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Abstract

We present a simple but powerful reinterpretation of ker-
nelized locality-sensitive hashing (KLSH), a general and
popular method developed in the vision community for per-
forming approximate nearest-neighbor searches in an arbi-
trary reproducing kernel Hilbert space (RKHS). Our new
perspective is based on viewing the steps of the KLSH algo-
rithm in an appropriately projected space, and has several
key theoretical and practical benefits. First, it eliminates
the problematic conceptual difficulties that are present in
the existing motivation of KLSH. Second, it yields the first
formal retrieval performance bounds for KLSH. Third, our
analysis reveals two techniques for boosting the empirical
performance of KLSH. We evaluate these extensions on sev-
eral large-scale benchmark image retrieval data sets, and
show that our analysis leads to improved recall perfor-
mance of at least 12%, and sometimes much higher, over
the standard KLSH method.

1. Introduction

Similarity search (or nearest neighbor (NN) search) for
large databases plays a critical role in a number of impor-
tant vision applications including content-based image and
video retrieval. Usually, the data are represented in a high-
dimensional feature space, and the number of objects in the
database can scale to the billions in modern applications.
As such, fast indexing and search is a vital component to
many large-scale retrieval systems.

A key theoretical and practical breakthrough for the sim-
ilarity search problem was the development of locality-
sensitive hashing (LSH) [7, 3, 2], which relies on Gaussian
random projections for Euclidean distance and can provably
retrieve approximate nearest neighbors in time that grows
sublinearly in the number of database items. In the vi-
sion community, LSH has long been employed as one of
the core methods for large-scale retrieval [10, 21, 12, 19,

, 24,16, 1]. Unfortunately, in some cases, image compar-
ison criteria are based on functions other than the simple
Euclidean distance between corresponding image feature
vectors, which makes LSH inapplicable in several settings.
Some foundational work has been done to extend LSH to
kernels satisfying particular conditions, such as hashing for
shift-invariant kernels in [21] based on random Fourier fea-
tures [22]. More generally, Kulis and Grauman [12] pro-
posed a technique called kernelized LSH (KLSH) for ap-
proximate nearest neighbor searches with arbitrary kernels,
thus extending LSH to situations where only kernel function
evaluations are possible. The main idea behind KLSH is to
approximate the necessary Gaussian random projections in
the kernel space using an appropriate random combination
of items from the database, based on an application of the
central limit theorem.

Since its publication, KLSH has been used extensively in
the computer vision community, and related hashing meth-
ods have been built from the KLSH foundations [19, &,

, 16]; however, KLSH still suffers from some impor-
tant drawbacks. First, while Kulis and Grauman show that
the central limit theorem ensures that the approximate ran-
dom projections constructed become true Gaussian random
projections as the number of sampled database items gets
larger, no bounds are explicitly given to clarify the tradeoff
between accuracy and runtime. Even worse, the approach
that KLSH uses—that of applying a random projection with a
N (0, I) vector—is conceptually inappropriate in an infinite-
dimensional kernel space since, as we will discuss later, no
such canonical Gaussian distribution even exists.

In this paper, we present a simple yet powerful reinter-
pretation of KLLSH, which we describe in Section 3. This
new perspective gracefully resolves the “infinite Gaussian”
issue and provides us with the first explicit performance
bounds to clearly demonstrate tradeoffs between runtime
and retrieval accuracy. Crucially, this tradeoff also reveals
two potential techniques which boost the empirical perfor-
mance of vanilla KLSH. In particular, we show how to mod-
ify KLSH to obtain improvements in recall performance of
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at least 12%, and sometimes much higher, on all the bench-
marks examined in Section 5.

1.1. Related work and our contributions

There is limited existing theoretical analysis [24] of
KLSH based on Nystrom approximation bounds [5]. How-
ever, this analysis only examines the average error between
the original kernel function values and the approximations
made by KLSH, and does not provide any bounds on re-
trieval performance. Moreover, as we will discuss in Sec-
tion 3, there is a subtle difference between KLSH and the
Nystrom method, rendering the aforementioned analysis
problematic. Further, we will demonstrate in Section 5 that
KLSH bears advantages over the Nystrom method when the
number of database items selected to approximate kernel
functions is relatively small.

