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Abstract

Objects’ spatial layout estimation and clutter iden-
tification are two important tasks to understand indoor
scenes. We propose to solve both of these problems in a
joint framework using RGBD images of indoor scenes.
In contrast to recent approaches which focus on either
one of these two problems, we perform ‘fine grained
structure categorization’ by predicting all the major ob-
jects and simultaneously labeling the cluttered regions.
A conditional random field model is proposed to incor-
porate a rich set of local appearance, geometric features
and interactions between the scene elements. We take
a structural learning approach with a loss of 3D local-
isation to estimate the model parameters from a large
annotated RGBD dataset, and a mixed integer linear
programming formulation for inference. We demon-
strate that our approach is able to detect cuboids and
estimate cluttered regions across many different object
and scene categories in the presence of occlusion, illu-
mination and appearance variations.

1. Introduction
We live in a three dimensional world where objects

interact with each other according to a rich set of physi-
cal and geometrical constraints. Therefore, merely rec-
ognizing objects or segmenting an image into a set of
semantic classes does not always provide a meaningful
interpretation of the scene and its properties. A better
understanding of real-world scenes requires a holistic
perspective, exploring both semantic and 3D structures
of objects as well as the rich relationship among them
[12, 29, 19, 33]. To this end, one fundamental task
is that of the volumetric reasoning about generic 3D
objects and their 3D spatial layout.

Among different approaches to tackle the generic
3D object reasoning problem, much progress has been
made based on representing objects as 3D geometric
primitives, such as cuboids. Some of the first efforts
focus on the 3D spatial layout and cuboid-like objects
in indoor scenes from monocular imagery [22, 14, 31].
Owing to the complex structure of the scenes, addi-

Figure 1: With a given RGBD image (left column), our method
explores the 3D structures in an indoor scene and estimates their
geometry using cuboids (right image). It also identifies clut-
tered/unorganized regions in a scene (shown in orange) which
can be of interest for tasks such as robot grasping.

tional depth information has recently been introduced
to obtain more robust estimation [23, 16, 13, 25]. How-
ever, real-world scenes are composed of not only large
regular-shaped structures and objects (such as walls,
floor, furniture), but also irregular shaped objects and
cluttered regions which cannot be represented well by
object-level primitives. The overlay of different types
of scene elements makes the procedure of localizing 3D
objects fragile and prone to misalignment.

Most previous work has focused on clutter reason-
ing in the scene layout estimation problem [14, 29, 32].
Such object clutter is usually defined at a coarse-
level, including everything other than the global lay-
out, which is insufficient for object-level parsing. To
tackle the problem of 3D object cuboid estimation, we
attempt to use clutter in a more fine-grained sense, re-
ferring to any unordered region other than the main
structures and major cuboid-like objects in the scene,
as shown in Fig. 1.

We aim to address the problem of 3D object cuboid
detection in a cluttered scene. In this work, we pro-
pose to jointly localize generic 3D objects (represented
by cuboids) and label cluttered regions from an RGBD
image. Unlike the recent cuboid detection techniques,
which consider such regions as background, our method
explicitly models the appearance and geometric prop-
erty of the fine-grained cluttered regions. We incorpo-
rate scene context (in the form of object and clutter)
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to better model the regular-shaped objects and their
interaction with other types of regions in a scene.

We adopt the approach in [16] for representing an
indoor scene, which models a room as a set of hypothe-
sized cuboids and local surfaces defined by superpixels.
To cope with clutters, we formulate the joint detection
task using a higher-order Conditional Random Field
model (CRF) on superpixels and cuboid hypotheses
generated by a bottom-up grouping process. Our CRF
approach extends the linear model of [16] in several as-
pects. First, we introduce a random field of local sur-
faces (superpixels) that captures the local appearance
and spatial smoothness of cluttered and noncluttered
regions. In addition, we improve the cuboid represen-
tation by generating two types of cuboid hypotheses,
one of which corresponds to regular objects inside a
scene and the other is for the main structures of a
scene, such as floor and walls. Furthermore, we incor-
porate both the consistency between superpixel labels
and cuboid hypotheses and the occlusion relation be-
tween cluttered regions and cuboid objects.

