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Abstract

Scaling up fine-grained recognition to all domains of

fine-grained objects is a challenge the computer vision com-

munity will need to face in order to realize its goal of recog-

nizing all object categories. Current state-of-the-art tech-

niques rely heavily upon the use of keypoint or part annota-

tions, but scaling up to hundreds or thousands of domains

renders this annotation cost-prohibitive for all but the most

important categories. In this work we propose a method for

fine-grained recognition that uses no part annotations. Our

method is based on generating parts using co-segmentation

and alignment, which we combine in a discriminative mix-

ture. Experimental results show its efficacy, demonstrating

state-of-the-art results even when compared to methods that

use part annotations during training.

1. Introduction

Models of fine-grained recognition have made great

progress in recognizing an ever-increasing number of cat-

egories. Performance on one standard dataset [44] has in-

creased from 10.3% [44] to 75.7% [6] in only three years.

On the data side, there has also been progress in expand-

ing the set of fine-grained domains we have data for, which

now includes e.g. birds [44, 47, 4], aircraft [42, 34], cars

[41, 27, 32], flowers [35, 1], leaves [30], and dogs [25, 33].

Compared to generic object recognition, fine-grained

recognition benefits more from learning critical parts of the

objects that can help align objects of the same class and dis-

criminate between neighboring classes [3, 16, 52, 10, 13].

Current state-of-the-art results are, therefore, from mod-

els that require part annotations as part of the supervised

training process [51, 6]. This poses a problem for scaling

up fine-grained recognition to an increasing number of do-

mains.

Towards the goal of training fine-grained classifiers with-

out part annotations, we make an important observation.

Fig 1 illustrates our idea. Objects in a fine-grained class

share a high degree of shape similarity, allowing them to be

aligned via segmentation alone. If we can align them early

Figure 1. In fine-grained recognition, categories share similar

shapes, which allows for alignment to be done purely based on

segmentation.

in the training process, we can learn the characteristic parts

without the annotation effort.

In this work, we propose a method to generate parts

which can be detected in novel images and learn which

parts are useful for recognition. Our method for generating

parts leverages recent progress in co-segmentation [22, 29]

to segment the training images. We then densely align im-

ages which are similar in pose, performing alignment across

all images as the composition of these more reliable local

alignments. Despite using fewer annotations, our method is

state-of-the-art on the competitive CUB-2011 dataset [44]

when using a VGGNet [40] for feature extraction, is on par

with current state-of-the-art even when using a weaker Caf-

feNet [23] architecture, and is furthermore able to gener-

alize to fine-grained domains which do not have part an-

notations, establishing a new state-of-the-art on the cars-

196 [27] dataset by a large margin.

The remainder of the paper is organized as follows: We

review related work in Sec. 2 and describe our method for

generating parts in Sec. 3. Our use of these parts for recog-

nition is covered in Sec. 4. We present experiments and

analysis on the CUB-2011 and cars-196 datasets in Sec. 5

and conclude with future work in Sec. 6.



2. Related Work

Fine-Grained Recognition. A variety of methods have

been developed for differentiating between fine-grained cat-

egories. Though many early approaches [15, 49, 50, 48]

did not use part annotations, their performance has been

eclipsed by methods developed to explicitly take advantage

of the structure present in fine-grained classes [3, 6, 51, 53,

13]. A few works have even gone beyond the use of 2D part

annotations, aiming to get a full correspondence across im-

ages via a 3D representation [16, 27]. Still other methods

explore fine-grained classification with a human in the loop

at test time, e.g. the visipedia project [8, 43, 45], which is

complementary to our approach.

Of the methods developed that do not use part annota-

tions, there have been a few works philosophically similar

to ours in the goal of finding localized parts or regions in an

unsupervised fashion [15, 18, 10], with [18] and [10] more

relevant. Gavves et al. [18, 19] segment images via Grab-

Cut [37], and then roughly align objects by parameterizing

them as an ellipse. Chai et al. [10] do a joint segmenta-

tion and DPM [17] model fitting, extracting features around

each DPM part. In contrast to these works, our alignment

model is computed densely and is the composition of easier

alignments between similar images. We also perform the

task of detection at test time and ultimately achieve better

classification results than either.