There have been conflicting views about the compar-
ison of KLSH and LSH after applying kernel PCA [23]
to the data. For example, some work [12] has concluded
that KLSH has a clear performance edge over KPCA+LSH,
while these results are contradicted by the empirical analy-
sisin [1, 4] which demonstrated that LSH after a KPCA pro-
jection step shows a significant improvement over KLSH.
We will see in Section 3 that these two seemingly disparate
methods are equivalent (up to how the random vectors are
drawn in the two approaches), and the performance gap ob-
served in practice is largely only due to the choice of param-
eters. Although [1] gives some error analysis for the LSH
after a PCA projection step using the Cauchy-Schwarz in-
equality, no explicit performance bounds are proved. Thus,
it fails to show the interesting tradeoffs and retrieval bounds
that we derive in Section 4.1.

Recently, there has been work on kernel approximation-
based visual search methods. Asymmetric sparse kernel ap-
proximations [4] aim to approximate the nearest neighbor
search with an asymmetric similarity score computed from
m randomly selected landmarks. It has shown excellent em-
pirical performance with m = 8192. Kernelized random
subspace hashing (KRSH) [18] attempts to randomly gen-
erate the orthogonal bases for an m-dimensional subspace
in kernel space. Then classical hashing schemes are em-
ployed on the projection to this subspace. These approaches
may be viewed as variants of the Nystrom method; we note
that the authors of [18] were able to provide a preserva-
tion bound on inter-vector angles and showed better angle
preservation than KLSH.

Our main contribution can be summarized as threefold.
First, we provide a new interpretation of KLSH, which
not only provides a firmer theoretical footing but also re-
solves issues revolving around comparisons between KLSH
and LSH after projection via kernel PCA. Second, we are
able to derive the first formal retrieval bounds for KLSH,
demonstrating a tradeoff similar to the classic bias-variance

tradeoff in statistics. Lastly and most importantly, our
analysis reveals two potential techniques for boosting the
performance of standard KLSH. We successfully validate
these techniques on large-scale benchmark image retrieval
datasets, showing at least a 12% improvement in recall per-
formance across all benchmarks.

2. Background: LSH for Similarities and
KLSH

Assume that the database is a set of n samples
{x1,...,z,} € R Given a query ¢ € R and a user-
defined kernel function s(-,-) = (®(-), ®(-)) with the fea-
ture map ® : RY — H, where H is the implicit reproducing
kernel Hilbert space (RKHS), we are interested in finding
the most similar item in the database to the query g with
respect to s(+, -), i.e., argmax; k(q, ;).

LSH is a general technique for constructing and apply-
ing hash functions to the data such that two similar objects
are more likely to be hashed together [7, 3]. When the hash
functions are binary, and b hash functions are employed,
this results in a projection of the data into a b-dimensional
binary (Hamming) space. Note that there are several pos-
sible LSH schemes, including non-binary hashes, but we
will focus mainly on binary hashing in this paper. One ad-
vantage to binary hashing is that nearest neighbor queries
in the Hamming space can be implemented very quickly;
tree-based data structures can be used to find approximate
nearest neighbors in the Hamming space in time sub-linear
in the number of data points [2], and even an exact nearest
neighbor computation can be performed extremely quickly
in the Hamming space.

In order to meet the locality-sensitive requirement for
similarity functions, each hash function h should satisfy [2]:

Pr[h(x;) = h(x;)] = k(x;, x;). (1)

Here, we only consider normalized kernel func-
tions k(-,-) € [0,1]; for un-normalized kernels,
our results can be applied after normalization via
k(x,y)/v/k(x,x) - k(y,y). Given valid hash fami-
lies, the query time for retrieving (1 + €)-nearest neighbors
is bounded by O(n'/(*+9)) for the Hamming distance
[7, 2]. For the linear kernel k(z;,z;) = x!z; (ie.
®(x) = x) for normalized histograms, Charikar [2]
showed that a hash family can be constructed by rounding
the output of the product with a random hyperplane:

1, ifrTx>0
I (@) = { 0, otherwise

where » € R? is arandom vector sampled from the standard
multivariate Gaussian distribution (i.e., from A(0, I)). This
can be directly extended to kernels having known explicit
representations with dimension dg < co. However, this

) 2
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is not the case for many commonly-used kernels in vision
applications.