More importantly, we take a structural learning ap-
proach to estimate the CRF parameters from an an-
notated indoor dataset, which enables us to systemat-
ically incorporate more features into our model and to
avoid tedious manual tuning. We use a max-margin
based objective function that minimizes a loss de-
fined on cuboid detection. Similar to [16], the (loss-
augmented) MAP inference of our CRF model can
be formulated as a mixed integer linear programming
(MILP) formulation. We empirically show that the
MILP can be globally optimized with the Branch-and-
Bound method within a time of seconds to find a so-
lution in most cases. During testing, the MAP esti-
mate of our CRF not only detects cuboid objects but
also identifies the cluttered regions. We evaluate our
method on the NYU Kinect v2 dataset with augmented
cuboid and clutter annotations, and demonstrate that
the proposed approach achieves superior performance
to the state of the art.

2. Related Work
Localizing and predicting the geometry of generic

objects using cuboids is a challenging problem in highly
cluttered indoor scenes. A number of approaches ex-
tend 2D appearance-based methods to the task of pre-
dicting the 3D cuboids. Variants of the Deformable
Parts based Model (DPM) [8] have been used for
3D cuboid prediction [24, 25, 30]. However, they do
not consider clutter and heavy occlusion in the scene.
In [23], the Constrained Parametric Min-cut (CPMC)
[6] was extended from 2D to RGBD to generate a
cuboid hypotheses set. In contrast, we directly gen-
erate two types of cuboid proposals in a bottom-up

Figure 2: Graph structure representation for the potentials
defined on the object cuboids and the cluttered/non-cluttered
regions. (Best viewed in color)

fashion [16], thus providing a simpler and efficient pro-
cedure which is better suited for indoor RGBD data.

Based on the physical and geometrical constraints,
a number of approaches have been proposed for 3D ob-
ject and scene parsing, e.g., [33, 18, 3]. The basic idea
is to incorporate contextual relationships at a higher
level to avoid false detection. Silberman et al. [26] pre-
dict the support surfaces and semantic object classes in
an indoor scene. Geometric and semantic relationships
between different object classes are modeled in works
such as [20, 26, 10]. Gupta et al. [12] use a parse
graph to consider mechanical and geometric relation-
ships amongst objects represented by 3D boxes. For in-
door scenes, volumetric reasoning is performed for 2D
[22] and RGBD images [16] to detect cuboids. How-
ever, none of these works estimate cuboids and clutter
jointly using relevant constraints.

The joint estimation of clutter along with the room
layouts has previously been shown to enhance perfor-
mance. Wang et al. [29] predict clutter and layouts in
a discriminative setting where clutter is modeled using
hidden variables. Recently, Zhang et al. [32] employed
RGBD data for joint layout and clutter estimation and
efficiently perform inference by potential decomposi-
tion. However, these works are limited to only scene
layout estimation and label everything else as clutter.
Recently, Schwing et al. [25] used monocular imagery
to jointly estimate room layout along with one major
object present in a bedroom scene. In this work, we
estimate the scene bounding structures as well as ‘all’
of the major objects using 3D cuboids.

3. Our Approach
Indoor scenes contain material structures (e.g., ceil-

ing, walls) and the regular-shaped objects which we
term as non-cluttered regions. In contrast, cluttered
regions consist of small, indistinguishable objects (e.g.,
stationery on an office table) or jumbled regions in a
scene (e.g., clothes piled on a bed). We represent an in-
door scene as an overlay of the cluttered regions (mod-
eled as local surfaces) and the non-cluttered regions
(modeled using 3D cuboids). Our goal is to describe
an RGBD image with an optimal set of cuboids and
pixel-level labeling of cluttered regions.

Our approach first generates a set of cuboid hy-



potheses based on image and depth cues, which aims
to cover the majority of true object locations. Taking
them as the potential object candidates, we can sig-
nificantly reduce the search space of 3D cuboids and
construct a CRF on the image/depth superpixels and
these candidates. We will first introduce our CRF for-
mulation assuming the cuboid hypotheses are given,
and refer the reader to Sec. 4 for details on the cuboid
extraction procedure.

3.1. CRF Formulation
Given an RGBD image, denoted by I, we decompose

it into a number of contiguous partitions, i.e., super-
pixels: S = {s1, · · · , sJ}, where J is the total number
of superpixels. We associate a binary membership vari-
able mj with each superpixel sj to indicate whether it
belongs to the cluttered or non-cluttered regions, and
denotem = {m1, · · · ,mJ}. The set of cuboid hypothe-
ses is denoted by O = {o1, · · · , oK}, where K is the
total number of cuboid hypotheses. For each cuboid,
we introduce a binary variable ck to indicate whether
the kth cuboid hypothesis is active or not, and denote
c = {c1, · · · , cK}.

