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Abstract

The definition of the similarity measure is an essential
component in image registration. In this paper, we propose
a novel similarity measure for registration of two or more
images. The proposed method is motivated by that the opti-
mally registered images can be deeply sparsified in the gra-
dient domain and frequency domain, with the separation of
a sparse tensor of errors. One of the key advantages of the
proposed similarity measure is its robustness to severe in-
tensity distortions, which widely exist on medical images,
remotely sensed images and natural photos due to the dif-
ference of acquisition modalities or illumination conditions.
Two efficient algorithms are proposed to solve the batch im-
age registration and pair registration problems in a unified
framework. We validate our method on extensive challeng-
ing datasets. The experimental results demonstrate the ro-
bustness, accuracy and efficiency of our method over 9 tra-
ditional and state-of-the-art algorithms on synthetic images
and a wide range of real-world applications.

1. Introduction
Image registration is a fundamental task in image pro-

cessing and computer vision [29, 23, 20]. It aims to align

two or more images into the same coordinate system, and

then these images can be processed or compared. Accu-

racy and robustness are two of the most important metrics

to evaluate a registration method. It has been shown that

a mean geometric distortion of only 0.3 pixel will result

in noticeable effect on a pixel-to-pixel image fusion pro-

cess [3]. Robustness is defined as the ability to get close

to the accurate results on different trials under diverse con-

ditions. Based on the feature used in registration, exist-

ing methods can be classified into feature-based registra-

tion (e.g., [28, 16, 15]) and pixel-based registration (e.g.,

[10, 6, 26, 25]). Feature-based methods rely on the land-

marks extracted from the images. However, extracting re-

∗indicates equal contributions. Corresponding author: Junzhou Huang.

Email: jzhuang@uta.edu. This work was partially supported by NSF IIS-

1423056, CMMI-1434401, CNS-1405985.

liable features is still an open problem and an active topic

of research [20]. In this paper, we are interested in image

registration by directly using their pixel values. In addition,

we wish to successfully register the images from a variety

of applications in subpixel-level accuracy, as precisely as

possible.

One key component for image registration is the energy

function to measure (dis)similarity. The optimized similar-

ity should lead to the correct spatial alignment. However,

finding a reliable similarity measure is quite challenging

due to the unpredicted variations of the input images. In

many real-world applications, the images to be registered

may be acquired at different times and locations, under var-

ious illumination conditions and occlusions, or by differ-

ent acquisition modalities. As a result, the intensity fields

of the images may vary significantly. For instance, slow-

varying intensity bias fields often exist in brain magnetic

resonance images [22]; the remotely sensed images may

even have inverse contrast for the same land objects, as mul-

tiple sensors have different sensitivities to wavelength spec-

trum [24]. Unfortunately, many existing pixel-based simi-

larity measures are not robust to these intensity variations,

e.g., the widely used sum-of-squared-difference (SSD) [23].

Recently, the sparsity-inducing similarity measures have

been repeatedly successful in overcoming such registration

difficulties [17, 19, 27, 9]. In RASL [19] (robust alignment

by sparse and low-rank decomposition), the images are vec-

torized to form a data matrix. The transformations are es-

timated to seek a low rank and sparse representation of the

aligned images. Two online alignment methods, ORIA [27]

(online robust image alignment) and t-GRASTA [9] (trans-

formed Grassmannian robust adaptive subspace tracking al-

gorithm), are proposed to improve the scalability of RASL.

All of these methods assume that the large errors among the

images are sparse (e.g., caused by shadows, partial occlu-

sions) and separable. However, as we will show later, many

real-world images contain severe spatially-varying intensity

distortions. These intensity variations are not sparse and

therefore difficult to be separated by these methods. As a

result, the above measures may fail to find the correct align-

ment and thus are less robust in these challenging tasks.
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The residual complexity (RC) [17] is one of the best

measures for registering two images corrupted by severe in-

tensity distortion [8], which uses the discrete cosine trans-

form (DCT) to sparsify the residual of two images. For a

batch of images, RC has to register them pair-by-pair and

the solution may be sub-optimal. In addition, DCT and in-

verse DCT are required in each iteration, which slows down

the overall speed of registration. Finally, although RC is

robust to intensity distortions, the ability of RC to handle

partial occlusions is unknown.