Current state-of-the-art methods are Zhang et al. [51]

and Branson et al. [6], which are both supervised at the

level of parts during training. Both employ a part detection

model, with [51] generalizing the R-CNN framework [20]

to detect parts in addition to the whole object, and [6] train-

ing a strongly-supervised deformable part model in a struc-

tured learning framework [5]. Of these two, our method is

more related to [51] in that we use an R-CNN model for

detection, but unlike either our method is completely unsu-

pervised at the level of parts.

Co-segmentation. Co-segmentation, the task of segment-

ing the object common to a set of images, has made great

strides in recent years [22, 38, 24, 9, 11, 10, 29]. Co-

segmentation has even seen some success in fine-grained

recognition [9, 11, 10], exploiting the low intra-class vari-

ability of fine-grained classes. Unlike [9, 11, 10], our co-

segmentation approach follows a graph-cut approach, in-

spired by Guillaumin, Kuettel, and Ferrari [22]. The main

difference between our approach and [22] is that bounding

boxes are available during training in our problem setting.

We use this to significantly improve segmentation quality

via a refinement step that finds a segmentation covering the

bounding box well. This fixes many common failure modes

typical of a graph-cut segmentation framework. Similar in-

tuition with a more sophisticated approach can be found

in [31]. In our setting no ground truth segmentations are

available, unlike the full model of [22], so we are thus more

related to their “image+class” model.

3. Generating Parts
At the core of our approach for generating parts is the

concept of alignment by segmentation, the process of align-

ing images via aligning their figure-ground segmentation

masks. The key insight is that, even for complicated and

deformable objects such as birds, a figure-ground segmen-

tation (Fig. 2(b)) is often sufficient in order to determine

an object’s pose and localize its parts, as demonstrated in

Fig. 1. We decompose the process of aligning all images as

aligning pairs of images with similar poses, which we rep-

resent in a graph (Fig. 2 (c)), producing a global alignment

(Fig. 2(d)) from these easier, local alignments. Based on

these alignments we sample points across all images, which

each determine a part (Fig. 2(e)).

3.1. Co­segmentation
In order to do alignment by segmentation, one must

first establish a figure-ground segmentation of each im-

age, which we do via co-segmentation (Fig. 2(b)). Co-

segmentation is particularly attractive for fine-grained

recognition because the appearance variation within each

class is relatively small. Traditional co-segmentation ap-

proaches [38, 24] typically assume that no information be-

sides object presence is available for each image, while in

the setting of fine-grained recognition we also have bound-

ing boxes available in these training images. Our approach

effectively and efficiently uses this information.

Formulation. Our optimization for co-segmentation

is inspired by Guillaumin et al. [22] and uses a Grab-

Cut [37]-like approach at its base. Let θif be a foreground

color model for image i, represented as a Gaussian mix-

ture model, θib a similar background model, and θcf a shared

foreground color model for class c. The binary assignment

of pixel p in image i to either foreground or background is

denoted xi
p, its corresponding RGB value is zip, the set of

segmentation assignments across all images is X , and pf
is a pixelwise foreground prior which we describe shortly.

Our co-segmentation objective is:

max
X,θ

∑
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∑

p
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Figure 2. An overview of our method to generate parts used for recognition. We begin by segmenting all images in the training set with a

co-segmentation approach (Sec. 3.1) and finding a graph used to determine which images to align (Sec. 3.2). With these, we sample points

across all images, which form the basis for generating parts used in recognition (Sec. 4).

and E(xi
p, x

i
q) is the standard pairwise term between pixels

p and q for a GrabCut [37] segmentation model, enforc-

ing consistency between neighboring pixels with respect

to their assigned binary foreground/background values. If

pf = .5 and θ
f
i = θci then this is equivalent to GrabCut, and

if only pf = .5 then it reduces to the “image + class” model

of [22] without the learned per-term weights.

Optimization is performed separately for each fine-

grained class c, and proceeds by iteratively updating the

appearance models θif , θib, θcf and optimizing the fore-

ground/background masks xi. As is standard in a Grab-

Cut formulation, we initialize the appearance models us-

ing the provided bounding boxes, with the pixels inside

each bounding box marked foreground and the rest as back-

ground. This initial background remains fixed as back-

ground throughout the optimization.