In order to deal with arbitrary kernels, KLSH attempts
to mimic this technique by drawing approximate Gaussian
random vectors in the RKHS via the central-limit theorem
(CLT). The key advantage to this approach is that the result-
ing hash function computation can be accomplished solely
using kernel function evaluations.

Considering {®(x1),...,P(x)} as ¢ realizations of
random variable ®(X') with known mean p and covariance
operator C, the classical CLT [0] ensures that the random
vector C~1/2z, = C~V2[Vi(: Y0_, ®(x;) — )] con-
verges to a standard Gaussian random vector as ¢ — oo.
Therefore, the hash family (2) can be approximated by:

1, ifd®(x)'C~122,>0

h(®(w)) = { 0, otherwise 3)

In practice, the mean p and the covariance matrix C' of
the data are not known and must be estimated through a ran-
dom set S = {&1,...,&y} from the database. Choosing
the ¢ random samples used in the CLT approximation from
S (t < m), [12] showed that (3) has the convenient form

m

h(®(x)) = sign Zw k(x, &;)) 4

where w = K ~'/?eg, with K the m x m centered kernel
matrix formed by {&;,...,&,} and es, an m x 1 vec-
tor with ones at the entries corresponding to the ¢ samples.
Note that some constant scaling terms have been dropped
without changing the hash function evaluation.

The validity of KLSH relies heavily on the central limit
theorem. One crucial question that is not addressed in [12]
is the existence of N(0, ) in the case where the ker-
nel function is based on an infinite-dimensional embedding
(such as the Gaussian kernel). Unfortunately, there is no
such canonical Gaussian distribution in an RKHS, as given
by the following lemma.

Lemma 1. [/5] A Gaussian distribution with covariance
operator C in a Hilbert space exists if and only if, in an
appropriate base, C has a diagonal form with non-negative
eigenvalues and the sum of these eigenvalues is finite.

As implied by Lemma 1, the convergence to the standard
Gaussian in an infinite-dimensional Hilbert space is not
grounded, as the eigenvalues of the covariance operator sum
to infinity.! As such, the motivation for KLSH is problem-
atic at best and, at worst, could render KLLSH inappropriate
for many of the retrieval settings for which it was specifi-
cally designed. At the same time, KLSH has shown solid

Note that the central limit theorem does still apply in Hilbert spaces,
but the covariance operators must always have finite trace.

empirical performance on kernels associated with infinite-
dimensional H [12]. How can we explain the discrepancy
between the empirical performance and the lack of a solid
theoretical motivation? We resolve these issues in the next
section.

3. A New Interpretation of KLSH

In the following, we will provide a simple but powerful
reinterpretation of KLSH, which will allow us to circum-
vent the aforementioned issues with infinite-dimensional
‘H. In particular, we will show that KLSH may be viewed
precisely as KPCA+LSH, except that the Gaussian vectors
drawn for LSH are drawn via the CLT in the KPCA pro-
jected space.

KLSH as Explicit Embedding. Let us take a deeper look
at the hash function (3). Utilizing the eigen-decomposition
of the covariance C, we can write

U
=

9(®(x)) = (v @(@)) - (v] Z) ©)

f
: 1< o) (lz). ©

where h(®(x)) = sign[g(®(x))], \y > - > Ay > -+ >
0 are the eigenvalues of C' with v; the corresponding eigen-
vectors. In many situations, the dimension dg of @ is infi-
nite.

If we perform a truncation at k, we obtain a finite-
dimensional representation for ® with Zfi jt1 i as the ex-
pected approximation error. The resulting sum in (6) after
this truncation can be viewed as an inner product between
two k-dimensional vectors. Specifically, the first vector is
(v ®(x), v ®(x),..., v} ®(x)), which is simply the pro-
jection of ®(x) onto the subspace spanned by the top &
principal components. For the other k-dimensional vector
(ﬁv?it, e ﬁv,{it), we plug in the definition of Z;
to obtain for each ¢:

