
Learning To Look Up:
Realtime Monocular Gaze Correction Using Machine Learning

Daniil Kononenko Victor Lempitsky
Skolkovo Institute of Science and Technology (Skoltech)
Novaya Street 100, Skolkovo, Moscow Region, Russia

{daniil.kononenko,lempitsky}@skoltech.ru

Abstract

We revisit the well-known problem of gaze correction
and present a solution based on supervised machine learn-
ing. At training time, our system observes pairs of images,
where each pair contains the face of the same person with
a fixed angular difference in gaze direction. It then learns
to synthesize the second image of a pair from the first one.
After learning, the system gets the ability to redirect the
gaze of a previously unseen person by the same angular
difference as in the training set. Unlike many previous so-
lutions to gaze problem in videoconferencing, ours is purely
monocular, i.e. it does not require any hardware apart from
an in-built web-camera of a laptop. Being based on efficient
machine learning predictors such as decision forests, the
system is fast (runs in real-time on a single core of a mod-
ern laptop). In the paper, we demonstrate results on a va-
riety of videoconferencing frames and evaluate the method
quantitatively on the hold-out set of registered images. The
supplementary video shows example sessions of our system
at work.

1. Introduction

The problem of gaze in videoconferencing has been at-
tracting researchers and engineers for a long time. The
problem manifests itself as the inability of the people en-
gaged into a videoconferencing (the proverbial “Alice” and
“Bob”) to maintain gaze contact. The lack of gaze contact
is due to the disparity between Bob’s camera and the image
of Alice’s face on Bob’s screen (and vice versa). As long as
Bob is gazing towards the eyes of Alice on his screen, Alice
perceives Bob’s gaze directed down (assuming the camera
is located above the screen). Gaze correction then refers to
the process of altering Bob’s videostream in a realistic and
real-time way, so that the apparent Bob’s gaze direction is
changed (e.g. redirected upwards) and the gaze contact can
be established.

Most successful solutions to gaze correction have been
so far relying on additional hardware such as semi-
transparent mirrors/screens [16, 12], stereocameras [23, 5],
or RGB-D cameras [26, 14]. Because of the extra hard-
ware dependence, such solutions mostly remain within the
realm of high-end conferencing systems and/or research
prototypes. Despite decades of research, finding a monoc-
ular solution that would rely on the laptop/portable device
camera as the only image acquisition hardware remains an
open question. The challenge is to meet the requirements
of (a) realism, (b) having gaze direction/viewpoint position
altered sufficiently for reestablishing the gaze contact, (c)
real-time performance.

Meeting the first requirement (realism) is particularly
difficult due to the well-known uncanny valley effect [20],
i.e. the sense of irritation evoked by realistic renderings of
humans with noticeable visual artifacts, which stems from
the particular acuteness of the human visual system towards
the appearance of other humans and human faces in partic-
ular.

Here, we revisit the problem of monocular gaze correc-
tion using machine learning techniques, and present a new
system for monocular gaze correction. The system synthe-
sizes realistic views with a gaze systematically redirected
upwards (10 or 15 degrees in our experiments). The syn-
thesis is based on supervised machine learning, for which a
large number of image pairs describing the gaze redirection
process is collected and processed. The more advanced ver-
sion of the system is based on a special kind of randomized
decision tree ensembles called eye flow forests. At test-time,
the system accomplishes gaze correction using simple pixel
replacement operations that are localized to the vicinity of
person’s eyes, thus achieving high computational efficiency.
Our current implementation runs in real-time on a single
core of a laptop with a clear potential for a real-time perfor-
mance on tablet computers.

Below, we review the related works on gaze correction
and randomized trees (Section 2), and then introduce our

1

Input Desired output Our output
Figure 1. Re-establishing gaze contact in real-time. Left – an input frame (from the Columbia gaze dataset [19]) with the gaze directed
ten degrees below the camera. Middle – a “ground truth” frame with the gaze directed ten degrees higher than in the input (which in this
case corresponds to the camera direction). Our method aims to raise the gaze direction by ten degrees in all incoming video frames, thus
enabling gaze contact during video-conferencing. The result of our method is shown on the right. The computation time is 8 ms on a single
laptop core (excluding feature point localization).

approach (Section 3). In Section 4 and at [1], we perform
qualitative and quantitative validation of the proposed ap-
proach.