Foreground Refinement. Though we have already

used the bounding boxes available in fine-grained training

sets in a standard GrabCut[37] fashion, we have not fully

exploited their usefulness. As noted by [31], objects in

bounding boxes typically occupy a non-negligible portion

of the bounding box, and we can use this knowledge to

significantly improve segmentation quality. Formally we

represent this as constraints that a foreground segmenta-

tion must occupy between ω1 and ω2 of the total area of

its bounding box and span at least ρ of its width and height.

To satisfy these constraints, we perform a binary search over

the pixelwise foreground prior pf (Eq. 3) on a per image ba-

sis after the initial segmentation until the constraints are sat-

isfied, initializing with pf = .5. Since pf = 0 produces an

entirely background segmentation and pf = 1 corresponds

to an entirely foreground segmentation, this search will pro-

duce a segmentation satisfying the constraints.

In our experiments we set ω1 = 10%, ω2 = 90%, and

ρ = 50%, representing a weak set of constraints that is sat-

isfied in 99.97% of the images in CUB-2011 [44]. As we

demonstrate in our experiments and visualize in Fig. 3, this

weak prior dramatically improves segmentation results, and

no refinement with refinement

Figure 3. Refinement by searching for a foreground prior pf sat-

isfying weak bounding box-level constraints can correct very large

errors in segmentation.

tends to fix a common failure mode of GrabCut segmenta-

tion methods of over- or under-segmenting images. More

qualitative results are given in the supplementary material.

We also note that most initial segmentations already satisfy

these constraints, so this extra binary search does not sig-

nificantly change the running time of co-segmentation, and

is much cheaper than more sophisticated methods [31].

3.2. Choosing Images to Align

Aligning two objects with arbitrary poses remains a hard

problem in computer vision. However, when given many

instances of the same category, any single object is likely to

have a similar pose with at least one other instance. This

motivates our approach of decomposing the global task of

aligning all training images into many smaller, simpler tasks

of aligning images containing objects of similar poses. We

formalize this requirement as building a connected graph G
of images {Ii}

n
i=1

where each edge (Ii, Ij) is between two

images containing objects of similar poses to be aligned. To

reduce the variance in alignment, we furthermore require

that each image Ii ∈ G be connected to at least k other im-

ages, aggregating all image to image alignments from the

neighbors of Ii to increase robustness. Because G repre-

sents a graph of pose similarity, we refer to it as a pose

graph (Fig. 2 (c)).



conv4 neighbors

Figure 4. Nearest neighbors with conv4 features, which tend to

preserve pose.

How can we determine which images contain objects of

similar poses without part annotations and without attempt-

ing the comparatively expensive process of aligning them

in the first place? We do this with a simple, yet effective

heuristic: as a proxy for difference in pose we measure the

cosine distance between fourth-layer convolutional (conv4)

features around each bounding box, using a CNN pretrained

on ILSVRC 2012 [23, 28, 39]. These intermediate features

tend to be fairly robust to changes in e.g. background while

maintaining information about pose; features in earlier lay-

ers are not as robust and features in later layers become too

class-specific, eschewing pose information in favor of dis-

criminative power. We have also experimented with using

our segmentations from Sec. 3.1 and other feature represen-

tations to measure pose similarity, but have found very lit-

tle difference in performance from simply using these CNN

features. Fig. 4 shows examples of the nearest neighbors

calculated with this metric, with more examples included in

the supplementary material.

Pose Graph Construction. Using this distance met-

ric we construct G satisfying the constraints by iteratively

computing disjoint minimum spanning trees of the images,

merging the trees into a single graph. Concretely, we de-

compose the pose graph as G =
⋃k

i=1
Mi, where M1 is

the minimum spanning tree of the dense graph GD on all

n images with edge weights given by cosine distance, and

Mj is the minimum spanning tree of GD \
⋃j−1

i=1
Mi, which

can be computed by setting the weights of all edges used in

M1, . . . ,Mj−1 to infinity. Since minimum spanning trees

are connected, G is connected, and since G is composed of

k disjoint minimum spanning trees, each node in G is con-

nected to at least k other vertices, satisfying the constraints.

3.3. Aligning All Images

Given a pose graph connecting images with similar

poses, what is the right way to use its structure to create

an alignment between all images? In our approach, we first

sample a large set of points in one image, representing the

overall shape of an object, and then propagate these points

to all images using the structure of the graph.

