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Abstract

We present a new shape prior formalism for the segmen-
tation of rectified facade images. It combines the simplic-
ity of split grammars with unprecedented expressive power:
the capability of encoding simultaneous alignment in two
dimensions, facade occlusions and irregular boundaries be-
tween facade elements. We formulate the task of finding the
most likely image segmentation conforming to a prior of the
proposed form as a MAP-MRF problem over a 4-connected
pixel grid, and propose an efficient optimization algorithm
for solving it. Our method simultaneously segments the vis-
ible and occluding objects, and recovers the structure of the
occluded facade. We demonstrate state-of-the-art results on
a number of facade segmentation datasets.

1. Introduction
The goal of facade parsing is to segment a rectified image

of a building facade into regions corresponding to architec-
tural elements, like windows, balconies and doors. Applica-
tions of facade parsing include creating 3D models of build-
ings for games, thermal simulations, or architectural design.
A specificity of facade parsing as compared to general im-
age segmentation, is that we have strong prior knowledge
on which combinations of facade elements are semantically
valid. For example, windows in a given floor are usually
aligned and a balcony needs to be adjacent to the lower part
of at least one window. We consider that the set of semantic
constraints on the layout of facade elements is specified by
the user for a given dataset. The quality of facade segmenta-
tion, as perceived by a human, suffers a lot if these semantic
constraints are not satisfied.

1.1. Related work

One possible approach to the problem is to enforce the
structural constraints on results of a general-purpose seg-
mentation algorithm. Martinović et al. [7] combine results
of a Recursive Neural Network with object detections to
form unary potentials of a Markov Random Field encoding
an initial image segmentation. The initial segmentation is
modified to satisfy a number of ‘weak architectural princi-

ples’: some elements are given rectangular shapes; rectan-
gles, boundaries of which are sufficiently close, are aligned;
doors are inserted into the lower parts of facades. How-
ever, the set of ‘architectural principles’ is different for each
dataset and no formal way of specifying them has been pro-
posed. Moreover, applying local corrections to a segmen-
tation (e.g., aligning lines that are close enough) does not
necessarily yield a semantically correct segmentation.

The structural constraints can also be hard-coded in the
parsing algorithm. In the work by Cohen et al. [1] a se-
quence of dynamic programs (DPs) is run on an input im-
age, each of which makes the current labeling more de-
tailed. The first DP operates along the vertical axis and
identifies the floors. The following ones identify window
columns, the boundary between the sky and roof, the doors,
etc. However the algorithm is limited to segmentations that
assume the hierarchical structure encoded in the dynamic
programs. Besides, the approach neither enforces nor fa-
vors simultaneous alignment of shapes in two dimensions.

Teboul et al. introduced split grammars as shape priors
for facade segmentation [15]. Shape derivation with a split
grammar is analogous to string derivation in formal lan-
guages, except that the symbols correspond to rectangular
image regions and productions split them along one of the
coordinate axes. The advantage of this framework is the
simplicity and the expressive power of split grammars. The
disadvantage is that approximating the optimal segmenta-
tion requires randomly generating a large number of shapes
and keeping the best one as the final result. Even with robust
strategies of data driven exploration of the space of gram-
mar derivations [14, 11, 8], the method still cannot be relied
on to repeatedly produce optimal results.

Riemenschneider et al. have shown that parsing an image
with a two-dimensional grammar can be performed using a
variant of the CYK algorithm for parsing string grammars
[9]. They also introduced production rules modeling sym-
metry in facade layouts. However, the high computational
complexity of the algorithm makes its direct application on
the input image impractical. Instead, the authors subsample
images forming irregular grids of approximately 60 by 60
cells and run the algorithm on the subsampled images.

Koziński et al. [5] proposed a shape prior formalism
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where facade parsing is formulated as a binary linear pro-
gram. The method enforces horizontal and vertical align-
ment of facade element simultaneously and yields state of
the art results on the ECP and Graz50 datasets. However,
the principle of global alignment makes the priors very re-
strictive. A separate class is needed to model each mis-
aligned facade element (e.g., each floor misaligned with the
other ones). This, and the time of around 4 minutes required
to segment a single image, make the algorithm impractical
for datasets with a high level of structural variation. More-
over, the prior formalism does not allow for modeling non-
rectangular shapes or occlusions.