2. Related work
Gaze correction. A number of systems solve the gaze

problem using a hardware-driven approach that relies on
semi-transparent mirrors/screens [16, 12]. Another group
of methods offers a mixed software/hardware solution and
proceed in two steps. First, a dense depthmap is estimated
either through the use of stereomatching [23, 5] or using
RGB-D cameras [26, 14]. Then, a new synthetic view cor-
responding to a virtual camera located behind the screen is
created in real-time. As discussed above, reliance on addi-
tional hardware represents an obvious obstacle to the adap-
tation of these techniques.

While a certain number of purely software, monocular
gaze correction approaches have been suggested [4, 25],
most of them have been generally unable to synthesize re-
alistic images while meeting the requirements of realism
and being able to alter the perceived gaze direction suffi-
ciently. One exception is the system [21] that first prere-
cords a sequence of frames where Bob gazes into the cam-
era, and then, at the conference time, replaces Bob’s eyes
with another copy of Bob’s eyes taken from one of the pre-
recorded frames. The downside of [21], is that while the
obtained images of Bob achieve sufficient realism, Bob’s
gaze in the synthesized image remains “locked” staring un-
naturally into the camera independently of the actual move-
ment of Bob’s eyes. A related drawback is that the system
needs to pre-record a sufficient number of diverse images of
Bob’s eyes. Our system does not suffer from either of these
limitations.

The most recent system [10] uses monocular real-time
approximate fitting of head model. Similarly to [14], the
approximate geometry is used to synthesize a high-quality

novel view that is then stitched with the initial view through
real-time optimization. The limitations of [10] are the po-
tential face distortion due to multi-perspective nature of
the output images, as well as the need for GPU to main-
tain the real-time operation. Pre-recording heavily occluded
head parts (under chin) before each video-conference is also
needed.

Decision forests. The variant of our system based on
eye flow trees continues the long line of real-time com-
puter vision systems based on randomized decision trees
[2, 3] that includes real-time object pose estimation [15],
head pose estimation [7], human body pose estimation [18],
background segmentation [24], etc. While classical ran-
dom forests are trained to do classification or regression,
the trees in our method predict some (unnormalized) distri-
butions. Our method is thus related to other methods that
use structured-output random forests (e.g. [9, 6]). Finally,
the trees in our method are trained under weak supervision,
and this relates our work to such methods as [8].

3. Method
Overview. For an input image frame, most previous

systems for gaze correction synthesize a novel view of a
scene from a virtual viewpoint co-located with the screen
[23, 5, 4, 25]. Alternatively, a virtual view restricted to
the face region is synthesized and stitched into the origi-
nal videostream [14, 10]. Novel view synthesis is however
a challenging task, even in constrained conditions, due to
such effects as (dis)-occlusion and geometry estimation un-
certainties. Stitching real and synthetic views can alleviate
some of these problems, but often results in distortions due
to the multi-perspective nature of the stitched images.

We do not attempt to synthesize a view for a virtual cam-
era. Instead, our method emulates the change in the appear-
ance resulting from a person changing her/his gaze direction
by a certain angle (e.g. ten degrees upwards), while keeping

Figure 2. Processing of a pixel (green square) at test time in an eye flow tree. The pixel is passed through an eye flow tree by applying
a sequence of tests that compare the position of the pixels w.r.t. the feature points (red crosses) or compare the differences in intensity with
adjacent pixels (bluish squares) with some threshold. Once a leaf is reached, this leaf defines a matching of an input pixel with other pixels
in the training data. The leaf stores the map of the compatibilities between such pixels and eye flow vectors. The system then takes the
optimal eye flow vector (yellow square minus green square) and uses it to copy-paste an appropriately-displaced pixel in place of the input
pixel into the output image. Here, a one tree version is shown for clarity, our actual system would sum up the compatibility scores coming
from several trees before making the decision about the eye flow vector to use.

the head pose unchanged (Figure 1). Emulating such gaze
redirection is also challenging, as it is associated with (a)
complex non-rigid motion of eye muscles, eyelids, and eye-
balls, (b) complex occlusion/dis-occlusion of the eyeballs
by the eyelids, (c) change in illumination patterns due to
the complex changes in normal orientation.

Our key insight is that while the local appearance change
associated with gaze redirection is complex, it can still be
learned from a reasonable amount of training data. An addi-
tional, rather obvious advantage of gaze redirection as com-
pared to view synthesis, is that gaze redirection can be per-
formed locally in the vicinity of each eye and thus affects
a small proportion of pixels in the image. At runtime our
method thus localizes each eye and then performs local op-
erations with eye regions pixels to accomplish gaze redirec-
tion. We now discuss the operation of our method at runtime
and come to the machine learning step in Section 3.2.