1 1
ﬁv%t = f; (t > vl (x;) - v?u) 7

JjES
Vit

'M& ”M

= \ﬁ@i,t — 1) ()
RTN(0,1), 9)

where 7, = 1 djes v] ®(x;) (i.e., the t sample average
of the projection of ® onto the v;-direction), u; is the pro-
jection of p onto the wv;-direction, and the last approxima-
tion comes from the central limit theorem. Since we do not
know p and C explicitly, we can use plug-in sample esti-
mates.
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Under the above interpretation, we see that (6) after trun-
cation may be viewed as computing an inner product be-
tween two k-dimensional vectors: the first vector is the data
point ® () after projecting via KPCA, and the second vec-
tor is a Gaussian random vector. In other words, this sum
may be interpreted as first computing KPCA, and then using
the CLT to draw random vectors for LSH in the projected
space. Since KLSH uses a sample of m data points from the
data set to estimate the covariance and mean, we automat-
ically obtain truncation of the sum as the estimated covari-
ance is at most (m-1)-dimensional (it is (m-1)-dimensional
because of the centering operation). We can therefore see
that KLSH performs LSH after projecting to an (m-1)-
dimensional space via principal component analysis in H.
Thus, KLSH is conceptually equivalent to applying LSH
after a PCA projection in /. The only difference is that
KLSH uses the central limit theorem to approximately draw
Gaussian vectors in the projected space, whereas standard
KPCA+LSH draws the random vectors directly. Note that
the central limit theorem is known to converge at a rate of
O(t~'/?), and in practice obtains very good approximations
when t > 30 [6, 12]; as such, results of the two algorithms
are within small random variations of each other.

In summary, we are now able to explain the empirical
performance of [12] and also avoid the technical issues
with the non-existence of standard Gaussian distributions
in infinite-dimensional Hilbert spaces. As we will see, this
perspective will lead to a performance bound for KLSH in
Section 4.1, which also sheds light on simple techniques
which could potentially improve the retrieval performance.

Comparison with the Nystrom method. As arguably
the most popular kernel matrix approximation method, the
Nystrom method [5] uses a low-rank approximation to the
original kernel matrix in order to reduce the complexity of
computing inverses. Although KLSH bears some similari-
ties with the Nystrom method as pointed out in [24], here
we briefly clarify the differences between these approaches.
Given m anchor points, {&1,..., %}, the Nystrom
method constructs a rank-r approximation to the kernel ma-

trix over all the database items as
K, =KKIKT

T (10)
where K, is the rank-k approximation to the original kernel
matrix K, K, is the n x m kernel matrix with the (¢, j)-th
entry as k(x;, %;),5 = 1,...,m,j = 1,...,m, and K is
the pseudo-inverse of K,. which is the best rank-k approxi-
mation to the m x m kernel matrix K formed by the selected
anchor points. We can write the best rank-r approximation
as KT = (AJTD,«(A]TT , where lA),. is the r x r diagonal matrix
whose diagonal entries are the leading r eigenvalues of K,
and UT is the m x r matrix with each column as the cor-
responding eigenvector of K. Now, we can derive a vector

representation for each data as
() = DVPUT (k(=, 1), ... k5(z, @) 7. (1)

This is very similar to the representation used in equation
(4), where we can write the vector representation (consider-
ing also a rank-r approximation) as

() = D7V2UT (k(x, &1), ..., k(m, &0))T,  (12)

where D, and U, are the diagonal matrix with leading r
eigenvalues and the m X r matrix with each column the cor-
responding eigenvectors of K, respectively. K is the cen-
tered version of K.

Although they look similar in format, the two represen-
tations turn out to yield very different hashing performance.
Even though the Nystrom method aims to approximate the
whole kernel matrix, we point out that the “centering” oper-
ation used by KLSH is essential to give strong performance,
especially when m is relatively small. We will empirically
explore this issue further in Section 5.

4. Theoretical Analysis

In this section, we present our main theoretical re-
sults, which consist of a performance bound for the KLSH
method analogous to results for standard LSH. Perhaps
more importantly, our analysis suggests two simple tech-
niques to improve the empirical performance of the KLSH
method.

4.1. A performance bound

We present a theoretical analysis of KLSH via the
“KPCA+LSH” perspective. We make the assumption that
KLSH draws truly random Gaussian vectors in the projected
subspace, for simplicity of presentation. A more refined
analysis would also include the error included by approx-
imating the Gaussian random vectors via the central limit
theorem. Such analysis should be possible to incorporate
via the Berry-Esseen theorem [0]; however, as discussed
earlier, in practice the CLT-based random vectors provide
sufficient approximations to Gaussian vectors (see also Sec-
tion 6.6 of [13] for a more in-depth empirical comparison).