Unlike previous works that vectorize each image into a

vector [19, 27, 9], we arrange the input images into a 3D

tensor to keep their spatial structure. With this arrange-

ment, the optimally registered image tensor can be deeply

sparsified into a sparse frequency tensor and a sparse error

tensor (see Fig. 1 for more details). Severe intensity distor-

tions and partial occlusions will be sparsified and separated

out in the first and second layers, while any misalignment

will increase the sparseness of the frequency tensor (third

layer). We propose a novel similarity measure based on

such deep sparse representation of the natural images. Com-

pared with the low rank similarity measure which requires

a batch of input images, the proposed similarity measure

still works even when there are only two input images. An

efficient algorithm based on the Augmented Lagrange Mul-

tiplier (ALM) method is proposed for the batch mode, while

the gradient descent method with backtracking is presented

to solve the pair registration problem. Both algorithms have

very low computational complexity in each iteration. We

compare our method with 9 traditional and state-of-the-art

algorithms on a wide range of natural image datasets, in-

cluding medical images, remotely sensed images and pho-

tos. Extensive results demonstrate that our method is more

robust to different types of intensity variations and always

achieves higher sub-pixel accuracy over all the tested meth-

ods.

2. Image registration via deep sparse represen-
tation

In this paper, we use bold letters denote multi-

dimensional data. For example, x denotes a vector, X de-

notes a matrix and X is a 3D or third-order tensor. X(i,j,t)

denotes the entry in the i-th row, j-th column and t-th slice.

X(:,:,t) denotes the whole t-th slice, which is therefore a ma-

trix. The �1 norm is the summation of absolute values of all

entries, which applies to vector, matrix and tensor.

2.1. Batch mode

We introduce our deep sparsity architecture in the in-

verse order for easy understanding. Suppose we have a

batch of grayscale images I1, I2, ..., IN ∈ R
w×h to be

registered, where N denotes the total number of images.

1st layer2nd layer

3rd layer

Sparse
decomposition

+

Sparsifying in the frequency domain

Sparsifying in the gradient domain

…...

…...

Figure 1. Deep sparse representation of the optimally registered

images. First we sparsify the image tensor into the gradient tensor

(1st layer). The sparse error tensor is then separated out in the 2nd

layer. The gradient tensor with repetitive patterns are sparsified in

the frequency domain. Finally we obtain an extremely sparse fre-

quency tensor (composed of Fourier coefficients) in the 3rd layer.

First, we consider the simplest case that all the input im-

ages are identical and perturbed from a set of transforma-

tions τ = {τ1, τ2, ..., τN}.

We arrange the input images into a 3D tensor D ∈
R

w×h×N , with

D(:,;,t) = It, t = 1, 2, ..., N, (1)

After removing the transformation perturbations, the slices

show repetitive patterns. Such periodic signals are ex-

tremely sparse in the frequency domain. Ideally the Fourier

coefficients from the second slice to the last slice should

be all zeros. We can minimize the �1 norm of the Fourier

coefficients to seek the optimal transformations:

min
A,τ

||FNA||1, s.t. D ◦ τ = A, (2)

where FN denotes the Fourier transform in the third direc-

tion.

The above model can be hardly used on practical cases,

due to the corruptions and partial occlusions in the images.

Similar as previous work [19], we assume the noise is neg-

ligible in magnitude as compared to the error caused by oc-

clusions. Let E be the error tensor. We can separate it from

the image tensor if it is sparse enough. Similar, we use the

�1 norm to induce sparseness:

min
A,E,τ

||FNA||1 + λ||E ||1, s.t. D ◦ τ = A+ E , (3)

where λ > 0 is a regularization parameter.
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Figure 2. A toy registration example with respect to horizontal translation using different similarity measures (SSD [23], RC [17], SAD

[23], CC [13], CD2 [6], MS [18], MI [26] and the proposed pair mode). (a) The Lena image (128 × 128). (b) A toy Lena image under a

severe intensity distortion. Blue curves: registration between (a) and (a); red curves: registration between (b) and (a).

The above approach requires that the error E is sparse.

