sc) on LM and the point Nc = N(tc) on LN
such that the distance between Mc and Nc is a minimum.

Note that geometrically, for the distance between Mc and

Nc to be a minimum, the line segment joining Mc and Nc
must be orthogonal to both LM and LN . This orthogonal



constraint can be expressed as

(Mc −Nc) ·U = 0, (3)

(Mc −Nc) ·V = 0. (4)

Substituting (1) and (2) into the above equations gives

(M0 −N0 + scU− tcV) ·U = 0, (5)

(M0 −N0 + scU− tcV) ·V = 0. (6)

Solving the above simultaneous equations gives us sc and

tc, and hence the points Mc and Nc. The distance between

Mc and Nc can be taken as a quality measure of the recon-

struction. If the distance is below a specified threshold, the

mid-point between Mc and Nc can be taken as the FEP for

q. Note that if U and V are parallel, there will not be a

unique solution for the above equations. This corresponds

to the case where the two PBCs coincide with each other.

This case, fortunately, will be irrelevant to our proposed ap-

proach.

3.5. Surface Normal Reconstruction

Recall that for the purpose of surface reconstruction, nei-

ther the refractive index of the object nor that of the liquid

is needed. If, however, the refractive index of the liquid is

known a priori, it is possible to recover the surface normal at

each FEP (see Figure 4). Let θ1 and θ2 denote the incident

angles of the PBCs in the liquid and air, respectively, at the

surface point P, and θ0 denote the refracted angle. Suppose

the refractive index of the object, liquid and air are given by

λ0, λ1 and λ2, respectively. By Snell’s Law, we have

λ0 sinθ0 = λ1 sinθ1 = λ2 sinθ2. (7)

Let Δθ = cos−1(U ·V) denote the angle between the two

PCBs, substituting this into (7) gives

λ1 sinθ1 = λ2 sin(θ1 +Δθ). (8)

With known refractive indices λ1 and λ2 for the liquid and

air, respectively, the incident angle θ1 can be recovered by

θ1 = tan−1

(
λ2 sinΔθ

λ1 −λ2 cosΔθ

)
. (9)

The surface normal np at P is then given by

np = R(θ1,V×U)U, (10)

where R(θ ,a) denotes a Rodrigues rotation matrix for ro-

tating about the axis a by the angle θ .

4. Experimental Evaluation
We now demonstrate the effectiveness of our approach

on synthetic and real surfaces. In the remainder of this

section, we present both quantitative and qualitative recon-

struction results.

4.1. Synthetic Data

For our synthetic experiments, we used Pov-Ray to sim-

ulate the entire experimental setup. In particular, we mod-

elled the transparent object as a semi-ellipsoid with the fol-

lowing parametric equation

⎧⎨
⎩
(

x
12.5

)2 +(
y

12.5
)2 +(

z
5
)2 = 1,

z > 0.
(11)

We further assumed the transparent ellipsoid had a refrac-

tive index λ = 1.5.1 A reference plane displaying a set of

thin stripe sweeping patterns was placed at two different po-

sitions. A synthetic perspective camera was used to capture

the refraction of the reference pattern through the transpar-

ent object immersed in air (λ = 1.0) and liquid (λ = 1.3)

respectively. We adopted the strategies described in Sec-

tion 3.3 to obtain dense refraction correspondences. More

than 7M refraction correspondences were used in our syn-

thetic experiment.

We constructed a pair of PBCs for each FEP based on the

retrieved refraction correspondences. The transparent sur-

face was then recovered from the ray triangulation of PBC

pairs. Note that surface normals can be computed given

PBC pairs and the refractive index of the medium. Figure 5

depicts the reconstructed FEP cloud as well as surface nor-

mals. We also provide the depth map of the reconstructed

object for accuracy evaluation2.

In practice, reconstruction errors originate from the in-

accuracy in finding the refraction correspondences on the

reference patterns. The errors may be increased by decreas-

ing the relative distance between the pair of reference pat-

terns. Therefore, we carried out the joint analysis by adding

2D zero-mean Gaussian noise to the extracted dense corre-

spondences on the pair of reference patterns together with

varying the relative distance between the reference patterns.

The noise level ranged from 0.1 to 1.0. The relative distance

between the reference patterns varied from 4 to 20. We fixed

one reference pattern, namely setting one pattern at z = 10

in our experiment, and varied the position of the other one

at various locations. Here we placed the other pattern at

z = 6,15,20,25,30. The reconstruction accuracy is evalu-

ated based on the root mean square error (RMSE) between

the ground truth surface and the reconstruction. We further

provide the angular distance between our reconstructed nor-

mals and the computed ground truth normals from the ana-

lytical equation of the semi-ellipsoid. Figure 6 (a-b) depicts

the RMSE and the angular errors as a function of noise level

and the relative distances between the pair of reference pat-

terns. It shows that the reconstruction errors decrease with

1The transparent object can be inhomogeneous, namely the refractive

index varied across the interior of the object.
2The depth map is defined as the z component for each 3D point.
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Figure 5. Evaluation on the synthetic semi-ellipsoid. (a) Ground truth. (b) Our reconstructed results. The first column shows the ground

truth point cloud and the reconstructed FEP cloud; the second column shows the angle between each PBC pairs; the third column shows

the depth map; the fourth column shows the normal map.

the increase of the distance between relative reference pat-

terns.