We first formulate the setting and assumptions for our
main results. Suppose S = {x1,...,x,} are n ii.d. ran-
dom samples drawn from a probability measure p. Given a
query q and a similarity function «, often referred to as a
kernel function, we want to find y; = argmax; sr(q, ;).
As is standard in the machine learning literature, when the
kernel « is positive semi-definite, it can be (implicitly) asso-
ciated with a feature map ® that maps original data points
into a high dimensional or even infinite dimensional feature
space H. The kernel function k(x,y) gives the inner prod-
uct (®(x), P(y)) in the feature space. The feature map and

4936



p together induce a distribution on H, which has a covari-
ance operator, denoted by C. Finally, let A\; > Ay >
and v1, va, - - - be the corresponding eigenvalues and eigen-
vectors of C, respectively.

As we assume that we do not have the explicit formula
for the feature map, we project ®(x) onto a k-dimensional
subspace V}, which is spanned by the first k& principal com-
ponents of C. Empirically, we use a sample of m points
to estimate C' and Vj,. Note that after projection, the new
kernel function becomes

which is no longer normalized. Here, V. is the sample es-
timator of V},. To fit into the standard LSH framework, we
normalize this kernel by

(14)

i (a /%(f'3 Y)

z)N(y)’

where  N(z) = /i(z,x) = [Py (2(z))] < 1. As
points with small N(2) may cause instability issues, we
simply remove them and only keep points with N(x) >
1 — v/Ax — n for proper choice of 7. Note that this step
should not affect the search result very much; in fact, we
prove in Lemma 2 below that the optimal points y; will not
be eliminated with high probability. See the supplementary

material for a proof.
A — Ak /
: 2k - ] 5;‘,‘2/m <1 \/§>’

where k is the total number of chosen principal components
and m is the number of points for estimating the eigen-
space. With probability at least 1 — e, for any point
x € X, we have

Lemma 2. Let 6, =

N(x)>1—+/ A —n. (15)

We can see that the probability of eliminating y is small
given the choice of 77. Now we can give our main result in
the following theorem.

Theorem 3. Consider an n-sample database S =
{x1,...,x,} and a query point q. For any €,§ > 0, with
success probability at least (1 — e=%)/2 and query time
dominated by O(n#) kernel evaluations, the KLSH algo-
rithm retrieves a nearest neighbor Yq j, with corresponding
bound

H(q7yA(1,k)2( +€)(1_\/)\7_ ) (qayg)_
(249 (\FJrn) , (16)

if we only keep those points with N (x) > 1 — /A, — 1 for

?/m(l+\/g> and 0 < n <

consideration, where n = 5

1 — VA

Our proof is given in the supplementary material, which
utilizes existing bounds for kernel PCA [14] and the stan-
dard LSH performance bound [7, 3, 2].

4.2. Discussion and Extensions

Understanding the Bound. The key ingredient of the
bound (16) is the error term /A, + ﬁ (1 + \/4%)
Observe that, as k and m become larger at appropriate rates,
both /A, and ) will go to zero. Therefore, as the number
of chosen data points and KPCA projections gets large, the
bound approaches

K(q,Yq,x) = (14 €)r(q, yy) — € (17

Further, as the parameter € from LSH decreases to zero, this
bound guarantees us that the true nearest neighbors will be
retrieved. Also observe that, with a fixed k, increasing m
will always improve the bound, but the v/ term will be
non-zero and will likely yield retrieval errors. This has been
empirically shown in [1], namely that the performance of
KPCA+LSH saturates when m is large enough, usually in
the thousands.

Low-Rank Extension. On the other hand, with a fixed m,
there is a trade-off between decreasing A; and increasing
5 , similar to the classic bias-variance trade-off in statistics;
we expect = to increase as k increases, whereas A will de-
crease for larger k. As aresult, for a fixed m, the best choice
of k£ may actually not be K = m—1, as in the original KLSH
algorithm, but could be smaller. In light of this, we intro-
duce a low-rank extension of the standard KLSH: instead of
performing LSH in the (m-1)-dimensional subspace of H
as in KLSH, we may actually achieve better results by only
projecting into a smaller r-dimensional subspace obtained
by the top 7 principal components. Specifically, we replace
w in equation (4) with

w, = K 1%eg,, (18)

where K, is the best rank-r approximation to K. In [1],
the authors recommend to use the same number of princi-
pal components as the number of hash bits when applying
KPCA+LSH, at least for the X2 kernel. We will show in
Section 5 that in fact the optimal choice of rank is depen-
dent on the dataset and the kernel, not the number of hash
bits. Moreover, the performance of KLSH can be quite sen-
sitive on the choice of .