3.1. Gaze redirection

Eye localization. The eye localization step within our
system is standard, as we use an off-the-shelf real-time face
alignment library (e.g. [22]) to localize facial feature points.
As the gaze-related appearance change is essentially local to
the eye regions, all further operations are performed in the
two areas surrounding the two eyes.

For each eye, we thus focus on the feature points
(f1, g1), (f2, g2) . . . (fN , gN) corresponding to that eye (in
the case of [22] there are N = 6 feature points). We com-
pute a tight axis-aligned bounding box B′ of those points,
and define a characteristic radius ∆ as

√
Area(B′). We fi-

nally consider a bounding box B having the same center
as B′ and having the width W and height H that are pro-

portional to ∆ (i.e. W = α∆, H = β∆ for certain con-
stants α, β). The bounding box B is thus covariant with the
scale and the location of the eye, and has a fixed aspect ratio
α : β.

Redirection by pixelwise replacement. After the eye
bounding box is localized, the method needs to alter pixels
inside the box to emulate gaze redirection. As mentioned
above, we rely on machine learning to accomplish this. At
a high-level, our method matches each pixel (x, y) to cer-
tain pixels within the training data. This matching is based
on the appearance of the patch surrounding the pixel, and
the location of the pixel w.r.t. the feature points (fi, gi).
As a result of this matching procedure, a 2D offset vector
(u(x, y), v(x, y)) is obtained for (x, y). The final value of
the pixel O(x, y) in the output image O is then computed
using the following simple formula:

O(x, y) = I (x+ u(x, y), y + v(x, y)) . (1)

In other words, the pixel value at (x, y) is “copy-pasted”
from another location determined by the eye flow vector
(u, v).

Image-independent flow field. A simple variant of our
system picks the eye flow vector in (1) independent on the
test image content and based solely on the relative position
in the estimated bounding box, i.e. u = u(x/∆, y/∆) and
v = v(x/∆, y/∆), where the values of u and v for a given
relative location (x/∆, y/∆) are learned on training data as
discussed below.

Eye flow forest. A more advanced version of the system
(Figure 2) matches a pixel at (x, y) to a group of similar
pixels in training data and finds the most appropriate eye
flow for this kind of pixels. To achieve this effect, a pixel

is passed through a set of specially-trained ensemble of ran-
domized decision trees (eye flow trees). When a pixel (x, y)
is passed through an eye flow tree, a sequence of simple
tests of two kinds are applied to it. A test of the first kind
(an appearance test) is determined by a small displacement
(dx, dy), a color channel c ∈ {R,G,B}, and a threshold τ
and compares the difference of two pixel values in that color
channel with the threshold:

I(x+ dx, y + dy)[c]− I(x, y)[c] ≷ τ (2)

A test of the second kind (a location test) is determined
by the number of the feature point i ∈ {1, . . . N} and a
threshold τ and compares either x− fi or y − gi with τ :

x− fi ≷ τ y − gi ≷ τ (3)

Through the sequence of tests, the tree is traversed till a leaf
node is reached. Given an ensemble of T eye flow trees, a
pixel is thus matched to T leaves.

Each of the leaves contain an unnormalized distribution
of replacement errors (discussed below) over the eye flow
vectors (u, v) for the training examples that fell into that
leaf at learning stage. We then sum the T distributions cor-
responding to T leaves, and pick (u, v) that minimizes the
aggregated distribution. This (u, v) is used for the copy-
paste operation (1). We conclude gaze redirection by ap-
plying a 3× 3 median box filter to the eye regions.

Handling scale variations. To make matching and re-
placement operations covariant with the changes of scale, a
special care has to be taken. For this, we rescale all training
samples to have the same characteristic radius ∆0. During
gaze redirection at test time, for an eye with the character-
istic radius ∆ we work at the native resolution of the input
image. However, when descending an eye flow tree, we
multiply the displacements (dx, dy) in (2) and the τ value
in (3) by the ratio ∆/∆0. Likewise, during copy-paste op-
erations, we multiply the eye flow vector (u, v) taken from
the image-independent field or inferred by the forest by the
same ratio. To avoid the time-consuming interpolation op-
erations, all values (except for τ) are rounded to the nearest
integer after the multiplication.