We further conducted the analysis of the reconstruction

error with respect to the medium refractive index. Another

two media with different refractive indices were tested in

the experiment, namely λ = 1.5 and λ = 1.7. The refer-

ence patterns were placed at z = 6 and z = 10 respectively.

Figure 6 (c-d) shows that the reconstruction results are im-

proved by increasing the refractive indices of the medium.

4.2. Experiments on Real Data

To evaluate the accuracy of our approach on real data, we

performed the experiments on a smooth glass hemisphere,

and a diamond-shape ornament with piecewise planar sur-

faces depicted in Figure 1. We acquired images with a

Canon EOS 40D camera equipped with a 24 mm lens and

used a 9.7-inch iPad with a resolution of 2048×1536 as the

reference plane, on which we displayed stripe patterns that

let us extract the dense refraction correspondences follow-

ing the strategy in Section 3.3. In order to construct PBCs,

the reference plane was placed at two different positions in

a water tank. Under each position, we first took one set of

images of the sweeping stripe patterns refracted by the ob-

ject directly. We then filled the tank with water, having a

refractive index λ = 1.33, to alter the PBCs of the surface

and took another set of images. In brief, four sets of images

with a resolution of 3888 × 2592 were captured for each

object. This yielded dense correspondences (see Table 1).

The pose of the reference plane relative to the camera was

calibrated with Matlab Calibration Toolbox [2].

Hemisphere Ornament
Captured Images 2800 2200

Correspondences 1180300 546173

Reconstructed FEPs 1115748 519162

Reconstructed normals 1115748 519162

Table 1. Statistical data for real experiment. We show the num-

ber of captured encoding pattern images, refraction correspon-

dences, the reconstructed FEPs, and the reconstructed normals for

our dense reconstruction of hemisphere and ornament.

A pair of PBCs were constructed from the extracted re-

fraction correspondences for each FEP, which led to the sur-

face reconstruction by ray triangulation. We treated the re-

constructed FEPs with small PBC angle(< 1◦), or out of

the depth range between the camera and reference planes

as noise points. The normal for each FEP was then recov-

ered with the knowledge of refractive indices 1.0 and 1.33

for air and water respectively. In Figure 7, we show our

reconstructed 3D FEP cloud, angles between each pair of

PBCs, depth map, and surface normals for hemisphere and

ornament respectively. Note that large reconstruction error

occurs in regions with small PBC angles.

Since no ground truth was available, a sphere was fit-

ted from the FEP cloud to evaluate the reconstruction accu-

racy for the hemisphere. We compare the fitted sphere ra-

dius with the measurement, which are 26.95 mm and 27.99

mm respectively, suggesting a high accuracy of the recon-

struction. Table 2 shows the reconstruction errors of the

hemisphere. In order to evaluate the reconstruction of the
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Figure 7. (a) Hemisphere reconstruction results. (b) Ornament reconstruction results. The first column shows the reconstructed FEPs; the

second column shows the angle between each PBC pairs; the third column shows the depth map; the fourth column shows the reconstructed

normal map.

Position (mm) Normal (degree)

Mean error 0.5903 6.9665

Median error 0.4179 6.9215

Table 2. Reconstruction error measurements for hemisphere. The

position error is defined as the difference between the distance

from the fitted center to each FEP and the length of fitted radius.

The normal error is defined as the angle between the ray from the

fitted center to each FEP and the reconstructed normal for each

FEP.

ornament, we first used RANSAC [5] to fit a plane for each

facet. The reconstruction error for each facet was measured

by the distances from the reconstructed FEPs to the fitted

plane, as well as the angles between the reconstructed nor-

mals of the facet and the normal of the fitted facet. The re-

sults shown in Table 3 suggest that our proposed approach

can accurately reconstruct the piecewise planar ornament.

5. Conclusion
In this paper, we develop a fixed viewpoint approach for

dense surface reconstruction of transparent objects. We in-

troduce a simple setup that allows us alter the incident light

paths by immersing part of the object surface in a liquid,

while keeping the rest of the light paths fixed as light rays

travel through the object. This greatly simplifies the prob-

lem by making it not necessary to model the complex in-

teractions of light inside the object, and allows the object

surface to be recovered by triangulating the incident light

paths. Our approach can handle transparent objects with a



1 2 3 
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Facet label 1 2 3 4 5 6

Mean normal error (degree) 6.2654 9.9585 7.5905 9.6871 3.6591 6.8677

Median normal error (degree) 6.1677 9.5906 7.5109 9.7511 3.4741 6.7908

Mean position error (mm) 0.7250 0.6814 0.6675 0.6767 0.5881 1.0442

Median position error (mm) 0.6108 0.5945 0.5755 0.5721 0.5133 0.6333

RANSAC position inliers (%) 40.33 42.97 44.06 43.38 49.02 40.64

Table 3. Reconstruction error measurements of ornament. Left figure: shows the labels for each facet of the ornament. Right table: shows

the various error metric used in reconstruction error evaluation for ornament. Due to its piecewise property, we fitted each facet using

RANSAC with an inlier threshold of 0.5mm and then measured the distances from the FEPs to the fitted plane and also the angle difference

between the reconstructed normals of each facet region and the fitted facet normal.

complex structure, with an unknown and even inhomoge-

neous refractive index. The only assumption to the objects

is that the light paths should not reenter the liquid medium

once they enter the object. If the refractive index of the

liquid is known a priori, our method can also recover the

surface normal at each reconstructed surface point.
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