1.2. Contribution

We present a facade segmentation framework based on
user-defined shape priors. Our shape prior formalism is
based on a hierarchical partitioning of the image into grids,
possibly with non-linear boundaries between cells. Its ad-
vantage over the split grammar formalism [15, 14, 11, 9] is
that it explicitly encodes simultaneous alignment in two di-
mensions. Encoding this constraint using a split grammar
requires an extension which makes the grammars context-
dependent. While a method of encoding bidirectional align-
ment has been proposed in [5], the priors defined in that for-
malism enforce global alignment in a very restrictive way:
all segments of the same class must be aligned, so that, for
example, a separate window class needs to be defined for
each floor with a distinct pattern of windows. Our shape
prior formalism has the advantage of being conceptually
simpler and more flexible thanks to explicit encoding of the
alignment constraints.

In the proposed framework, parsing is formulated as a
MAP-MRF problem over a 4-connected pixel grid with hard
constraints on the classes of neighboring pixels. The exist-
ing shape prior-based parsers are based on randomized ex-
ploration of the space of shapes derived from the grammar
[14, 11, 8] or require severe image subsampling [9]. Al-
though a linear formulation that does not require sampling
was proposed recently [5] our formulation is simpler and
more intuitive, and results both in significantly shorter run-
ning times and more accurate segmentations. In our exper-
iments, our method systematically yields accuracy superior
to existing methods given the same per-pixel costs.

Last but not least, our new shape prior formalism al-
lows two extensions: we show that unlike existing prior
formalisms [14, 11, 9, 5], that are limited to rectangular
tilings of the image, we can model more general boundaries
between segments. We also extend our prior formalism to
model possible occlusions and to recover both the occluding
object boundaries and the structure of the occluded parts of
the facade.

Table 1. Comparison of selected properties of state-of-the-art fa-
cade parsing algorithms.

[14] [9] [7] [1] [5] ours

User-defined shape
prior

� � – – � �

Occlusions and irreg-
ular shapes

– – � � – �

Simultaneous align-
ment in 2D

– � � – � �

No need of image
subsampling

� – � � � �

No need of sampling
from a grammar

– � � � � �

1.3. Outline of the paper

In the next section, we present the new shape prior for-
malism and show that it can be expressed in terms of classes
assigned to image pixels and constraints on classes of pairs
of neighboring pixels. This enables formulating the prob-
lem of optimal facade segmentation in terms of the most
likely configuration of a Markov Random Field with hard
constraints on neighbor classes. We present this formulation
in section 3. In section 4 we show how to apply dual decom-
position to perform inference in our model. We present the
experiments in section 5.

2. Adjacency patterns as shape priors

Simultaneous vertical and horizontal alignments are
prevalent in facade layouts. To encode shape priors express-
ing such alignments, as well as more complex shapes, we
introduce the notion of adjacency patterns.

2.1. From grid patterns to pixel adjacencies

Consider a shape prior encoding a grid pattern, which
can be specified in terms of the set of column classes C
and the set of row classes R. By assigning a column class
c ∈ C to each image column, and a row class r ∈ R to
each image row, we implicitly label each pixel with a pair
(c, r) of a column class and a row class. We call such pairs
(c, r) ∈ R×C ‘pre-semantic’ classes. We define a set of ‘se-
mantic’ classes K encoding types of facade elements (like
wall, window, etc), and a mapping Ψ that assigns to each
pre-semantic class (c, r) ∈ R× C a semantic class k ∈ K.
For facade parsing it is reasonable to prohibit some combi-
nations of neighboring row or column classes. For example,
segmentations where ’roof’ is above ’sky’ can be viewed as
invalid. To encode such preferences, we can specify the set
of ordered pairs of column classes that can be assigned to
adjacent image columns H ⊂ C × C, and the set of ordered
pairs of adjacent row classes, V ⊂ R×R. We call a shape
prior of the form G = (C,R,H,V) a grid pattern.