3.2. Learning

We assume that a set of training image pairs (Ij , Oj) is
given. We assume that within each pair, the images cor-
respond to the same head pose of the same person, same
imaging conditions, etc., and differ only in the gaze direc-
tion (Figure 1). We further assume that the difference in
gaze direction is the same for all training pairs (separate pre-
dictor needs to be trained for every angular difference). As
discussed above, we also rescale all pairs based on the char-
acteristic radius of the eye in the input image. Fortunately,
suitable datasets have emerged over the recent years with

the gaze tracking application in mind. In our current im-
plementation, we draw training samples from the publicly-
available Columbia Gaze dataset [19]. As Columbia dataset
has a limitation on redirection angle, we also create our own
dataset (Skoltech dataset) specifically tailored for gaze cor-
rection problem.

Assuming that Ij and Oj are globally registered,
we would like the replacement operations (1) at each
pixel (x, y) to replace the value Ij(x, y) with the
value Oj(x, y). Therefore, each pixel (x, y) within
the bounding box B specifies a training tuple S =
{(x, y), I, {(fi, gi)}, O(x, y)}, which includes the position
(x, y) of the pixel, the input image I it is sampled from, eye
feature points {(fi, gi)} in the input image, and finally the
color O(x, y) of the pixel in the output image. The trees or
the image-independent flow field are then trained based on
the sets of the training tuples (training samples).

We start by discussing the training procedure for eye
flow trees. Unlike most other decision trees, eye flow trees
are trained in a weakly-supervised manner. This is because
each training sample does not include the target vectors
(u(x, y), v(x, y)) that the tree is designed to predict. In-
stead, only the desired output colorO(x, y) is known, while
same colors can often be obtained through different offsets
and adjustments. Hence, here we deal with the weakly-
supervised learning task.

The goal of the training is to build a tree that splits
the space of training examples into regions, so that for
each region replacement (1) with the same eye flow vec-
tor (u, v) produces good result for all training samples
that fall into that region. Given a set of training samples
S = {S1,S2, . . . ,SK}, we define the compatibility score
E of this set with the eye flow (u, v) in the following natural
way:

E
(
S, (u, v)

)
= (4)

K∑
k=1

∑
c=R,G,B

∣∣∣Ik(xk + u, yk + v)[c]−Ok(xk, yk)[c]
∣∣∣ .

Here, the superscript k denotes the characteristics of the
training sample Sk, Ik and Ok denote the input and the
output images corresponding to the kth training sample in
the group S, and c iterates over color channels. Overall, the
compatibility E(S, (u, v)) measures the disparity between
the target colors Ok(xk, yk) and the colors that the replace-
ment process (1) produces.

Given the compatibility score (4) we can define the
coherence score Ẽ of a set of training samples S =
{S1,S2, . . . ,SK} as:

Ẽ(S) = min
(u,v)∈Q

E
(
S, (u, v)

)
, (5)

Here, Q denotes the search range for (u, v), which in

our implementation we take to be a square [−R, . . . R] ⊗
[−R, . . . R] sampled at integer points. Overall, the coher-
ence score is small as long as the set of training examples
is compatible with some eye flow vector (u, v) ∈ Q, i.e. re-
placement (1) with this flow vector produces colors that are
similar to the desired ones.

The coherence score (5) then allows us to proceed with
the top-down growing of the tree. As is done commonly, the
construction of the tree proceeds recursively. At each step,
given a set of training samples S, a large number of tests
(2),(3) are sampled. Each test is then applied to all samples
in the group, thus splitting S into two subgroups S1 and S2.
We then define the quality of the split (S1,S2) as:

F (S1,S2) = Ẽ(S1) + Ẽ(S2) + λ
∣∣|S1| − |S2|

∣∣ , (6)

where the last term penalizes the unbalanced splits propor-
tionally to the difference in the size of the subgroups. This
term typically guides the learning through the initial stages
near the top of the tree, when the coherence scores (5) are
all “bad” and becomes relatively less important towards the
leaves. After all generated tests are scored using (6), the test
that has the best (minimal) score is chosen and the corre-
sponding node V is inserted into the tree. The construction
procedure then recurses to the sets S1 and S2 associated
with the selected test, and the resulting nodes become the
children of V in the tree.

The recursion stops when the size of the training sample
set S reaching the node falls below the threshold τS or the
coherence Ẽ(S) of this set falls below the threshold τC , at
which point a leaf node is created. In this leaf node, the
compatibility scores E(S, (u, v)) for all (u, v) from Q are
recorded. As is done conventionally, different trees in the
ensemble are trained on random subsets of the training data,
which increases randomization between the obtained trees.