We start by sampling a set of points of size k1 on the seg-

mented foreground of a single image Ir, which we choose to

be the image with the highest degree in G. Then, while there

is still at least one image that the points have not been propa-

gated to, we propagate to the image Ij adjacent to the largest

number of images in G which have already been propagated

to. Let τi,j : R2 → R
2 be a dense alignment function map-

ping a point in image i to its corresponding point in image

j, which is learned based on the segmentations for Ii and

Ij . Then, to propagate each of the k1 points, we use τi,j to

propagate the corresponding point from each image Ii ad-

jacent to Ij in G and aggregate these separate propagated

points via an aggregation function α, which we take to be

the median of points propagated from each adjacent image.

In this work we learn each dense alignment function τi,j
with shape context [2], which we make robust to horizontal

flips by additionally optimizing over the choice of flipping

one of the images.

3.4. From Alignment to Parts

After globally aligning all images, the problem remains

of using the alignment to generate parts for use in recog-

nition. Without any part annotations, at this point it is not

possible to tell which parts are semantically meaningful or

useful for classification, so we instead target our part gen-

eration at producing a diverse set of parts. Specifically, we

select a subset of the propagated points of size k2 to be ex-

panded into parts for recognition. We do this by clustering

the trajectories of the k1 points across all images, i.e. we

represent each point i by its 2 × n-dimensional trajectory

across all images, then cluster each of these trajectories via

k-means into k2 clusters, providing a good spread of points

across the foreground of each image (Fig. 2 (d)).

We generate a single part from each one of these k2
points by taking an area around each point with a fixed size

with respect to the object’s bounding box, then shrink the

region until it is tight around the estimated segmentation

(Fig. 2 (e)), yielding a tight bounding box around each gen-

erated part in each training image.

4. Using Parts for Recognition

Given a set of generated parts, what is the right way to

use them for recognition, and how can they be found in

novel images which do not even contain object-level bound-

ing boxes? For classification, we propose an approach to

discriminatively learn a mixture of parts, and for detection

we compare two approaches which both can find our gener-

ated parts in novel images.

4.1. Discriminative Combination of Parts

An effective fine-grained classifier must reason about in-

formation at all parts, combining multiple sources of visual

information. The most straightforward approach, shared by
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Figure 5. Not all parts of an object are equally useful for recogni-

tion. Some, such as the legs, are only rarely useful, while others,

like the head, contain most information useful for discrimination.

[51], [6], and most prior approaches, is to concatenate fea-

tures at each part into one large vector and train a single

classifier. However, doing so ignores the observation that

not all parts are equally useful for recognition (Fig. 5). Mo-

tivated by this, we propose a more nuanced approach. Our

approach is inspired by the max-margin template selection

method of [12], originally used for visual font recognition.

Let f i
p be features for image i at part p, and let wp,c be

classification weights for part p and class c, learned for each

part independently. Our goal is to learn a vector of (k2+1)-
dimensional weights v satisfying:

min
v

n
∑

i=1

∑

c 6=ci

max
(

0, 1− vTui
ci,c

)2

+ λ‖v‖1 (4)

where the p-th element of ui
ci,c

is the difference in decision

values between incorrect class ci and correct class c:

ui
ci,c(p) = (wp,ci − wp,c)

T f i
p (5)

This is equivalent to a one-class SVM (an SVM with

only positive labels) with an L2 loss and L1 regularization,

and can thus be solved efficiently by standard SVM solvers.

Intuitively, this optimization tries to select a sparse weigh-

ing of classifiers such that, combined, the decision value for

the correct class is always larger than the decision value for

every other class by some margin, forming a discrimina-

tive combination of parts. Decision values for each ui can

be calculated via cross-validation while training the inde-

pendent classifiers at each part. In comparison to [12], the

main difference is that our formulation operates directly on

decision values rather than the probabilities output by the

template system in [12]. The final classification is given by:

argmax
c

k2
∑

p=1

vpw
T
p,cfp (6)

4.2. Finding Parts at Test Time

The other main challenge in using our automatically gen-

erated parts is finding them in novel, completely unanno-

tated images. We experiment with two different methods,

one based on [51] and the other a direct extension of our

part generation method, applied to bounding box-level ob-

ject detections.