Note that for indoor scenes, the room structures
such as walls and floor bound the scene and therefore
appear as planar regions, which have different geomet-
ric properties from the ordinary object cuboids. To en-
code such different constraints, we define two types of
cuboids in the hypotheses set, namely the scene bound-
ing cuboids (Osbc) and the object cuboids (Ooc). The
cuboid extraction procedure for both types of cuboids
is described in Sec. 4.

We build a CRF model on the superpixel clutter
variables m and the object variables c to describe the
properties of clutter, objects and their relationship in
the scene. Formally, we define the Gibbs energy of the
CRF as follows,

E(m, c|I) = Eobj(c) + Esp(m) + Ecom(m, c), (1)

where Eobj(c), Esp(m) captures the object level
and the superpixel level properties respectively, and
Ecom(m, c) models the interactions between them.

More specifically, the first term, Eobj(c), is defined
as a combination of three potential functions:

Eobj(c) =
K∑

k=1

[
ψu
obj(ck) + ψh

obj(ck)
]
+

∑
i<j

ψp
obj(ci, cj), (2)

where the unary potential ψu
obj(ck) expresses the data

likelihood of kth object hypothesis, ψh
obj(ck) encodes a

MDL prior on the number of active cuboids, and the
pairwise potential ψp

obj(ci, cj) models the physical and
geometrical relationships between cuboids.

Similarly at the superpixel level, the second term,
Esp, consists of two potential functions:

Esp(m) =
J∑

j=1

ψu
sp(mj) +

∑
(i,j)∈Ns

ψp
sp(mi,mj), (3)

where the unary potential ψu
sp(mj) is the data likeli-

hood of a superpixel’s label, and the pairwise potential
ψp
sp(mi,mj) encodes the spatial smoothness between

neighboring superpixels, denoted by Ns.
The third term in Eq. (1), is the compatibility con-

straint which enforces the consistency of the cuboid
activations and the superpixel labeling:

Ecom(m, c) =
J∑

j=1

ψcom(mj , c). (4)

In the following discussion, we will explain the different
costs which constitute the energies defined in Eqs. (2),
(3) and (4).

3.2. Potentials on Cuboids
3.2.1 Unary Potential on Cuboids

The unary potential of a cuboid hypothesis ψu
obj mea-

sures the likelihood of a cuboid hypothesis being ac-
tive based on its appearance, physical and geometrical
properties. Instead of specifying local matching costs
manually, we extract a set of informative multi-modal
features from image/depth and each cuboid, and take a
learning approach to predict the local matching qual-
ity. Specifically, we generate seven different types of
cuboid features (fobjk ) as follows.

Volumetric occupancy feature focc
k measures the

portion of the kth cuboid occupied by the 3D point
data. We define focc

k as the ratio between the empty
volume inside a cuboid (vke ) to the total volume of a
cuboid (vkb ): f

occ
k = vke/v

k
b . The volumes are estimated

by discretizing the 3D space into voxels and counting
the number of voxels that are occupied by 3D points
or not. All invisible voxels behind occupied voxels are
also treated as occupied.

Color consistency feature f col
k encodes the color

variation of the kth cuboid. Object instances nor-
mally have consistent appearance while cluttered re-
gions tend to have a skewed color distribution (Fig. 3).
We fit a GMM with three components on the color dis-
tribution of pixels enclosed in a cuboid and measure
the average deviation. Specifically, the feature is de-
fined as: f col

k =
∑

∀p∈ok
ωu‖vp−σu‖, where vp denotes

the color of a pixel p, σu is the mean of the closest
component (u) and ωu is the mixture proportion.

Normal consistency feature fnor
k measures the

normal variation of the kth cuboid. The distribution
of 3D point normals inside the cluttered regions has
a larger variance (Fig. 3). In contrast, the normal di-
rections of regular objects are usually aligned with the
three perpendicular faces of the cuboid. Similar to the
color feature, we calculate the variation of 3D point
normals with respect to the closest dominant direction.
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Figure 3: The distribution of variation in color for cluttered
and non-cluttered regions in the RMRC training set is compared
in (a), (b). Comparison for variation in normals is shown in (c),
(d). (b) and (d) are the cumulative distributions.