Learning the image-independent flow field is much
easier than training eye flow trees. For this, we consider
all training examples for a given location (x, y) and evaluate
the compatibility scores (4) for every offset (u, v) ∈ Q. The
offset minimizing the compatibility score is then recorded
into the field for the given (x, y).

Discussion of the learning. We stress that by predicting
the eye flow

(
u(x, y), v(x, y)

)
we do not aim to recover the

apparent motion of a pixel (x, y). Indeed, while recovering
the apparent motion might be possible for some pixels, ap-
parent motion vectors are not defined for dis-occluded pix-
els, which inevitably appear due to the relative motion of an
eyeball and a lower eyelid. Instead, the learned predictors
simply exploit statistical dependencies between the pixels in
the input and the output images. As is demonstrated in Sec-
tion 4, recovering such dependencies using discriminative
learning and exploiting them allows to produce sufficiently
realistic emulations of gaze redirection.

3.3. Implementation details.

Learning the forest. When learning each split in a node
of a tree, we first draw randomly several tests without spec-
ifying thresholds. Namely, we sample dx, dy and a channel
c for appearance tests (2), or a number of feature point for
location tests (3). Then we learn an optimal threshold for
each of the drawn test. Denote as h the left-hand-sides of
expressions (2), (3), and h1, . . . , hK — all the data sorted
by this expression. We then sort all thresholds of the form
hi+hi+1

2 and probe them one-by-one (using an efficient up-
date of the coherence scores (5) and the quality score (6) as
inspired by [6]). We set the probabilities of choosing a test
for split in such a way that approximately half of tests are
appearance tests and half are location tests.

To randomize the trees and speed up training, we learn
each tree on random part of the data. Afterwards we “repop-
ulate” each tree using the whole training data, i.e. we pass
all training samples through the tree and update the distribu-
tions of replacement error in the leaves. Thus, the structure
of each tree is learned on random part of the data but the
leaves contains the error distribution of all data.

Pre-processing the datasets. The publicly available
Columbia Gaze dataset [19] for gaze tracking application
includes 56 persons and five different head poses (0◦,±15◦,
±30◦ horizontally). For each subject and each head pose,
there are 21 different gaze directions: the combinations of
seven horizontal ones (0◦, ±5◦, ±10◦, ±15◦) and three
vertical ones (0◦, ±10◦). Taking the pairs with the same
parameters except for the vertical gaze direction, we draw
training samples for learning to correct gaze by 10 degrees.

To avoid limitation on vertical redirection angle, we have
gathered our own dataset (Skoltech dataset), containing at
the moment 33 persons with fine-grained gaze directions
(the database is still growing). For each person there are
3− 4 sets of images with different head poses and lightning
conditions. From each set about 50 − 80 training pairs are
drawn, for vertical angles spanning the range from 1 to 30
degrees. Here, we include the results of redirection by 15
degrees upwards.

Training samples are cropped using the eye localization
procedure described in Section 3. We incorporate left and
right eyes into one dataset, mirroring the right eyes. At test
time, we use the same predictor for left and right eyes, mir-
roring test displacements and the horizontal component of
the eye flow vectors appropriately.

The images in the datasets are only loosely registered.
Therefore, to perfectly match cropped eyes, we apply mul-
tistage registration procedure. Firstly, before cropping an
eye, we fit the similarity transformation based on all fa-
cial feature points except those corresponding to eyes. In
the case of [22] there are totally 49 points and 6 of them
corresponds to each eye, so we match similarity based on
37 points. We then crop roughly registered set of samples

S1 = (Ij1 , O
j
1), learn eye flow forest on S1, apply it to the

set {Ij1} and get the resulting set {Ôj
1}.

At the second stage we register images {Oj
1} with {Ôj

1}
by translation (at one pixel resolution), by finding the shift
that maximize the correlation of the laplacian-filtered ver-
sions of the images. We exclude the dilated convex hull
of eye features from the computation of the correlation,
thus basing the alignment of external structures such as eye
brows. We apply the optimal shifts to the output images in
each pair, getting the second set of samples S2 = (Ij2 =

Ij1 , O
j
2).

At the final stage of registration we learn an eye flow
forest S2, apply it to each of the input images {Ij2} and get
the output image {Ôj

2}. We then register images {Oj
2} and

{Ôj
2} in the same way as during the second stage, except

that we do not exclude any pixels this time. This produces
the final training set S = (Ij , Oj). At the end we manu-
ally throw away all training samples where the multi-stage
registration failed.