Extension via Monotone Transformation. Another rele-
vant factor is the decaying property of the eigenvalues of
the covariance operator C' in the induced RKHS #, which
not only affects the A\ and Jj, but also the constant which
corresponds to the estimation error. Unlike kernel methods
for classification and detection, there is a unique property
regarding the use of kernel functions for retrieval: applying

4937



a monotone increasing transformation to the original kernel
function does not change the ranking provided by the origi-
nal kernel.

Thus, we can explore popular transformations that can
reward us better retrieval performance. For example, given
a kernel x(x, y), consider an exponential transformation,

’is(ma y) = exp (S * (H(:B,y) - 1)) ) (19)

where s > 0 is the scale parameter and x4(x,y) € (0, 1].
We can see that the ranking of the nearest neighbors stays
the same no matter what value we choose for s as long as
s > 0. However, changing the scaling impacts the eigenval-
ues of the covariance operator. In particular, it often slows
down the decay with s > 1 and will eliminate the decay en-
tirely when s — oo. In the context of our bound, that means
the 1/d; term will increase more slowly. Moreover, this
also reduces the estimation error of the eigen-space. How-
ever, with a value of s too large, we also need a very large k
in order to keep the \/\;, term small. Thus the scaling must
be carefully tuned to balance the trade-off.

5. Empirical Analysis

We now empirically validate the techniques proposed in
Section 4.2. A comparison with the Nystrom method is also
reported.

5.1. Datasets and evaluation protocols

We perform our experiments on three benchmark
datasets commonly used in large-scale image search com-
parisons: MIRFLICKR [9], which consists of 1 million
randomly sampled Flickr images represented using 150-
dimensional edge histogram descriptors; SIFTIM [I1],
which has 1 million 128-dimensional local SIFT [17] de-
scriptors; and GIST1IM [ 1], which is comprised of 1 mil-
lion 960-dimensional GIST [20] descriptors. The query
size for all three datasets is 10,000. For MIRFLICKR and
GIST1M, all descriptors whose values are all zero were re-
moved from the database.

Throughout the comparisons, we set the parameters of
KLSH as follows: we generate a 256-bit hash code, and
set m = 1000,t = 50 to form the “random” projection
matrix, which is equivalent to performing kernel PCA with
a sample set of size m = 1000. The choice of the number of
bits is to largely suppress the performance variation due to
randomness, but the conclusions made here are consistent
among different choices of number of bits.

We consider two popular kernels” from the vision com-
munity, namely the y? and intersection kernels for his-

2Here, we do not consider fixed-dimensional kernels such as the
Hellinger kernel, which are uninteresting for our setting.

tograms:
el

(Intersection) :k(x,y) = Z min(x[i],y[i]), Q1)

where x[i] is the i-th entry of . We perform exhaustive
nearest neighbors search and evaluate the quality of retrieval
using the Recall@R measure, which is the proportion of
query vectors for which the nearest neighbor is ranked in
the first R positions. This measure indicates the fraction of
queries for which the nearest neighbor is retrieved correctly
if a short list of R is verified in the original space. Note
here, R = 100 only represents 0.01% of the database items.
We focus on this measure since it gives a direct measure of
the nearest neighbor search performance.

Note that we are deliberately not comparing to other
hashing schemes such as semi-supervised hashing meth-
ods or optimization-based methods; our goal is to demon-
strate how our analysis can be used to improve results of
KLSH. Existing work on KLSH and variants has consid-
ered comparisons between KLSH and other techniques [12]
and, given space restrictions, we do not focus on such com-
parisons here.