Tightness feature f tig
k describes how loosely the 3D

points fit the cuboid proposals. For each visible face
of a cuboid, we calculate the ratio between the area
of minimum bounding rectangle tightly enclosing all
points (Af

rec) to the area of the face (Af ). We take the
weighted average of the tightness ratios of the cuboid

faces to define f tig
k = 1

∑
f �Af

rec �=0�

∑
∀f∈Faces

Af
rec

Af
.

Support feature fsup
k measures how likely each

cuboid is supported either by another cuboid or clutter.
We estimate the support by calculating the number of
3D points that fall in the space surrounding the cuboid
(τ%1 additional space along each dimension). The fea-

ture is defined as: fsup
k =

eo′
k
−eok
eok

, where, eo′k and eok
denote the number of points enclosed by the extended
cuboid and the original cuboid respectively.

Geometric plausibility feature fgeo
k measures the

likelihood that a cuboid has a plausible 3D object
shape. Using 3D geometrical features (sizes and as-
pect ratios), we train a Random Forest (RF) classifier
to score the geometric plausibility. The score is used to
define fgeo

k , which filters out the less likely cuboid can-
didates e.g., very thin cuboids or those with irregular
aspect ratio.

Cuboid size feature foch
k measures the relative size

of a cuboid w.r.t the average object size in the dataset.
Let �ldl denote the maximum diagonal length of a
cuboid and �̄ldl is the mean length of objects. We de-
fine foch

k = �ldl/�̄ldl, which helps control the number of
valid cuboids by removing small ones.

Given the feature descriptor fobjk , we train a RF clas-
sifier on fobj and define the unary potential based on
the output of the RF, P (ck = 1|fobjk ):

ψu
obj(ck) = λbbuμ

bbu
k ck, (5)

where λbbu is the weighting coefficient and μbbu
k =

− log
P (ck=1|fobjk )

1−P (ck=1|fobjk )
. Note that those features are au-

tomatically weighted and combined by the RF for pre-
dicting the local matching cost.

1Based on empirical tests, τ is set to 2.5% in this work.

3.2.2 Cuboid MDL Potential

The MDL principle prefers to explain a given image
compactly in terms of a small number of cuboids, in-
stead of a complex representation consisting of an un-
necessarily large number of cuboids [3, 16]. We de-
fine the MDL potential ψh

obj in Eq. (2) as: ψh
obj(ck) =

λmdlck, where λmdl > 0 is the weighting parameter.

3.2.3 Pairwise Potentials on Cuboids

We follow [16] and the pairwise energy in Eq. (2) de-
composes in to view obstruction and box intersection
potentials:

ψp
obj(ci, cj) = ψp

obs(ci, cj) + ψp
int(ci, cj). (6)

As we have two types of cuboids, our pairwise poten-
tials on cuboids are parametrized according to the con-
figuration of each cuboid pair.

View obstruction potential (ψp
obs) encodes the

visibility constraint between a pair of cuboids, and is
expressed as follows:

ψp
obs(ci, cj) = λobsμ̃

obs
i,j cicj = λobsμ̃

obs
i,j yi,j (7)

where, μ̃obs
i,j is the view obstruction cost, λobs is a

weighting parameter and yi,j is an auxiliary boolean
variable introduced to linearize the pairwise term [16].
The view obstruction cost μ̃obs

i,j computes the intersec-
tion of 2D projections of two cuboids and induces a
penalty when a larger cuboid lies in front of a smaller
but farther cuboid. Let μobs

i,j = (Aci ∩Acj )/Aci where,
Aci and Acj are the areas of the 2D projections of
cuboid hypotheses ci and cj on the image plane re-
spectively and ci is the farther cuboid w.r.t the viewer.
The cost μ̃obs

i,j = μobs
i,j if μobs

i,j < αobs and infinity other-
wise. This allows partial occlusion with a penalty but
avoids heavy occlusion. We use αobs = 60% for object
cuboids (Ooc). For the case of scene bounding cuboids
(Osbc), we relax the obstruction cost by a factor of 0.1
in Eq. (7) and set α′

obs = 80%.