Numeric parameters. In the current implementation we
resize all cropped eyes to the resolution 50 × 40. We take
the parameters of the bounding box α = 2.0, β = 1.6, the
parameter λ = 10, R = 4 and learn a forest of six trees.
We stop learning splits and make a new leaf if one of the
stopping criteria is satisfied: either coherence score (5) in
the node is less than 1300 or the number of samples in the
node is less than 128. Typically trees have around 2000
leaves and the depth around 12.

4. Experiments

Quantitative evaluation. To quantitatively assess our
method we consider the Columbia gaze dataset. We sample
image pairs applying the same pre-processing steps as when
preparing data for learning. We make an eight-fold cross
validation experiment: we split the initial set of 56 subjects,
taking 7 as the test set and leaving 49 in the training set. We
compare several methods that we apply to the input image
of each pair, and then compute the mean square error (MSE)
between the synthesized and the output images. We normal-
ize the MSE error by the mean squared difference between
the input and the output image. At each split i we compute
the mean error ei. To compare two methods, we evaluate the
differences between their means and the standard deviation
of these differences over the eight splits (Table 1).

For each method, we also sort the normalized errors in
the ascending order and plot them on a graph (Figure 3).
The quantitative evaluation shows the advantage of the tree-
based versions of our method over the image-independent
field variant. Full forest variants perform better than those
based on a single tree. It is nevertheless interesting to see
that the image-independent field performs well, thus verify-
ing the general idea of attacking the gaze correction prob-

Figure 3. Quantitative evaluation on the testing sets in the eight-
fold experiment: ordered normed MSE errors between the result
and the “ground-truth”. We compare the one tree version of our
method (red), the six trees (black), one tree with repopulation (ma-
genta), and the image-independent flow field version of the system
(green). Increasing the tree number from six to ten or repopulat-
ing six trees does not give an improvement. For each method the
normalized errors are sorted in the ascending order and then used
to produce the curve.

pair of methods mean σ
6 trees forest vs image independent −0.079 0.0066
6 trees forest vs single tree −0.038 0.0059
single tree repopulated vs single
tree no repopulation

−0.015 0.0022

6 trees forest vs 10 trees forest 0.0036 0.0015
6 trees no repopulation vs 6 trees re-
populated

0.00073 0.0017

single tree vs image independent −0.055 0.0098

Table 1. The differences of mean errors between pairs of methods
and standard deviations of these differences in the 8-fold cross val-
idation test. Negative mean value means that first method in pair
has a smaller mean error (works better).

lem using a data-driven learning-based approach. Also, re-
population increases results for a single tree, but not for the
full forest. Ten trees does not give significant improvement
over six trees.

Qualitative evaluation. Due to the nature of our appli-
cation, the best way for the qualitative evaluation is watch-
ing the supplementary video at the project webpage [1]
that demonstrates the operation of our method (six eye flow
trees). Here, we also show the random subset of our results
on the hold out part of the Columbia gaze dataset (10 de-
grees redirection) in Figure 4 and on the hold out part of
the Skoltech gaze dataset (15 degrees redirection) in Fig-

Figure 4. Randomly-sampled results on the Columbia Gaze dataset. In each triplet, the left is the input, the middle example is the “ground
truth” (same person looking 10 degrees higher). The right image is the output of our method (eye flow forest). A stable performance of the
method across demographics variations can be observed. Note: to better demonstrate the performance of the core of our method, we have
not postprocessed images with the median filter for this visualization.

ure 5. While the number of people in the training datasets
was limited, one can observe that the system is able to learn
to redirect the gaze of unseen people rather reliably obtain-
ing a close match with the “ground truth” in the case of ten
degree redirection (Figure 4).

Redirection by 15 degrees is generally harder for our
method (Figure 5) and represents an interesting challenge
for further research. One crucial type of failure is insuf-
ficient eye “expansion”, which gives an impression of the
gaze redirected on an angle less than required. Other types
of artifacts include unstructured noise and structured mis-
takes on glass rims (which is partially explained by a small
number of training examples with glasses in this split).

We further show the cutouts from the screenshots of our
system (six eye flow trees) running live on a stream from
a laptop webcam Figure 6. We use the same forest learned
on the training part of the Columbia gaze dataset. Several
sessions corresponding to different people of different de-
mographics as well as different lighting conditions are rep-
resented.