R = {A,B}, C= {I, II},
Ψ(A, I) = window,

Ψ(A, II) = wall,
Ψ(B, I) = wall,
Ψ(B, II) = wall,
V = {(A,B), (B,A)},
H = {(I, II), (II, I)}.

(A, I) = a,

(A, II) = b,

(B, I) = c,

(B, II) = d.

horiz. neighbors
h � a b c d
a + + – –
b + + – –
c – – + +
d – – + +

vert. neighbors
v � a b c d
a + – + –
b – + – +
c + – + –
d – + – +

Figure 1. Top left: grid-shaped segmentation with row, column and
pixel classes. Top right: Specification of the corresponding grid
pattern using row and column classes. Bottom: Specification of
the same grid pattern using allowed vertical and horizontal pixel
neighbors (‘+’ denotes an allowed adjacency, ‘–’ a forbidden one).

We now introduce an alternative encoding of shape pri-
ors, that it is capable of expressing grid patterns and more
general priors. We define an ‘adjacency pattern’ as a triple
A = (S, V,H) where S is a finite set of (pre-semantic)
classes, and V ⊂ S × S and H ⊂ S × S are sets of or-
dered pairs of classes that can be assigned to vertically and
horizontally adjacent pixels. A pair of vertically adjacent
pixels can be labeled in such a way that a pixel of class s1 is
immediately below a pixel of class s2 only if (s1, s2) ∈ V .
The same holds for any pair of horizontally adjacent pixels
and the set H .

To show that the expressive power of adjacency patterns
is at least as high as that of grid patterns, we construct an ad-
jacency pattern AG = (SG , V G , HG) equivalent to a given
grid pattern G = (C,R,H,V). We set SG = R×C. In con-
sequence, the sets of classes assigned to image pixels are the
same for both types of priors. For a pixel class s = (rs, cs),
rs ∈ R, cs ∈ C we denote its row-class component by
r(s) = rs and its column-class component by c(s) = cs.
We enforce that the rows of a labeling conforming to the
adjacency pattern are valid rows of the grid pattern by re-
quiring that each two horizontally adjacent pixels receive
classes with the same row-class component, and similarly
for vertically adjacent pixels and the column-class compo-
nent of pixel classes. We also reformulate the constraints
on classes of neighboring rows and columns of the grid pat-
tern in terms of the row- and column-class components of
pixel classes of the adjacency pattern. We define the sets of
allowed classes of adjacent pixels as:

V G=
�
(s1, s2)|c(s1) = c(s2)∧

�
r(s1), r(s2)

�
∈ V

�
, (1a)

HG=
�
(s1, s2)|r(s1) = r(s2)∧

�
c(s1), c(s2)

�
∈ H

�
. (1b)
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h � a b c d
a + + – –
b – + – –
c – – + +
d – – – +

v � a b c d
a + – – –
b – + – –
c + – + –
d – + – +

(a) A non-repeating pattern with straight, axis-aligned boundaries.
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h � a b c d
a + + + –
b – + – +
c + – + +
d – + – +

v � a b c d
a + + – –
b + + – –
c + – + +
d – + + +

(b) A non-repeating pattern with winding, axis-driven boundaries.
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h � a b c d
a + + + –
b – + – –
c – – + +
d – – – +

v � a b c d
a + – – –
b – + – –
c + – + –
d – + – +

(c) A non-repeating pattern on grid with monotonic boundaries.

Figure 2. Shape patterns and corresponding horizontal and vertical
compatibility tables for neighboring pixel classes: ‘+’ denotes a
pair of allowed neighbors in this order, ‘–’ denotes forbidden pairs.

Fig. 1 presents a grid pattern specification, the equivalent
adjacency pattern specification and a corresponding image
segmentation.

2.2. Handling complex patterns and boundaries

In real images, the boundaries between some semantic
classes, like ’roof’ and ’sky’, are often irregular and cannot
be modeled by straight axis-aligned line segments. Priors
expressing patterns with such complex boundaries can be
encoded in terms of adjacency patterns by properly design-
ing the sets of allowed neighbor classes, V and H .