However, in many real-world applications, the images are

corrupted with spatially-varying intensity distortions. Ex-

isting methods such as RASL [19] and t-GRASTA [9] may

fail to separate these non-sparse errors. The last stage of

our method comes from the intuition that the locations of

the image gradients (edges) should almost keep the same,

even under severe intensity distortions. Therefore, we reg-

ister the images in the gradient domain:

min
A,E,τ

||FNA||1 + λ||E ||1, s.t. ∇D ◦ τ = A+ E , (4)

where ∇D =
√
(∇xD)2 + (∇yD)2 denotes the gradient

tensor along the two spatial directions. This is based on a

mild assumption that the intensity distortion fields of natural

images often change smoothly.

With this rationale, the input images can be sparsely rep-

resented in a three layer architecture, which is shown in Fig.

1. We call it deep sparse representation of images. Compar-

ing with existing popular low rank representation [19], our

modeling has two major advantages. First, the low rank

representation treats each image as a 1D signal, while our

modeling exploits the spatial prior information (piece-wise

smoothness) of natural images. Second, when the number

of input images is not sufficient to form a low rank matrix,

our method is still effective. Next, we will demonstrate how

does our method register only two input images.

2.2. Pair mode

For registering a pair of images, our model can be simpli-

fied and the registration can be accelerated. After two-point

discrete Fourier transform (DFT), the first entry is the sum

and the second entry is the difference. The difference term

is much sparser than the sum term when the two images

have been registered. We can discard the sum term to seek

a sparser representation. Let I1 be the reference image, and

I2 be the source image to be registered. The problem (4)

can be simplified to

min
A1,A2,E,τ

||A1 −A2||1 + λ||E||1,

s.t. ∇I1 = A1,∇I2 ◦ τ = A2 +E. (5)

Both �1 norms in (5) implies the same property, i.e., sparse-

ness of the residual image E. Therefore, we can further

simplify the above energy function:

min
τ

||∇I1 −∇I2 ◦ τ ||1. (6)

It’s interesting that (6) is equivalent to minimizing the to-

tal variation (TV) of the residual image. The TV has been

successfully utilized in many image reconstruction [12, 11]

and non-rigid registration [14] problems.

We compare the proposed similarity measure with SSD

[23], RC [17], sum-of-absolute value (SAD) [23], correla-

tion coefficient (CC) [13], CD2 [6], MS [18] and mutual

information (MI) [26] on a toy example. The Lena image

is registered with itself with respect to the horizontal trans-

lations. The blue curves in Fig. 2 show the responses of

different measures, all of which can find the optimal align-

ment at the zero translation. After adding intensity distor-

tions and rescaling, the appearance of source image shown

in Fig. 2(b) is not consistent with that of the original Lena

image. The results denoted by the red curves show that only

RC and the proposed pair mode can handle this intensity

distortion while other methods fail.



3. Algorithms
3.1. Batch mode

Problem (4) is difficult to solve directly due to the non-

linearity of the transformations τ . We use the local first

order Taylor approximation for each image:

∇It ◦ (τt +�τt) ≈ ∇It ◦ τt +Jt ⊗�τt (7)

for t = 1, 2, ..., N , where Jt = ∂
∂ζ (∇It ◦ ζ)|ζ=τt ∈

R
w×h×p when τt is defined by p parameters. The Tensor-

Vector Product of the last term is defined by:

Definition 1. Tensor-Vector Product. The product of a

tensor A ∈ R
n1×n2×n3 and a vector b ∈ R

n3 is a matrix

C ∈ R
n1×n2 . It is given by C = A ⊗ b, where C(i,j) =∑n3

t=1 A(i,j,t)b(t), for i = 1, 2, ..., n1 and j = 1, 2, ..., n2.

Based on this, the batch mode (4) can be rewritten as:

min
A,E,�τ

||FNA||1 + λ||E ||1,
s.t. ∇D ◦ τ +J ⊗�τ = A+ E , (8)

This constrained problem can be solved by the aug-

mented Lagrange multiplier (ALM) algorithm [19, 4]. The

augmented Lagrangian problem is to iteratively update

A,E ,�τ and Y by

(Ak+1,Ek+1,�τk+1) = arg min
A,E,�τ

L(A,E ,�τ,Y),

Yk+1 =Yk + μkh(Ak,Ek,�τk), (9)

where k is the iteration counter and

L(A,E ,�τ,Y) =< Y , h(A,E ,�τ) > +||FNA||1
+ λ||E ||1 + μ

2
||h(A,E ,�τ)||2F , (10)

where the inner product of two tensors is the sum of all the

element-wise products and

h(A,E ,�τ) = ∇D ◦ τ +J ⊗�τ −A− E . (11)