5.2. Effect of rank

Figure 1 shows the effect of the rank r (with all other
parameters fixed): all but the smallest rank performed bet-
ter or at least comparable with the vanilla KLSH. This
further confirms the empirical results shown in [, 4] that
KPCA+LSH with smaller number of principal components
beats KLSH in retrieval performance. However, this is not
the entire story. We can clearly see the performance trade-
off as discussed in Section 4.2. Initially, the retrieval per-
formance improves with an increasing number of princi-
pal components used, which corresponds to decreasing .
However, at some point, performance drops corresponding
to the increase of §,. For MIRFLICKR and GIST1M, the
difference among ranks can be dramatic, showing the sensi-
tivity of the choice of rank. In addition, the best-performing
rank is not only dependent on the kernel chosen but also
critically dependent on the dataset examined. Nonetheless,
we can still obtain at least 7% in absolute improvement for
Recall@100 for the SIFT1M data which is least affected by
this trade-off. Here, the performance for different kernels is
quite similar, but is divergent for different datasets. For in-
stance, the optimal rank for the MIRFLICKR data is much
smaller than that of the SIFT1M and GIST1M. However,
we observe no relationship between rank and the number of
bits used, making the recommendations of [ 1] questionable.

Comparison with the Nystrom method. Figure 2a shows
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(Best viewed in color.)

the effect of the rank r for the Nystrom method: the per-
formance is monotonically increasing with the rank. More-
over, it shows unacceptable retrieval performance even with
rank 512. Contrasting with the obvious tradeoff with the
choice of ranks in KLSH, these results corroborate our ear-
lier observation that KLSH is indeed different from the
Nystrom method. Regarding the performance comparison,
we can see from Figure 2b that the Nystrom method per-
forms worse than both the low-rank version of KLSH and
the standard‘‘full-rank” KLSH by a large margin.

5.3. Effect of monotone transformation

Here, we show the effect of the transformation intro-
duced in (19). Note that we are free to choose any possible
transformation as long as the chosen transformation is in-
creasingly monotonic; our choice of (19) is simply for illus-
tration. We can see from Figure 2c how changing the scale
parameter affects the decay of the eigenvalues. In particu-
lar, we see that increasing the scaling slows down the decay
and will continue to decrease the decay as s gets larger.
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Figure 3: Recall@ R result improvement over the low-rank KLSH with m = 1000 for scale € {1,3,5,7,9}. Here, we use
rank 32 for FLICKR, 100 for SIFT1M, and 64 for GIST1M. (Best viewed in color.)

Recall@100 Dataset | KLSH | low-rank | low-rank+transformation | total improvement
x? kernel Flickr | 0.3629 | 0.5125 0.6762 +0.3133
SIFTIM | 0.6942 | 0.7642 0.8213 +0.1271
GISTIM | 0.2252 | 0.3360 0.5260 +0.3008
Intersection kernel Flickr 0.4182 0.5738 0.6529 +0.2347
SIFTIM | 0.6397 | 0.7468 0.7844 +0.1447
GISTIM | 0.2746 | 0.4014 0.4913 +0.2167

Table 1: Summary of absolute improvement for Recall@100.

Figure 3 demonstrates the power of the transformation
(with all other parameters fixed): the Recall@R steadily
increases as we slow down the decaying speed until the de-
caying is too gradual. And too large a s may drop the perfor-
mance significantly. The choice of s and its usefulness also
largely depends on both the kernel function and the dataset
in consideration: it has more effect on the x? kernel than the
intersection kernel. On the other hand, it is more effective
in the GIST1M dataset than in SIFT1M. Note here, we are
comparing with the original kernel with a fixed rank which
favors the original kernel. Thus, there is room for further
improvement by choosing a larger rank.

Table 1 summaries the total absolute improvement com-
bining the two techniques together. We can see that the
retrieval improvement is at least 12%, sometimes much
higher, among all benchmarks.This again validates the
merit of our analysis in Section 4.2 regarding the interest-

ing trade-offs shown in our performance bound (16) and
demonstrates the power of these simple techniques.

6. Conclusion

We introduced a new interpretation of the kernelized
locality-sensitive hashing technique. Our perspective makes
it possible to circumvent the conceptual issues of the orig-
inal algorithm and provides firmer theoretical ground by
viewing KLSH as applying LSH on appropriately projected
data. This new view of KLSH enables us to prove the first
formal retrieval performance bounds, which further sug-
gests two simple techniques for boosting the retrieval per-
formance. We have successfully validated these results em-
pirically on large-scale datasets and showed that the choice
of the rank and the monotone transformation are vital to
achieve better performance.
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