The pattern presented in fig. 1 has straight, axis-aligned
boundaries. The pattern can be repeated an indefinite num-
ber of times in the horizontal and vertical directions. Fig. 2a
presents a non-repeating pattern on a grid with straight axis-
aligned boundaries. The difference with respect to the pre-
vious case is that here the prior does not allow for repetition
of the pattern along the vertical or horizontal direction. As
shown in fig. 2b, these straight borders can be turned into
irregular winding boundaries by allowing a controlled in-
terpenetration of classes. For instance, on a horizontal line,
an ‘a’ can now be followed by a ‘c’ and then again by an
‘a’, but a ‘c’ on this line still cannot be followed by ‘b’.
Fig. 2c displays another variant where monotonicity is im-
posed to a boundary, to represent a rising and a descending
border. Such a pattern can be used to model a roof, which
is expected to have an ascending slope in the beginning and
a descending slope at the end.
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Figure 3. Left: modeling a pattern with vertical misalignment as a single grid requires each column class to encode the type of both the
element occupying the lower part of the column and the element occupying its upper part: I - (wall, roof), II - (window, roof), III - (wall,
attic window), IV - (window, attic window). The number of resulting pixel classes is exponential in the number of misalignments (20 in the
depicted case). Middle: a hierarchical grid model, where cells of a coarser grid (green) are further subdivided into finer grids (red), results
in a set of terminal pixel classes of cardinality linear in the number of misalignments (10 in the example). Right: a hierarchy of adjacency
patterns corresponding to the labeling in the middle. Large, circled nodes correspond to pixel classes. Small, filled nodes correspond to
adjacency patterns. Productions are marked next to arrows that map pixel classes to adjacency patterns. Note that the hierarchy encodes a
structural alternative between production p2 and production p3 (not used in the segmentation shown in the middle).

2.3. Hierarchical adjacency patterns

Even when it is axis-aligned, the layout of facade ele-
ments is usually more complex than a grid and contains
many misaligned elements. Encoding such patterns as a
single grid requires a number of pixel classes that grows
exponentially with the number of misalignments. This is
illustrated in fig. 3.

To address this issue, we define a shape prior consist-
ing of a hierarchy of adjacency patterns. The concept is
that the pre-semantic pixel classes of an adjacency pattern
on a coarser level of the hierarchy are mapped to adjacency
patterns on a finer level. A connected region of pixels that
received the same pixel class of an adjacency pattern on a
coarser level of the hierarchy can be further segmented us-
ing a prior encoded by the adjacency pattern on a finer level.

A hierarchical adjacency pattern is a quadruple Â =
(N , T , N0,P) where N is a finite set of nonterminal
classes, T is a finite set of terminal classes, disjoint from
N , N0 ∈ N is the start symbol and P is a set of produc-
tion rules of the form p = Np → Ap where Np ∈ N
and Ap = (Sp, Vp, Hp) is an adjacency pattern such that
Sp ⊂ N ∪ T . Additionally, we impose that the productions
contain no cycle and that the sets of pixel classes in each
adjacency pattern Ap are all disjoint.

Now we define conditions of conformance of a segmen-
tation to a hierarchical adjacency pattern. We denote the
set of classes descending in the hierarchy from production
p by Desc(p), and the set of classes descending from a class
s by Desc(s). For a production p and class s ∈ Desc(p),
we define the ancestor class of s, belonging to the adjacency
pattern Ap, by Ancp(s) = s� s.t. s� ∈ Sp and s ∈ Desc(s�).
For each production p ∈ P , each region of the labeling that
contains only classes s ∈ Desc(p), must conform to the ad-

jacency pattern Ap, when labels of its pixels are changed to
their ancestors in Ap. We denote the set of indexes of pixels
excluding the last image column by Ih, and the set of pixel
indexes without the last row by Iv . We denote the class of
pixel (i, j) by sij . The conformance conditions:

∀(i, j) ∈ Ih, ∀p ∈ P, s.t. sij , sij+1∈Desc(p)
�
Ancp(sij),Ancp(sij+1)

�
∈Hp , (2a)