Cuboid intersection potential (ψp
int) penalizes

volumetric overlaps between cuboid pairs as two ob-
jects cannot penetrate each other, and is defined as:

ψp
int(ci, cj) = λintμ̃

int
i,j cicj = λintμ̃

int
i,j xi,j (8)

where, μ̃int
i,j is the cuboid intersection cost, λint is a

weighting parameter and xi,j is an auxiliary boolean
variable introduced to linearize the pairwise cost. The
cuboid intersection cost induces a soft penalty as long
as the intersection is smaller than a threshold. Let μint

i,j

be the normalized intersection, and we define μ̃int
i,j =

μint
i,j if 0 ≤ μint

i,j < αint and infinity otherwise. We set
αint = 10% for the case of object cuboids and α′

obs =
50% for all scene bounding cuboids.



3.3. Potentials on Superpixels
We decompose an input image into superpixels

based on the hierarchical image segmentation [2]. The
unary potential on each superpixel captures the ap-
pearance and texture properties of cluttered and non-
cluttered regions. We employ the kernel descriptor
framework of [4, 5] to convert pixel attributes to rich
patch level feature representations. We extract several
cues including image and depth gradient, color, sur-
face normal, LBP and self similarity. A RF classifier
is trained on these dense features, which predicts the
probability of a region being a clutter or non-clutter.
We use the negative log odds ratio as a cost μapp

j ,
weighted by the parameter λapp and define the unary
in Eq. (3) as ψu

sp(mj) = λappμ
app
j mj .

For the superpixel pairwise term, we define a
contrast-sensitive Potts model on spatially neighbor-
ing superpixels, which encourages the smoothness of
the clutter and non-clutter regions:

ψp
sp(mi,mj) = λsmoμ

smo
i,j (mi +mj −mi ·mj), (9)

where, μsmo
i,j = exp(−‖v̄i−v̄j‖2/σ2

c ), v̄i, v̄j are the mean
color of superpixel si and sj . We use wi,j as an aux-
iliary boolean variable to linearize the quadratic term
mi ·mj (see Sec. 5).

3.4. Superpixel-Cuboid Compatibility
The compatibility term links the superpixels label-

ing to the cuboid selection task, which enforces consis-
tency between the lower level and the higher level of
the scene representation. Our compatibility potential
consists of two terms, one for superpixel membership
ψmem and the other for occlusion relation ψocc:

ψcom(mj , c) = ψmem(mj , c) +
∑
k

ψocc(mj , ck), (10)

Superpixel membership potential (ψmem) de-
fines a constraint that a superpixel is associated with
at least one active cuboid if it is not a cluttered re-
gion: mj ≤ ∑

k:sj∈ok

ck. Equivalently, the corresponding

potential function is a higher-order term (Fig. 2):

ψmem(mj , c) = λ∞�mj �= max
k:sj∈ok

ck�, (11)

where λ∞ is an infinite (very large) penalty cost.

Superpixel-cuboid occlusion potential (ψocc)
encodes that a cuboid should not appear in front of
a superpixel which is classified as clutter, i.e., a de-
tected cuboid cannot completely occlude a superpixel
on the 2D plane which takes a clutter label.

ψocc(mj , ck) = λoccμ
occ
jk mjck = λoccμ

occ
jk zjk (12)

where, mj = 1 −mj , and zjk is the auxiliary variable

for linearization. The cost μocc
jk =

(Amj
∩Ack

)

A and A is
the area of the further element (either cuboid or super-
pixel). The cost μ̃occ

jk and parameter αocc are defined
similar to the view obstruction potential in Sec. 3.2.3.

4. Cuboid Hypothesis Generation
Our method for initial cuboid hypothesis generation

is based on a bottom-up clustering-and-fitting proce-
dure, which generates both object cuboids and scene
bounding cuboids. Specifically, we first extract homo-
geneous regions from a normal image using SLIC [1].
Gaussian smoothing is performed to remove isolated
regions and similar regions are merged using the DB-
SCAN clustering algorithm [7]. The neighborhood of
each resulting region is found and the inlier points in
each region are estimated using the RANSAC algo-
rithm. We then estimate three major perpendicular
directions of a room as in [26], denoted as x, z (hori-
zontal) and y (vertical).