A common strategy to solve (9) is to minimize the function

against one unknown at one time. Each of the subproblem

has a closed form solution:

Ak+1 = T1/μk(∇D ◦ τ +J ⊗�τ +
1

μk
Yk − Ek)

Ek+1 = Tλ/μk(∇D ◦ τ +J ⊗�τ +
1

μk
Yk −Ak+1)

�τk+1
t = J T

t ⊗ (Ak+1
(:,:,t) + Ek+1

(:,:,t) −∇D(:,:,t) ◦ τ

− 1

μk
Yk

(:,:,t)), for t = 1, 2, ..., N (12)

where the Tα() denotes the soft thresholding operation with

threshold value α. In the third equation of (12), we use

the Tensor-Matrix Product and Tensor Transpose defined as

follows:

Definition 2. Tensor-Matrix Product. The product of a

tensor A ∈ R
n1×n2×n3 and a matrix B ∈ R

n2×n3 is a

vector c ∈ R
n1 . It is given by c = A ⊗ B, where c(i) =∑n2

j=1

∑n3

t=1 A(i,j,t)B(j,t), for i = 1, 2, ..., n1.

Definition 3. Tensor Transpose. The transpose of a ten-

sor A ∈ R
n1×n2×n3 is the tensor AT ∈ R

n3×n1×n2 .

The registration algorithm for the batch mode is sum-

marized in Algorithm 1. Let M = w × h be the number

of pixels of each image. We set λ = 1/
√
M and μk =

1.25kμ0 in the experiments, where μ0 = 1.25/||∇D||2.

For the inner loop, applying the fast Fourier transform

(FFT) costs O(N logN). All the other steps cost O(MN).
Therefore, the total computation complexity of our method

is O(N logN + MN), which is significantly faster than

O(N2M) when applying SVD decomposition in RASL (if

M 	 N ).

Algorithm 1 Image registration via DSR - batch mode

input: Images I1, I2, ..., IN , initial transformations

τ1, τ2, ..., τN , regularization parameter λ.

repeat
1) Compute Jt =

∂
∂ζ (∇It◦ζ)|ζ=τt , t = 1, 2, ..., N ;

2) Warp and normalize the gradient images:

∇D ◦ τ = [ ∇I1◦τ1
||∇I1◦τ1||F ; ...; ∇IN◦τN

||∇IN◦τN ||F ];

3) Use (12) to iteratively solve the minimization

problem of ALM:

A∗,E∗,�τ∗ = argminL(A,E ,�τ,Y);
4) Update transformations: τ = τ +�τ∗;

until Stop criteria

3.2. Pair mode

Similar as that in the batch mode, we have:

∇I2 ◦ (τ +�τ) ≈ ∇I2 ◦ τ +J ⊗�τ (13)

where J ∈ R
w×h×p denotes the Jacobian. Thus, the pair

mode (6) is to minimize the energy function with respect to

�τ :

E(�τ) = ||∇I1 −∇I2 ◦ τ −J ⊗�τ ||1 (14)

The �1 norm in (14) is not smooth. We can have a tight ap-

proximation for the absolute value: |x| =
√
x2 + ε, where

ε is a small constant (e.g. 10−10). Let r = ∇I1 − ∇I2 ◦
τ −J ⊗�τ , and we can obtain the gradient of the energy

function by the chain rule:

∇E(�τ) = J T ⊗ r√
r ◦ r+ ε

(15)



where ◦ denotes the Hadamard product. Note that the divi-

sion in (15) is element-wise.

Gradient descent with backtracking is used to minimize

the energy function (14), which is summarized in Algo-

rithm 2. We set the initial step size μ0 = 1 and η = 0.8.

The computational complexity of each iteration is O(M),
which is much faster than O(M logM) in RC when fast

cosine transform (FCT) is applied [17]. Similar as the batch

mode, we use the normalized images to rule out the trivial

solutions. We use a coarse-to-fine hierarchical registration

architecture for both the batch mode and pair mode.