∀(i, j) ∈ Iv, ∀p∈P, s.t. sij , si+1 j ∈ Desc(p)
�
Ancp(sij),Ancp(si+1 j)

�
∈Vp . (2b)

A hierarchical adjacency pattern Â=(N , T , N0,P) can
be represented as a simple, flattened adjacency pattern
Af = (Sf , V f , Hf ), where Sf = T . The definition of the
sets of pairs of classes that can be assigned to vertically and
horizontally adjacent pixels, V f and Hf , follows directly
from the conformance conditions (2):

V f =
�
(t1, t2) ∈ T 2 | ∀p ∈ P s.t. t1, t2 ∈ Desc(p)

�
Ancp(t1),Ancp(t2)

�
∈ Vp

�
(3a)

Hf =
�
(t1, t2) ∈ T 2 | ∀p ∈ P s.t. t1, t2 ∈ Desc(p)

�
Ancp(t1),Ancp(t2)

�
∈ Hp

�
. (3b)

While the hierarchical representation is more conveniently
specified by a human user, because it requires defining a
lower number of constraints on the classes of adjacent pix-
els, the ‘flat’ representation enables formulating the infer-
ence in terms of the MAP-MRF problem, as shown in sec. 3.

2.4. Handling Occlusions

Occlusions are omnipresent in urban scenes. For facade
parsing, the most common occlusions are by trees and lamp



posts. Lower parts of facades can also be occluded by other
types of vegetation, street signs, cars and pedestrians.

Given an adjacency pattern A = (S, V,H), we define
another adjacency pattern Ao = (So, V o, Ho), encoding
shapes consistent with A, with possible occlusions by ob-
jects of classes from the set O, disjoint from the set of pre-
semantic classes S and from the set of semantic classes of
facade elements K. We define a pixel class σ ∈ So to have
a ‘pre-semantic’ and a ‘semantic’ component σ = (s,κ),
where s ∈ S and κ ∈ (O ∪ K). Only a small num-
ber of combinations of occluder and pre-semantic classes is
semantically meaningful (e.g., pedestrians can occlude the
lower part of a facade, but not the roof). We represent the
semantically meaningful pairs by a set S ⊂ S ×O. We de-
fine the set of pixel classes as So = {(s,Ψ(s))|s ∈ S}∪S.
That is, for a class σ = (s,κ) representing a non-occluded
facade element κ = Ψ(s), κ ∈ K. For a class σ = (s,κ)
representing an occlusion (s,κ) ∈ S, κ ∈ O. This prac-
tically limits the number of classes. In our experiments, it
never increased by a factor of more than 2.5, compared to
the model without occlusions. We denote the pre-semantic
component of class σ = (sσ,κσ) by s(σ) = sσ . The sets
V o and Ho are defined as:

V o=
�
(σ1,σ2)|σ1,σ2 ∈ So,

�
s(σ1), s(σ2)

�
∈ V

�
, (4a)

Ho=
�
(σ1,σ2)|σ1,σ2 ∈ So,

�
s(σ1), s(σ2)

�
∈ H

�
. (4b)

We define a pairwise potential θσσ� , penalizing frequent
transitions between classes σ,σ� ∈ So, to limit noise in the
resulting segmentations. The mapping of a pixel class σ =
(s,κ) to semantic or occluder class becomes Ψo(σ) = κ.

3. Formulation of optimal segmentation
In this section we propose a formulation of the optimal

image segmentation that conforms to an adjacency pattern.
We denote image height and width by h and w, the set of
image row indexes I = {1, . . . h}, the set of column indexes
J = {1, . . . w}, and the set of pixel indexes by I = I × J .
We encode the assignment of a class σ ∈ So to a pixel
(i, j) ∈ I by variables zijσ ∈ {0, 1}, where zijσ = 1 if
σ is the class assigned to pixel (i, j) and zijσ = 0 oth-
erwise. To enforce the satisfaction of the constraints on
classes of neighboring pixels, we also introduce variables
vijσσ� ∈ {0, 1} and uijσσ� ∈ {0, 1}, such that uijσσ� = 1
if pixel (i, j) is assigned class σ and pixel (i, j + 1) is as-
signed class σ�, and uijσσ� = 0 otherwise, and similarly
for vijσσ� and vertically neighboring pixels. We denote the
vectors of all zijσ, uijσσ� , vijσσ� by z, u, v, respectively.
The goal is to find an assignment that minimizes the sum of
costs φijκ of assigning class κ ∈ O ∪K to pixel (i, j) ∈ I.
We denote the set of all pixels except for the last row by
Iv = (I \{h})×J , and the set of all pixels without the last