Computation speed. Our main testbed is a standard
640 × 480 streams from a laptop camera. The actual fea-
ture point tracker that we use [22] is locked at the 30 ms per
frame speed (often using a small fraction of the CPU core
capacity). This time can be reduced to few milliseconds
or even less through the use of the new generation of face
alignment methods ([17, 13]). Interestingly, those methods
are also based on randomized decision trees, so deeper in-
tegration between feature point tracker and our processing
should be possible. On top of the feature tracking time, the
forest-based version of the method requires between 3 to
30 ms to perform the remaining operations (querying the
forest, picking optimal eye flow vectors and performing re-
placements, median filtering). The large variability is due

to the fact that the bulk of operation is linear in the number
of pixels we need to process, so the 30 ms figure correspond
to the situation with the face spanning the whole vertical di-
mension of the frame. Further trade-offs between the speed
and the quality can be made if needed (e.g. reducing the
number of trees from six to three will bring only very minor
degradation in quality and almost a two-fold speedup).

5. Summary and discussion
We have presented a method for real-time gaze redirec-

tion. The key novelty of our approach is the idea of using
a large training set in order to learn how to redirect gaze.
The entity that we found learnable and generalizable are the
displacement vectors (eye flows), which can then be used
within pixel-wise “copy-paste” operations. To achieve a
real-time speed, we used random forests as our learners and
also experimented with an image-independent displacement
fields. Learning to predict the eye flow vectors has to be
done in a weakly supervised setting, and we have demon-
strated how randomized tree learning can be adapted for
this.

Due to the real-time constraint, our system uses a median
3 × 3 filter, which is a very simplistic approach to enforc-
ing some form of spatial smoothness. More sophisticated
smoothness models, e.g. along the line of the regression tree
fields [11] should improve the performance and reduce blur-
ring. It remains to be seen whether the real-time speed can
be maintained in this case.

Since our method is based on machine learning, we also
believe that further improvement of the system can be ob-
tained in a “brute-force” way by collecting a bigger, more
diverse training set. Our last observation about the qualita-
tive results of the system is that it was well received by the
“outside” people that we demonstrated it to, thus suggest-

Figure 5. Randomly-sampled results on the Skoltech dataset (redirection by 15 degrees). In each tuple: (1) the input image, (2) the “ground
truth”, (3) the output of our method (eye flow forest), (4) the output of our method (image-independent field). Zoom-in recommended
in order to assess the difference between the two variants of our method. The following types of failures are observed: insufficient eye
expansion (bottom-left), noise artifacts, artifacts on glass rims (caused by a small number of people with glasses in the training set).

Figure 6. Qualitative examples of our system (based on six trees) showing the cutout of the frames of a videostream coming from a webcam
(left – input, right – output). In the first two rows gaze is redirected by 10 degrees upwards, in the third — by 15 degrees. Our system
induces subtle changes that result in gaze redirection. Note that the subjects, the camera, the lighting, and the viewing angles were all
different from the training datasets. The result of our method on a painting further demonstrates the generalization ability.

ing that the proposed approach holds potential to “cross the
uncanny valley”.

References
[1] Project webpage. http://tinyurl.com/gazecorr,

accessed 6-April-2014. 2, 6
[2] Y. Amit and D. Geman. Shape quantization and recognition

with randomized trees. Neural Computation, 9:1545–1588,
1997. 2

[3] L. Breiman. Random forests. Machine Learning, 45(1):5–
32, Oct. 2001. 2

[4] T. Cham, S. Krishnamoorthy, and M. Jones. Analogous view
transfer for gaze correction in video sequences. In Seventh
International Conference on Control, Automation, Robotics
and Vision, ICARCV 2002, Singapore, 2-5 December 2002,
Proceedings, pages 1415–1420, 2002. 2

[5] A. Criminisi, J. Shotton, A. Blake, and P. H. Torr. Gaze
manipulation for one-to-one teleconferencing. In IEEE In-
ternational Conference on Computer Vision (ICCV), pages
191–198, 2003. 1, 2

[6] P. Dollár and C. L. Zitnick. Structured forests for fast edge
detection. In IEEE International Conference on Computer
Vision (ICCV), pages 1841–1848, 2013. 2, 5

[7] G. Fanelli, M. Dantone, J. Gall, A. Fossati, and L. J. V. Gool.
Random forests for real time 3d face analysis. International
Journal of Computer Vision, 101(3):437–458, 2013. 2