Part Detectors. Our first method for locating parts at

test time involves training dedicated part detectors, and is

based on the ∆box method of Zhang et al. [51], originally

intended for use with ground truth part locations: an R-

CNN [20] is trained for the entire object and every part by

treating each as a separate category. At test time, all detec-

tors are run on an image, each detection score is transformed

into a probability via a sigmoid function, and the joint con-

figuration of bounding box and parts is scored as the product

of probabilities, with part detections that do not fall within

10 pixels of the bounding box set to probability 0. Since our

set of generated parts is potentially much larger in size than

the set of parts considered in [51], we change the joint con-

figuration scoring method to normalize the log-probabilities

from the part detectors by 1

k2

. This gives the information

at local parts and the global object equal weight, robustly

combining the two. Our other difference from [51] is train-

ing each R-CNN with bounding box regression, which im-

proves detection AP on CUB-2011 from 88.1 to 92.9.

Test-Time Segmentation and Alignment. Our sec-

ond method is a direct extension of the segmentation and

alignment done on the training images. We first do detection

with an R-CNN trained on the whole bounding box, then

use this predicted bounding box in our segmentation frame-

work of Sec. 3.1, removing the foreground class appearance

term since the class label is unknown at test time. The near-

est neighbors of the test image in the training set are calcu-

lated using conv4 features and alignment from those images

is done exactly as described in Sec. 3.2. This method has an

advantage over the part detector method in that an R-CNN

only needs to be trained for the whole object, rather than

k2 + 1 categories, and it also produces a segmentation of

test images, which may be useful for other applications, but

it has the disadvantage of being somewhat slower at test

time due to the alignment and segmentation steps. In all

experiments with this method, we use 5 nearest neighbors.

5. Experiments

5.1. Datasets

We evaluate on the CUB-2011 [44] and cars-196 [27]

datasets. CUB-2011 contains 11,788 images of 200 species

of birds, and is generally considered the most competitive

dataset within fine-grained recognition, while cars-196 has



Figure 6. Example segmentations from our co-segmentation method on CUB-2011(top) and cars-196(bottom). The last image in each row

is a failure case.

Method Jac. Sim.

GrabCut [37] 70.84

+class ≈ [22] 67.78

+refine 74.72

+class+refine 75.47
Table 1. Co-segmentation results on CUB-2011 as measured

by Jaccard similarity of the ground truth foreground with the

predicted segmentation. GrabCut is equivalent to our model

without the class foreground term or foreground prior refine-

ment, which we add in “+class” and “+refine”, respectively, with

“+class+refine” corresponding to our full co-segmentation model.

16,185 images of 196 car types. Both datasets have a sin-

gle bounding box annotation in each image, and CUB-2011

moreover contains rough segmentations and 15 keypoints

annotated per image, which we do not use in our algorithm.

5.2. Implementation Details

For all R-CNN training we use fc6 features from a net-

work trained on ILSVRC2012 [39] with no fine-tuning and

16 pixels of padding around each bounding box or part.

The R-CNN takes the majority of running time, at about 20

sec./image. Methods without fine-tuning also use fc6 fea-

tures, extracted on each part with 16 pixels of padding. All

features are extracted using Caffe [23]. R-CNNs are trained

with the default network (pre-trained on ILSVRC2012 and

fine-tuned on PASCAL). Features for pose graph construc-

tion are from a pre-trained CaffeNet [23], which is similar

to [28]. When fine-tuning networks in our experiments, two

separate networks are fine-tuned: one for the whole object

and one for the set of all generated parts. All regularization

parameters and the weights for the discriminative combina-

tion of parts for fine-tuned networks are determined based

on non-fine-tuned features, since fine-tuning makes training

decision values overconfident. For part generation we set

k = 5, k1 = 500, k2 = 31, and use a maximum part size

of 25% of the geometric mean of the bounding box dimen-

sions around each keypoint. We defer other implementation

details to our code, available on the first author’s website.

5.3. Co­segmentation Results

We first perform an analysis of our co-segmentation

method, evaluated on CUB-2011. Results are given in

Tab. 1. Interestingly, adding in the class foreground appear-

ance term hurts a pure GrabCut approach, but helps when

a refinement step is added in. This happens because with

only the additional class term, the foreground model un-

derfits, tending to result in an undersegmentation. How-

ever, when the refinement step is added, the learned class

term provides for a strong refinement initialization, allow-

ing the per-image term to fit the foreground more accu-

rately. This result highlights the different approach needed

for co-segmentation when given bounding boxes, as class

appearance terms help substantially in the no bounding box

case [22]. Tab. 1 also demonstrates the importance of the

foreground prior refinement, improving upon GrabCut by

nearly 4%. Fig. 6 shows qualitative results on CUB-2011

and cars-196, with more results given in the supplemen-

tary material. Our approach is generally able to segment

the foreground object well, but understandably has trouble

when the foreground and background are too similar.