For object cuboids, we adopt a fitting method simi-
lar to [16]. The cuboids identified using this procedure
usually capture objects whose two or more sides are
visible, but cannot capture the room structure. To pro-
pose scene bounding cuboids, we also generate cuboids
which cover only one planar region. Among all the pla-
nar regions, we first remove the smaller ones (< 5% of
the image size) and those not aligned with the three
dominant directions. We then select the planar regions
which are farthest from the camera view point. The
cuboids enclosing these planar regions are included in
the hypotheses set as the scene bounding cuboids. The
detected cuboid proposals are ranked using the cuboid
unary potential (Eq. (5)) and the top 60 cuboids are
selected for our CRF inference.

5. Model Inference and Learning
5.1. Inference as MILP

Given an RGBD image I, we parse the input into
a set of cuboids and cluttered/noncluttered regions by
inferring the most likely configuration of clutter label
variablesm and the cuboid hypotheses labels c. Equiv-
alently, we minimize the CRF energy:

{m∗, c∗} = argmin
m,c

E(m, c|I). (13)

We adopt the relaxation method in [16, 11] and trans-
form the minimization in Eq. (13) into a Mixed In-
teger Linear Program (MILP) with linear constraints.
The MILP formulation can be solved much faster com-
pared to the original ILP, using the branch and bound
method.



Small gap Large gap Cuts LP relax.

Time (sec) 1.84± 31% 1.31± 24% 0.45± 13% 0.001± 0.4%
Det. Rate 26.8% 26.1% 24.4% 19.9%

Table 1: Inference running time comparisons for variants of
MILP formulation.

Specifically, for the pairwise view obstruction cost
in Eq. (7), we introduce yi,j for ci · cj with constraints:
ci ≥ yi,j , cj ≥ yi,j , yi,j ≥ ci + cj − 1. Similarly, we
introduce xi,j for the pairwise cuboid intersection cost.
Also, we use an inequality ci + cj ≤ 1 for the infin-
ity cost constraint of μ̃obs

i,j and μ̃int
i,j . These equivalent

transforms can also be applied to wi,j for mi ·mj in the
superpixel pairwise potential, and zj,k for mjck in the
superpixel-cuboid potential. For clarity, we denote the
complete set of linear inequality constraints for c and
m as LC and include the details in the supplementary
material. The complete MILP formulation with linear
objective function and constraints is given by:

min
m,c,x,y,w,z

E(m, c,x,y,w, z|I) (14)

s.t. linear inequality constraints in LC,
mj , ck ∈ {0, 1}, ∀j, k (15)

wi,j , xi,j , yi,j , zj,k ≥ 0, ∀i, j, k (16)

We solve the MILP problem in Eqs. (14) - (16) by the
Branch and Bound method in the GLPK solver [21].

Algorithmic Efficiency: We empirically evaluate
the efficiency of the Branch and Bound algorithm on
the scene parsing problem introduced in Sec. 6. Tab. 1
lists the average time it takes to reach the optimal solu-
tion on a 3.4GHz machine. On average, 819±48% vari-
ables are involved in each inference and the final MILP
gap is zero for 98.5% of the cases on the whole dataset.
In this work, we use a MILP gap tolerance of 0.001,
however, it turns out that increasing the MILP gap by
a factor of 100 causes a minute performance drop and a
more efficient inference. Including cuts (cover cuts, Go-
mory mixed cuts, mixed integer rounding cuts, clique
cuts) results in a much faster convergence at the ex-
pense of an average of 8% performance degradation
and a 5% increase in memory requirements. When c
and m are relaxed to get the corresponding LP which
has a polynomial time convergence guarantee, the per-
formance on the detection task decreases by 26% com-
pared to the MILP formulation. These performance
comparisons are computed at the 40% Jaccard Index
(JI) threshold for cuboid detection.

5.2. Parameter Learning
We take a structural learning approach to estimate

the model parameters from a fully annotated training
dataset. We denote the model outputs (m, c) as t,
and the model parameters (λbbu, λmdl, λobs, λint, λapp,

λsmo, λocc) as λ. The training set consists of a set of
annotated images T = {(tn, In}1×N .

We apply the structured SVM framework with mar-
gin re-scaling [27], which uses the cutting plane algo-
rithm [17] to search the optimal parameter setting (see
the supplementary materials for details of the learning
algorithm). We use the IOU loss function on cuboid
matching as our loss function in learning, which is de-

fined as Δ(t(n), t) =
∑
i

(
1− |o(n)

i ∩oi|
|o(n)

i ∪oi|

)
and oi is the

3D cuboid associated with ci. The algorithm efficiently
adds low energy labelings to the active constraints set
and updates the parameters such that the ground-truth
has the lowest energy.