column by Ih = I × (J \ {w}). The objective is

min
z,v,u

�

(i,j)∈I
σ∈So

φijΨo(σ)zijσ +
�

(i,j)∈Iv

σ,σ�∈So

θσσ�vijσσ� +
�

(i,j)∈Ih

σ,σ�∈So

θσσ�uijσσ� .

(5)
We require that exactly one class is assigned to each pixel,

∀(i, j) ∈ I,
�

σ∈So

zijσ = 1 . (6)

We impose consistency between variables encoding pixel
labels and pairs of labels: ∀(i, j) ∈ Iv, ∀σ ∈ So,

�

σ�∈So

vijσσ� = zijσ,
�

σ�∈So

vijσ�σ = zi+1 jσ, (7)

and ∀(i, j) ∈ Ih, ∀σ ∈ So,

�

σ�∈So

uijσσ� = zijσ,
�

σ�∈So

uijσ�σ = zij+1σ . (8)

We constrain the pairs of neighboring classes according to:

∀(i, j) ∈ Iv, ∀(σ,σ�) /∈ V o, vijσσ� = 0 , (9a)
∀(i, j) ∈ Ih, ∀(σ,σ�) /∈ Ho, uijσσ� = 0 . (9b)

The model resembles a linear formulation of the most likely
configuration of a MRF [16], with the difference of hard
constraints on classes of neighboring pixels.

4. Inference algorithm
To solve problem (5-9) we assume the dual decomposi-

tion approach. We adopt the most standard decomposition
of a 4-connected grid into Markov chains over image rows
and columns. The resulting subproblems can be solved in-
dependently and efficiently using the Viterbi algorithm. For
a comprehensive treatment of dual decomposition we refer
the reader to [3, 13]. We derive an algorithm specialized to
our problem in the supplementary material.

5. Experiments
We evaluated the accuracy of our algorithm in segment-

ing facade images on a wide range of datasets and for unary
terms of various quality. We emphasize that our goal is
not to establish a new state of the art performance by us-
ing more accurate classification algorithms, better features
or detections. Instead we demonstrate that the proposed op-
timization scheme leads to better segmentations given the
same bottom-up cues. Moreover, we show that imposing the
structural constraints improves parsing results, while previ-
ous work [7] suggested that structural correctness comes at
a cost of decreased accuracy.
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Figure 4. Statistics of the ratio of dual energy to the final primal
energy with respect to iteration number. Experiment performed on
the ECP dataset.

Convergence and duality gap The algorithm operates on
the dual problem, yielding a lower bound on the optimal
energy. The gap between the dual energy and the energy
of the primal binary solution can be seen as a measure of
suboptimality of the obtained solution. We analyze the per-
formance of the algorithm on the ECP dataset [14] against
the ground truth proposed by Martinović et al. [7]. For each
image of the test set we record the dual energy in each it-
eration of the algorithm. We normalize the dual energies
with respect to the energy of the final primal solution. We
present the statistics in figure 4. For a vast majority of the
images the primal-dual gap is not more than 0.2% of the fi-
nal energy, which indicates that only a very small fraction
of the pixel labels are different than at the primal optimum.