5.4. Recognition Results

We first perform a detailed analysis of our method on

CUB-2011 before moving on to compare to other methods

on both CUB-2011 and cars-196.

Method Analysis. Tab. 2 details many variants of our

method, using the fc6 layer of a CaffeNet [23] for feature

extraction. We observe that the part detector method works

better than the test-time segmentation method, performing

better under both part combination strategies. This indi-

cates that the learned part detectors are able to generalize

well to unseen images, and motivates our use of the part

detector method for the rest of the analysis. Second, com-

bining the parts discriminatively is always better than the

concatenation strategy. We note that PD+DCoP, without

bounding boxes during test time and without fine-tuning, is

already able to out-perform a fine-tuned CNN when given

the ground truth bounding box, highlighting the importance

of reasoning at the level of parts and validating the effec-

tiveness of our approach.

We visualize the parts with the highest weights in the

discriminative combination of parts in Fig. 7(left) and ob-

serve that they both fire consistently and represent a diverse

set of parts, with the top two parts (bird heads with vary-

ing amounts of context, extremely discriminative on their

own) excepted. We furthermore show example images in



Figure 7. The top parts chosen by our method, excepting the whole object “part”, visualized by the highest scoring detections in the test

set. Each row is a different part. Shown at left are our top parts for CUB-2011 and at right are the top parts for cars-196.

Method Acc.

R-CNN [20] 58.8

R-CNN+ft 65.3

CNN+GT BBox 61.3

CNN+GT BBox+ft 67.9

TS+concat 63.4

TS+DCoP 68.5

PD+concat 67.6

PD+DCoP 69.7

PD+DCoP+flip 71.1

PD+DCoP+flip+ft 73.7

PD+DCoP+flip+GT BBox 72.4

PD+DCoP+flip+GT BBox+ft 74.9
Table 2. Analysis of different variants of our method on CUB-

2011. R-CNN refers to training an R-CNN [20] for birds gener-

ically and extracting features on the whole bounding box. “+ft”

means that the CNN used to extract features after detection was

fine-tuned for classification. “PD” refers to using the generated

parts in a part detection framework, and “TS” refers to the method

of doing segmentation at test time and aligning the test image with

a set of training images ( Sec. 4.2). “concat” and “DCoP” are

the two methods of combining multiple parts, and refer to con-

catenating the features and the discriminative combination of parts

(Sec. 4.1), respectively. “+flip” indicates training and testing with

both original and horizontally flipped images, averaging the de-

cision values during test, and “+GT BBox” indicates giving the

method oracle bounding box information. Performance is mea-

sured with 200-way accuracy.

which our method classifies correctly but an R-CNN with

fine-tuning is incorrect in Fig. 8. Even in cases of unusual

pose or inaccurate detections, our method is still able to ac-

curately localize one or more parts and classify correctly,

while the R-CNN is forced to reason at a whole bounding

box level, unable to discriminate the fine-grained classes.

Adding in flipped images improves performance by an-

other 1.4%, and fine-tuning improves that further by 2.6%.

Granting our method the ground truth bounding box at test

time improves results by only 1.3% (1.2% with fine-tuning),

CNN Used

Method [23] [40]

R-CNN [20] 58.8 69.0

R-CNN+ft 65.3 72.5

CNN+GT BBox 61.3 70.0

CNN+GT BBox+ft 67.9 75.0

PD+DCoP+flip 71.1 78.8

PD+DCoP+flip+ft 73.7 82.0

PD+DCoP+flip+GT BBox+ft 74.9 82.8
Table 3. Impact of CNN choice on variants of our method, mea-

sured in 200-way accuracy.

suggesting that improvements to the detection model will

not impact classification results much on CUB-2011.

Impact of CNN Architecture. We also analyze the ef-

fect of network architecture used to extract features at each

part, comparing CaffeNet [23] and VGGNet (the 19-layer

configuration “E” from [40]) on a subset of method vari-

ants. Tab. 3 details the results. In all cases, using a VGGNet

significantly improves results, so we present the remainder

of the results using a VGGNet for feature extraction.