6. Experiments and Analysis

6.1. Dataset and Setup
We evaluate our method on the 3D detection dataset

released as part of the Reconstruction Meets Recog-
nition Challenge (RMRC), 2013. It contains 1074
RGBD images taken from the NYU Depth v2 dataset.
Each image comes with 3D bounding box annotations.
There are 7701 annotated 3D bounded boxes in total,
which roughly equals to 7 labeled cuboids per image.
We performed experiments on the complete dataset us-
ing 3-fold cross validation. Specifically, for each fold,
training is done on 716 images and the testing is per-
formed on the remaining 358 images.

We evaluate the performance on three tasks, in-
cluding the cuboid detection, clutter/non-clutter esti-
mation and the foreground/background segmentation.
The weighting parameters involved in the energy func-
tion (Eq. (1)) are learned (details in Sec. 5.2). Other
parameters which are involved in shaping the con-
straints (e.g., αobs, αint) are set to achieve the best
performance on a small validation set. This validation
set consists of 10 randomly sampled training images in
each iteration of 3-fold cross validation.

6.2. Cuboid Detection Task
We first evaluate the cuboid detection task, in

which we compute the intersection over union of vol-
umes (Jaccard Index-JI) for the quantitative evalua-
tion. Fig. 4 shows the cuboid detection rate as the
threshold for JI is increased from 0 to 1. The over-
all low detection rate is partially due to the fact that
many cuboids for scene structures and major objects
(e.g., cupboard) are quite thin and the volumetric over-
lap measure can be sensitive in such cases. We compare
our method with a baseline approach and the state of
the art techniques by Jiang et al. [16], Huebner et al.
[15] and Truax et al. [28]. The baseline method uses
only the unary cuboid costs for detection. Random
initializations are chosen for the parameters involved



Figure 5: Comparison of our results (3rd row) with the state of the art technique[16] (2nd row) and Ground Truth (1st row). (Best
viewed in color and enlarged)
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Figure 4: Jaccard Index comparisons for all annotated cuboids
(top left), for the most salient cuboid (top right), for top two
salient cuboids (bottom left) and top three salient cuboids (bot-
tom right).

in [15, 28]. We use the projected area of a cuboid as
its saliency measure to rank the ground-truth objects.
The results (Fig. 4, Tab. 2) show that the global op-
timization performs better than the unary scores and
the local search techniques [15, 28]. At the 40% JI
threshold mark in Fig. 4, we have 31.1%, 26.8%, 38.0%
and 89.4% better performances compared to [16] for
top one, top two, top three and all cuboids detection
tasks respectively. The ablative analysis in Tab. 2
indicates that both the newly introduced features and
the joint modeling contribute to the overall improve-
ment in detection accuracy.

Qualitative comparisons are shown in Fig. 5. Our
method gives good results on many difficult indoor
scenes involving clutter, partial occlusions, appearance
and illumination variations. In some cases, ground-
truth cuboids are not available for some major ob-
jects/structures in the scene, but our technique is able
to detect them correctly. We also compare qualita-

Method Accuracy

Unary cuboid cost of Jiang [16] 6.5%
Our unary cuboid cost only 8.8%

Our unary + pairwise cuboid cost only 19.4%
Our full model 26.1%

Table 2: An ablation study on the model potentials/features
for the cuboid detection task at the 40% JI threshold.

Method Precision Recall F-Score

Superpixel unary only 0.43± 13% 0.45± 11% 0.44± 16%
Unary + pairwise 0.46± 12% 0.48± 10% 0.47± 16%

Full model (all classes) 0.65± 9% 0.68± 8% 0.66± 12%
Full model (only object classes) 0.75± 6% 0.71± 8% 0.73± 10%

Table 3: Evaluation on Clutter/Non-Clutter Segmentation
Task. Precision signifies the accuracy of clutter classification.

Eval. Criterion CPMC [6] This Paper
Pre. Rec. Pre. Rec.