Performance on the ECP dataset We apply our method
to the ECP dataset [14], consisting of 104 images of Hauss-
mannian building facades. We use the ground truth annota-
tions proposed by Martinović et al. [7]. We apply the pro-
cedure described by Cohen et al. [1] to obtain the per-pixel
energies: a multi-feature extension of TextonBoost imple-
mented by Ladický et al. [6]. We use SIFT, ColorSIFT,
Local Binary Patterns and location features. Feature vec-
tors are clustered to create dictionary entries and the final
feature vector is a concatenation of histograms of appear-
ance of cluster members in a neighborhood of 200 randomly
sampled rectangles. The per-pixel energies are output by a
multi-class boosting classifier [10]. Like in [7] and [1] we
perform experiments on five folds with 80 training and 20
testing images. The used shape prior models a wide range
of structural variation, including possible vertical misalign-
ment of the attic and top floors with the rest of the facade,
balconies of two different heights in a single floor and shop
windows. The resulting adjacency pattern has 80 classes.

Table 2. Performance on the ECP dataset with unary potentials
obtained using a Recursive Neural Network and a variant of Tex-
tonBoost [6]. The rows corresponding to classes present class ac-
curacy. The bottom rows contain average class accuracy and total
pixel accuracy. In columns, starting from left: performance of the
RNN; result of [7]; our result for the same unaries; performance
resulting from classifying each pixel separately using the Texton-
Boost scores; results of Cohen et al. [1]; results of the binary linear
program by Koziński et al.; our results.

RNN unaries TextonBoost unaries

raw [7] Ours raw [1] [5] Ours

roof 70 74 78 89 90 91 91
shop 79 93 90 95 94 95 97
balcony 74 70 76 90 91 90 91
sky 91 97 94 94 97 96 97
window 62 75 67 86 85 85 87
door 43 67 44 77 79 74 79
wall 92 88 93 90 90 91 90

pixel accur. 82.6 84.2 86.2 90.1 90.8 90.8 91.3

As shown in table 2 we outperform state-of-the-art methods
that use the same unaries by a small margin. Additionally
our algorithm can accept user-defined shape priors, while
[1] has hard-coded constraints. Some advantage over [5]
comes from a more flexible prior. We also outperform [5]
in terms of running time: 100 iterations of our algorithm
takes less that 30 seconds (a CPU implementation running
on a 3GHz Corei7 processor), compared to 4 minutes in
the latter case. For a fair comparison with [7], we per-
form another experiment on the ECP dataset using the same
bottom-up cues as in their paper: the output of a Recursive
Neural Network [12], which is less accurate than Texton-
Boost. For this experiment we use a simple pairwise Potts
potential. We set the off-diagonal entries of pairwise cost
tables to 0.5, a value determined by grid search on a subset
of the training set. The results are presented in table 2. We
outperform the baseline [7], even though their segmenta-
tion is obtained using window, balcony and door detections
in addition to RNN. The influence of the detections on the
performance of the baseline can be seen on results for the
window and door class, for which the baseline outperforms
our algorithm. Our algorithm guarantees semantic correct-
ness of the segmentations, while the baseline aligns facade
elements only locally and can yield, for example, balconies
ending in the middle of a window.

Performance on the Graz50 dataset The Graz50 dataset
[9] contains 50 images of various architectural styles la-
beled with 4 classes. We compare the performance of our
algorithm to the method of Riemenschneider et al. [9] and
Koziński et al. [5]. As in the case of the ECP dataset we
use the TextonBoost to get unaries. We note that Riemen-
schneider et al. [9] use a different kind of per-pixel energies,



Table 3. Left: results on the Graz50 dataset. The diagonal entries
of the confusion matrices for results reported by Riemenschneider
et al. [9], Koziński et al. [5], and our results. Right: results on the
ArtDeco dataset; raw1 – pixel classification for a classifier without
the vegetation class, raw2 – pixel classification for a classifier with
the vegetation class; ours3 – the facade structure extracted by our
algorithm; ours4 – the segmentation produced by our algorithm.

Graz50 ArtDeco

[9] [5] Ours raw1 raw2 ours3 ours4

sky 91 93 93 roof 82 82 81 82
window 60 82 84 shop 96 95 97 97
door 41 50 60 balcony 88 87 82 87
wall 84 96 96 sky 97 97 98 97

window 87 85 82 82
door 64 63 57 57
wall 77 87 89 88
vegetation – 90 – 90

pix. acc. 78.0 91.8 92.5 83.5 88.4 88.8 88.8

obtained using a random forest classifier. On the other hand
the energies used in [5] are the same as in our algorithm. As
shown in table 3, our algorithm outperforms the state of the
art and yields shorter running times: less than 30 seconds
per image compared to 4 minutes for [5]. The increased
accuracy can be attributed to a different formulation of the
optimization problem, which is solved more efficiently.