[8] S. R. Fanello, C. Keskin, P. Kohli, S. Izadi, J. Shotton, A. Cri-
minisi, U. Pattacini, and T. Paek. Filter forests for learning
data-dependent convolutional kernels. In Computer Vision
and Pattern Recognition (CVPR), pages 1709–1716, 2014. 2

[9] J. Gall and V. S. Lempitsky. Class-specific hough forests for
object detection. In Computer Vision and Pattern Recogni-
tion (CVPR), pages 1022–1029, 2009. 2

[10] D. Giger, J.-C. Bazin, C. Kuster, T. Popa, and M. Gross.
Gaze correction with a single webcam. In IEEE Interna-
tional Conference on Multimedia & Expo, 2014. 2

[11] J. Jancsary, S. Nowozin, T. Sharp, and C. Rother. Regression
tree fields - an efficient, non-parametric approach to image
labeling problems. In Computer Vision and Pattern Recog-
nition (CVPR), pages 2376–2383, 2012. 7

[12] A. Jones, M. Lang, G. Fyffe, X. Yu, J. Busch, I. McDowall,
M. T. Bolas, and P. E. Debevec. Achieving eye contact in a
one-to-many 3D video teleconferencing system. ACM Trans.
Graph., 28(3), 2009. 1, 2

[13] V. Kazemi and J. Sullivan. One millisecond face alignment
with an ensemble of regression trees. In Computer Vision
and Pattern Recognition (CVPR), pages 1867–1874, 2014. 7

[14] C. Kuster, T. Popa, J.-C. Bazin, C. Gotsman, and M. Gross.
Gaze correction for home video conferencing. volume 31,
page 174. ACM, 2012. 1, 2

[15] V. Lepetit, P. Lagger, and P. Fua. Randomized trees for real-
time keypoint recognition. In Computer Vision and Pattern
Recognition (CVPR), pages 775–781, 2005. 2

[16] K.-I. Okada, F. Maeda, Y. Ichikawaa, and Y. Matsushita.
Multiparty videoconferencing at virtual social distance: Ma-
jic design. In Proceedings of the 1994 ACM Conference on
Computer Supported Cooperative Work, CSCW ’94, pages
385–393, 1994. 1, 2

[17] S. Ren, X. Cao, Y. Wei, and J. S. 0001. Face alignment at
3000 fps via regressing local binary features. In CVPR, pages
1685–1692, 2014. 7

[18] J. Shotton, R. B. Girshick, A. W. Fitzgibbon, T. Sharp,
M. Cook, M. Finocchio, R. Moore, P. Kohli, A. Criminisi,
A. Kipman, and A. Blake. Efficient human pose estimation

from single depth images. IEEE Trans. Pattern Anal. Mach.
Intell., 35(12):2821–2840, 2013. 2

[19] B. A. Smith, Q. Yin, S. K. Feiner, and S. K. Nayar. Gaze
locking: passive eye contact detection for human-object in-
teraction. In Proceedings of the 26th annual ACM sympo-
sium on User interface software and technology, pages 271–
280. ACM, 2013. 2, 4, 5

[20] Wikipedia. Uncanny valley — Wikipedia, the free encyclo-
pedia, 2014. [Online; accessed 12-November-2014]. 1

[21] L. Wolf, Z. Freund, and S. Avidan. An eye for an eye: A
single camera gaze-replacement method. In Computer Vision
and Pattern Recognition (CVPR), pages 817–824, 2010. 2

[22] X. Xiong and F. De la Torre. Supervised descent method and
its applications to face alignment. In Computer Vision and
Pattern Recognition (CVPR), pages 532–539, 2013. 3, 5, 7

[23] R. Yang and Z. Zhang. Eye gaze correction with stereovision
for video-teleconferencing. In ECCV (2), pages 479–494,
2002. 1, 2

[24] P. Yin, A. Criminisi, J. M. Winn, and I. A. Essa. Tree-based
classifiers for bilayer video segmentation. In Computer Vi-
sion and Pattern Recognition (CVPR), 2007. 2

[25] B. Yip and J. S. Jin. Face re-orientation using ellipsoid
model in video conference. In Proc. 7th IASTED Interna-
tional Conference on Internet and Multimedia Systems and
Applications, pages 245–250, 2003. 2

[26] J. Zhu, R. Yang, and X. Xiang. Eye contact in video confer-
ence via fusion of time-of-flight depth sensor and stereo. 3D
Research, 2(3):1–10, 2011. 1, 2