Algorithm 2 Image registration via DSR - pair mode

input: I1, I2, η < 1, τ , μ0.

repeat
1) Warp and normalize I2 with τ ;

2) μ = μ0;

3) Compute �τ = −μ∇E(0);
4) If E(�τ) > E(0),

set μ = ημ and go back to 3);

5) Update transformation: τ = τ +�τ ;

until Stop criteria

4. Experimental results
In this section, we validate our method on a wide range

of applications. We compare our batch mode with RASL

[19] and t-GRASTA [9], and compare our pair mode with

RC [17] and SSD [23]. One of the most important advan-

tages of our method is its robustness and accuracy on natu-

ral images under spatially-varying intensity distortions. As

shown in [17] and Fig. 2, SAD [23], CC [13], CD2 [6],

MS [18], MI [26] are easy to fail in such cases. We do

not include them in the following experiments. All exper-

iments are conducted on a desktop computer with Intel i7-

3770 CPU with 12GB RAM.

4.1. Batch image registration

To evaluate the performance of our batch mode, we use

a popular database of naturally captured images [1]. We

choose the four datasets with the largest lighting variations:

”NUTS”, ”MOVI”, ”FRUITS” and ”TOY”. These datasets

are very challenging to register, as they have up to 20 dif-

ferent lighting conditions and are occluded by varying shad-

ows. Random translations on both directions are applied on

the four datasets, which are drawn from a uniform distribu-

tion in a range of 10 pixels.

After registration on the ”NUTS” dataset, the two com-

ponents of each algorithm is shown in Fig. 3. RASL [19]

and t-GRASTA [9] fail to separate the shadows and large

errors, while we can successfully find the deep sparse rep-

resentation of the optimally registered images. The average

(a) (b)

(c) (d)

(e) (f)
Figure 3. Batch image registration on the NUTS datasets. (a) The

low rank component by RASL. (b) The sparse errors by RASL. (c)

The subspace representation by t-GRASTA. (d) The sparse errors

by t-GRASTA. (e) The visualization of A by our method. (f) The

sparse error E by our method.

(a) (b) (c) (d)
Figure 4. Registration results on the ”NUTS” dataset. (a) The aver-

age image of perturbed images. (b) The average image by RASL.

(c) The average image by t-GRASTA. (d) The average image by

our method.

of perturbed images and results are shown in Fig. 4, where

the average image by the proposed method has significantly

sharper edges than those by the two existing methods. The

quantitative comparisons on the four datasets are listed in

Table 1 over 20 random runs. The overall average errors

of our method are consistently lower than those of RASL



and t-GRASTA. More importantly, only our method can al-

ways achieve subpixel accuracy. For 20 images with size

128 × 128 pixels, the registration time is around 7 sec-

onds for both RASL and our method, while t-GRAST costs

around 27 seconds. RASL should be much slower on larger

datasets due to the higher complexity of SVD, although we

did not test.

RASL t-GRASTA Proposed

NUTS 0.670/2.443 1.153/3.842 0.061/0.488
MOVI 0.029/ 0.097 0.568/ 2.965 0.007/0.024

FRUITS 0.050/0.107 1.094/4.495 0.031/0.076
TOY 0.105/ 0.373 0.405/2.395 0.038/0.076

Table 1. The mean/max registration errors in pixels of RASL, t-

GRASTA and our method on the four lighting datasets. The first

image is fixed to evaluate the errors.

We evaluate these three methods on the Multi-PIE face

database [7]. This database contains 20 images of each sub-

ject captured at different illumination conditions. We add

random artificial rotations in a range of 10◦ and transla-

tions in 10 pixels on the first 100 subjects from the Session

1. As the optimal alignment is not unique (e.g, all images

shift by 1 pixel), we compare the standard derivation (STD)

of the transformations after registration. Ideally, the STD

should be zero when all the perturbations have been exactly

removed. Fig. 5 shows the average registration results over

20 runs for each subject. Our method is more accurate than

RASL and t-GRASTA for almost every subject.
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Figure 5. (a) An example input of the Multi-PIE image database.

(b) The STD (in degrees) of rotations after registration. (c) The

STD (in pixels) of X-translation after registration. (d) The STD

(in pixels) of Y-translation after registration.

4.2. Pair image registration

4.2.1 Simulations

For quantitative comparisons, we evaluate SSD, RC and the

proposed method on the Lena image with random intensity

distortions (Fig. 2) and random affine transformations (with

a similar range as the previous settings). The number of

Gaussian intensity fields K is from 1 to 6. The reference

image without intensity distortions is used as ground-truth.