Performance on the ArtDeco dataset The ArtDeco
dataset [2] consists of 80 images of facades of consistent ar-
chitectural style. The dataset features occlusion of facades
by trees and more structural complexity than the ECP or
Graz50 datasets. Again, we use TextonBoost to obtain the
unary potentials. We use Potts’ form of pairwise potentials
penalizing transitions between different classes with a fixed
coefficient, determined by grid search on a subset of the
training set. We test the algorithm in two tasks: extracting
the structure of the facades, even when they are occluded,
and segmenting the objects visible in the images, including
the trees. We evaluate performance of the algorithm in the
first task with respect to the original ground truth, which
does not contain annotations of vegetation. The accuracy of
the segmentations including the trees occluding the facades
has been evaluated with respect to the ground truth that we
produced by annotating vegetation in all the images. The
results are presented in table 3. In this challenging setting
our method yields segmentations of higher accuracy than
the ones obtained by maximizing the unary potentials.

Performance on the eTrims dataset We test our algo-
rithm on the challenging eTrims dataset [4], consisting of
60 images of facades of different styles. We perform a 5-
fold cross validation as in [7] and [1], and each time the

Table 4. Performance on the eTrims dataset with RNN-based unar-
ies. Starting from left: score using raw unaries, layer 3 of [7],
results of [1] and our results.

eTrims

raw [7]-L3 [1] Ours

building 88 87 91 92
car 69 69 70 70
door 25 19 18 20
pavement 34 34 33 33
road 56 56 57 56
sky 94 94 97 96
vegetation 89 88 90 91
window 71 79 71 70

pixel accur. 81.9 81.6 83.8 83.5

dataset is divided into 40 training and 20 testing images.
We use per-pixel energies generated by a Recursive Neural
Network, like in [7] and [1]. We assume the Potts model of
pairwise potentials, with the parameter determined by grid
search on a subset of the training set. The results are pre-
sented in table 4. Our algorithm outperforms the result of
[7] and yields result slightly inferior to [1]. The possible
reason is the constraints assumed in the latter paper are less
restrictive than our grammars. However, our method is still
the first algorithm with a user-specified shape grammar to
be tested on eTrims and its performance is a close match
to the two baseline methods, which offer no flexibility with
respect to prior definition.

6. Conclusion

We have shown how complex, grid-structured patterns,
possibly with irregular boundaries between regions corre-
sponding to different semantic classes, can be encoded by
specifying which pairs of classes can be assigned to pairs
of vertically- and horizontally-adjacent pixels. We have ar-
gued that these patterns can be specified more conveniently
in a hierarchical fashion and shown that the induced flat-
tened set of rules can automatically be translated into the
structure of a Markov random field. The formulation lends
itself to a more efficient optimization scheme than the previ-
ous approaches. Finally, our formulation makes it possible
to easily handle occlusion.
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Figure 5. Parsing results in triples: original image, result of per-pixel classification, parsing result. Each row corresponds to a different
dataset. Row labels after hyphen indicate the method used to obtain unary potentials: TB - TextonBoost, RNN - Recursive Neural Network.

Figure 6. Parsing results for the ArtDeco dataset. In quadruples: original image, unary classification, segmentation with occluder classes,
extracted facade structure. The last image is a typical failure case.



References
[1] A. Cohen, A. Schwing, and M. Pollefeys. Efficient structured

parsing of facades using dynamic programming. In CVPR,
2014.

[2] R. Gadde, R. Marlet, and P. Nikos. Learning grammars for
architecture-specific facade parsing. Research Report RR-
8600, Sept. 2014.

[3] N. Komodakis, N. Paragios, and G. Tziritas. Mrf energy min-
imization and beyond via dual decomposition. IEEE Trans.
PAMI, 33(3):531–552, 2011.
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