Most salient obj. 0.83± 11% 0.79± 12 0.85± 15% 0.82± 15%
Top 2 salient obj. 0.77± 12% 0.73± 14 0.81± 16% 0.79± 16%
Top 3 salient obj. 0.69± 15% 0.66± 17 0.79± 21% 0.76± 19%

All objects 0.54± 17% 0.51± 20 0.73± 23% 0.69± 21%

Table 4: Evaluation on Foreground/Background Segmentation
Task. Precision signifies the accuracy of foreground detection.

tively with the Jiang et al’s method [16], for which the
results are generated using the code provided by the
authors. It can be seen that our approach performs
better in most of the cases.

6.3. Clutter/Non-Clutter Segmentation Task
To evaluate the clutter segmentation task, we gen-

erate the ground-truth clutter labeling based on the
cuboid annotation. Specifically, we project the 3D
points inside the ground-truth cuboids onto the image
plane, and label them as the non-clutter regions while
the rest of the regions are clutter. As a baseline, we re-
port the performance when only superpixel unary cost
was used for segmentation. The addition of the pair-
wise cost and the joint modeling results in significant
improvement (Tab. 3). We also consider only the ob-
ject cuboids and compare the performance when scene
structure cuboids are excluded from the evaluations.



Figure 6: Qualitative Results: Our method is able to accurately detect cuboids in the case of cluttered indoor scenes (1st row). The
2nd and 3rd rows show our clutter labelling and the ground-truth labelling on superpixels, respectively. In the bottom two rows, red
color represents non-clutter while blue color represents clutter. (Figure best viewed in color and enlarged)

6.4. Foreground Segmentation Task
We compare our results with the CPMC frame-

work [6] on the foreground/background segmentation
task. The objects which are labeled in the dataset are
treated as foreground, while the cuboids which model
the structures and the unlabeled regions are treated
as background. Tab. 4 shows the comparisons for the
cases when top most, top two, top three and all object
cuboids are detected as foreground. For the case of all
detected object cuboids, the top ten foreground masks
from the CPMC framework are considered.

6.5. Discussion
The proposed approach can find wide applications

in personal robotics, especially for tasks such as indoor
navigation and manipulation. A limitation of our ap-
proach is its reliance on the initial cuboid generation.
Some of the imperfect cuboid detection examples are
shown in Fig. 7. For example, our method is not able
to propose cuboids for objects when only one side was
visible. For the clutter estimation task, our method
confuses specular surfaces with cluttered regions due
to missing depth values. Also we did not explicitly use
constraints such as Manhattan world [9], which may
improve the quality of the cuboids aligned with room.

In order to confirm that the detected cluttered re-
gions satisfy our definition (Sec. 3), we report some
statistics on the RMRC dataset (Tab. 5). On each de-
tected cluttered region, we fit a cuboid whose base is
aligned with the room coordinates. It turns out that
the mean volume occupancy and face coverage of all
such cuboids is quite low (36% and 44% respectively).

We summarize the run-time statistics of each step
involved in our approach. The cuboid hypothesis gen-
eration takes 21±18% sec/img. The feature extraction
on cuboids and superpixels take 8± 25% and 97± 33%
sec/img respectively. The RF classifier training for

terms fgeo
k , fobj

k and ψsp
u take 6.5 sec, 11.2 sec and 2.8

Figure 7: Ambiguous Cases: Examples of detection errors.
(Figure best viewed in color and enlarged)

Evaluation Criterion Statistics on RMRC Database

Mean Volume Occupied 0.36± 19%
Mean Coverage along Cuboid Faces 0.44± 20%

Table 5: Statistics for cuboids fitted on cluttered regions.

min respectively. The parameter learning algorithm
takes ∼ 7 hours. The proposed approach is also effi-
cient at test time i.e., ∼ 1 sec/image (Tab. 1).

7. Conclusion

We have studied the problem of cuboid detection
and clutter estimation for developing a better holis-
tic understanding of indoor scenes from RGBD im-
ages. Our approach jointly models 3D generic objects
as cuboids and cluttered regions as local surfaces de-
fined by superpixels. We build a CRF model for all the
relevant scene elements, and learn the model parame-
ters based on a structural learning framework. This
enables us to incorporate a rich set of appearance and
geometric features, as well as meaningful physical and
spatial relationships between generic objects. We also
derive an efficient inference based on the MILP formu-
lation, and show superior results on cuboid detection
and foreground segmentation. In future, we will extend
the current work to incorporate useful relationships be-
tween semantic classes.
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