Comparison to Prior Work on CUB-2011. In Tab. 4

we compare our method to prior work on CUB-2011, listing

the amount of annotation each method uses. Our method is

best by a large margin among methods which use no an-

notations at test time, and even outperforms all methods

that use part annotations during training, only beaten by the

variant of PN-DCN [6] which uses part annotations at test

time (and tied with the variant of PB R-CNN that does the

same). Using the weaker CaffeNet architecture, our results

are within two percent of the variants of PB R-CNN [51]

and PN-DCN [6] that use no annotations at test time but use

part supervision during training. We anticipate that improv-

ing PB R-CNN and PN-DCN with better CNN architectures

will again result in performance higher than our best ap-

proach due to their additional supervision. Expert human

performance on CUB-2011 is roughly 93% [7].



Figure 8. Test images in which our method is correct but an R-CNN with fine-tuning is incorrect, visualized with detections for the whole

object and five parts with the highest weight in the discriminative combination of parts. The top two rows depicts images where birds have

unusual poses, and the bottom two rows show cases where the detection is inaccurate.

Method Train Anno. Test Anno. Acc.

Alignments [19] n/a n/a 53.6

Ours BBox n/a 82.0

GMTL [36] BBox BBox 44.2

Symbiotic [10] BBox BBox 59.4

Alignments [19] BBox BBox 67.0

Ours+BBox BBox BBox 82.8

PB R-CNN [51] BBox+Parts n/a 73.9

PN-DCN [6] BBox+Parts n/a 75.7

DPD [53] BBox+Parts BBox 51.0

POOF [3] BBox+Parts BBox 56.8

Nonparametric [21] BBox+Parts BBox 57.8

Symbiotic [10] BBox+Parts BBox 61.0

DPD+DeCAF [14] BBox+Parts BBox 65.0

PB R-CNN [51] BBox+Parts BBox 76.4

Symbiotic [10] BBox+Parts BBox+Parts 69.5

POOF [3] BBox+Parts BBox+Parts 73.3

PB R-CNN [51] BBox+Parts BBox+Parts 82.0

PN-DCN [6] BBox+Parts BBox+Parts 85.4
Table 4. Comparison of different methods on CUB-2011, sorted

by amount of annotation used. “Ours” indicates our full model

(PD+DCoP+flip+ft), and “Ours+BBox” grants our method the

ground truth bounding box at test time. “Parts” refers to using any

annotation at the level of parts at all. Since the exact amount of

annotation used varies from work to work, we defer to the original

sources for details.

Comparison on cars-196 The main advantage of our

method is that it allows us to do accurate recognition on

classes that do not have part annotations, scaling up to a

larger number of fine-grained domains, which methods such

as [6, 51, 3] cannot do. To this end, we compare perfor-

mance on the cars-196 [27] dataset, with results given in

Tab. 5. All results not reported by prior work use the VG-

Method Train Test Acc.

R-CNN [20] BBox n/a 57.4

R-CNN+ft BBox n/a 88.4

Ours BBox n/a 92.6

CNN+GT BBox BBox BBox 59.9

BB [13] BBox BBox 63.6

BB-3D-G [27] BBox BBox 67.6

LLC [46] BBox BBox 69.5

ELLF [26] BBox BBox 73.9

CNN+GT BBox+ft BBox BBox 89.0

Ours+GT BBox BBox BBox 92.8
Table 5. Comparison of methods on cars-196 [27]. Performance is

measured with 196-way accuracy.

GNet [40] architecture, with an architecture comparison in

the supplementary material. Our method is able to greatly

outperform all previously-reported results [13, 27, 46, 26],

setting a new state-of-the-art by 18.7%. Parts chosen in

the discriminative combination of parts are shown in Fig. 7.

These parts tend to either contain information relating to ei-

ther the general body type of cars (top two parts), or focus

on fine details such as the grille or headlights.

6. Conclusion
In this work we have presented a method for fine-grained

classification which does not require part annotations at

training time, setting a new state-of-the-art on the CUB-

2011 and cars-196 datasets. We believe that developing

such methods will be important for scaling up fine-grained

recognition to an ever-increasing number of visual domains,

in which it will be cost-prohibitive to annotate parts.
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