The root-mean-square error (RMSE) is used as the metric

for error evaluation of both image intensities and transfor-

mations. We run this experiment 50 times and the results

are plotted in Fig. 6. It can be observed that the proposed

method is consistently more accurate than SSD and RC,

with different intensity distortions.
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Figure 6. Registration performance comparisons with random

transformation perturbations and random intensity distortions. (a)

Intensity RMSE on the Lena image. (b) Transformation (affine)

RMSE on the Lena image.

4.2.2 Multisensor remotely sensed image registration

Multisensor image registration is a key preprocessing oper-

ation in remote sensing, e.g., for image fusion [5], change

detection. The same land objects may be acquired at differ-

ent times, under various illumination conditions by different

sensors. Therefore, it is very possible that the input images

have significant dissimilarity in terms of intensity values.

Here, we register a panchromatic image to a multispectral

image acquired by IKONOS multispectral imaging satellite

[21], which have been pre-registered at their capture resolu-

tions. The multispectral image has four bands: blue, green,

red and near-infrared, with 4 meter resolution (Fig. 7 (a)).

The Pan image has 1 meter resolution (Fig. 7 (b)). The dif-

ferent image resolutions make this problem more difficult.

From the difference image in Fig. 7 (c), we can observe that

there exists misalignment in the northwest direction.

We compare our method with SSD [23] and RC [17], and

the results are shown in Fig. 7 (d)-(f). It is assumed that the

true transformation is formed by pure translation. Although

we do not have the ground-truth, from the difference image,

it can be clearly observed that our method can reduce the
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A

B

Figure 8. Registration of an aerial photograph and a digital orthophoto. From left to right, the images are: the reference image, the source

image, the overlay by MATLAB, the overlay by RC, the overlay by our method. The second row shows the zoomed-in areas of streets A

and B. Best viewed in ×2 sized color pdf file.

(b)(a)

(f)(e)

(d)(c)

Figure 7. Registration of a multispectral image and a panchromatic

image. (a) The reference image. (b) The source image. (c) The

difference image before registration. (d) The difference image by

SSD. (e) The difference image by RC. (f) The difference image by

our method. Visible misalignments are highlighted by the yellow

circles. Best viewed in ×2 sized color pdf file.

misalignment. In contrast, SSD and RC are not able to find

better alignments than the preregistration method.

We register an aerial photograph to a digital orthophoto.

The reference image is the orthorectified MassGIS georeg-

istered orthophoto [2]. The source image is a digital aerial

photograph, which does not have any particular alignment

or registration with respect to the earth. The input images

and the results are shown in Fig. 8. MATLAB uses man-

ually selected control points for registration, while RC and

our registrations are automatic. At the first glance, all the

methods obtain registration with good quality. A closer look

shows that our method has higher accuracy than the others.

In the source image, two lanes can be obviously observed in

streets A and B. After registration and composition, street B

in the result by MATLAB and street A in the result by RC

are blurry due to the misalignment. Our method is robust to

the local mismatches of vehicles.

5. Conclusion and discussion

In this paper, we have proposed a novel similarity mea-

sure for robust and accurate image registration. It is moti-

vated by the deep sparse representation of the optimally reg-

istered images. The benefit of the proposed method is three

fold: (1) compared with existing approaches, it can handle

severe intensity distortions and partial occlusions simulta-

neously; (2) it can be used for registration of two images or

a batch of images, with various types of transformations; (3)

its low computational complexity makes it scalable to large

datasets. We have conducted extensive experiments to test

our method on multiple challenging datasets. The promis-

ing results demonstrate the robustness and accuracy of our

method over the state-of-the-art batch registration methods

and pair registration methods, respectively. We also show

that our method can be used to reduce the registration er-

rors in many real-world applications.

Due to the local linearization in the optimization, our

method as well as all the compared methods cannot handle

large transformations. However, this is not a big issue for



many real-world applications. For example, the remotely

sensed images can be coarsely georegistered by their geo-

graphical coordinates. For images with large transforma-

tions, we can use the FFT-based algorithm [25] to coarsely

register the images and then apply our method as a refine-

ment. Therefore, we did not test the maximum amount of

transformations that our method can handle. So far, the pro-

posed method can only be used for offline registration. How

to extend this method to the online mode is an interesting

topic of future research.
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