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Abstract

Retrieving videos of a specific person given his/her face
image as query becomes more and more appealing for
applications like smart movie fast-forwards and suspec-
t searching. It also forms an interesting but challenging
computer vision task, as the visual data to match, i.e., still
image and video clip are usually represented quite different-
ly. Typically, face image is represented as point (i.e., vector)
in Euclidean space, while video clip is seemingly modeled
as a point (e.g., covariance matrix) on some particular Rie-
mannian manifold in the light of its recent promising suc-
cess. It thus incurs a new hashing-based retrieval problem
of matching two heterogeneous representations, respective-
ly in Euclidean space and Riemannian manifold. This work
makes the first attempt to embed the two heterogeneous s-
paces into a common discriminant Hamming space. Specifi-
cally, we propose Hashing across Euclidean space and Rie-
mannian manifold (HER) by deriving a unified framework
to firstly embed the two spaces into corresponding repro-
ducing kernel Hilbert spaces, and then iteratively optimize
the intra- and inter-space Hamming distances in a max-
margin framework to learn the hash functions for the two
spaces. Extensive experiments demonstrate the impressive
superiority of our method over the state-of-the-art competi-
tive hash learning methods.

1. Introduction
Face video retrieval in general is to retrieve video shot-

s containing particular person given one image of him/her
[31]. It is an appealing research direction with increasing
demands, especially in the era of social networking, when
more and more videos are continuously uploaded to the In-
ternet via video blogs, social networking websites, etc. Face
video retrieval technology thus can find a wide range of
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Figure 1: A conceptual illustration of TV-Series (the Big
Bang Theory) character shots retrieval, where the query is
an image of one specific character (Sheldon Cooper), and
all the shots containing him/her are retrieved and ranked ac-
cording to their similarities to the query image.

applications in the above context, for instance, ’smart fast-
forwards’, where the video player can jump to the next shot
containing a specific character; retrieving all the shots con-
taining a particular family member from thousands of short
videos captured by a digital camera [33]; and rapid locat-
ing and tracking suspects from masses of city surveillance
videos (e.g., Boston marathon bombings event). For more
intuitive understanding, we show a conceptual sample of
TV-Series character shots retrieval in Fig. 1. Besides, the
inverse retrieval task, i.e., retrieving the face images of one
person by using his/her video clip as query, also plays an
important role in some scenarios, e.g., determining the i-
dentity of an unknown suspect by searching against a huge
mug-shot image database with his/her video shot acquired
from crime scene CCTV as query; naming a famous per-
son in video based on very large celebrity image database.



In this paper, we mainly focus on the former retrieval task,
i.e., retrieve videos with image query, and set the scenario to
character retrieval in TV-Series without loss of generality.

In our current work, query is provided in the form of
image, whereas the database contains video clips. There-
fore, the core task is to measure the similarity of image
and video. Straightforwardly, we can compute the similar-
ity between the query image and each frame of the video,
and then integrate these similarities by averaging or taking
the maximum. However, this method ignores the correla-
tions among video frames, and also suffers from high com-
putational cost and massive storage demand, especially in
case of long video clips with hundreds or even thousands of
frames.

Alternatively, a more promising strategy is to model the
video frames collectively. Recently, promising methods
represent all the frames by single or mixture of linear sub-
spaces [42] [21] [40] [38], affine subspace [7] [17], or co-
variance matrix [39] [25] [36]. These representations al-
l reside on some specific Riemannian manifolds, namely
Grassmann manifold, affine Grassmann manifold and Sym-
metric Positive Definite (SPD) matrix manifold, respective-
ly. Compared with the former solution treating video as sep-
arated frames, these holistic modeling methods lead to more
compact representations and superior performance. Among
them, covariance matrix, as a second-order statistics, pro-
vides a natural compact representation of the set of video
frames, thus attracting increasing attention most recently as
in [39] [25] [36]. Therefore, in this paper covariance matrix
is chosen as the face video representation.

Moreover, retrieval tasks require not only good represen-
tation but also low computational complexity in similarity
computation for fast search. For this purpose, hash code
is one of the best choices, which can achieve fast retrieval
with almost constant time complexity and extremely low
storage requirement. However, for the task in this paper,
hash learning becomes non-trivial, because our query and
target are represented in heterogeneous spaces, i.e., one Eu-
clidean space v.s. Riemannian manifold. To our best knowl-
edge, off-the-shelf hash learning methods fail to work in this
case. Hashing methods even specifically dealing with mul-
tiple modalities cases [6] [22] [43] [29] [44] [26] also can
only handle the case where different modalities are all rep-
resented in Euclidean spaces (See Fig. 2), but not the case
addressed in this paper.

To break the above limitation, this paper proposes a nov-
el framework to embed two entirely heterogeneous spaces,
e.g., Euclidean space and Riemannian manifold, into a com-
mon discriminant Hamming space. Specifically, we pro-
pose a method named Hashing across Euclidean space and
Riemannian manifold (HER), which first embeds the two
heterogeneous spaces respectively into Reproducing Kernel
Hilbert Spaces (RKHS) and then learns the corresponding
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Figure 2: The difference between traditional multiple
modalities hash learning methods (the left figure) and our
heterogeneous hash learning method (the right figure),
where different shapes (i.e., triangles and circles) denote
categories.

transformations from either Hilbert space to the final com-
mon Hamming space in a max-margin framework. During
the learning process, intra- and inter-space discriminabili-
ty are iteratively optimized for compatibility between the
hash codes of the two heterogeneous spaces. To validate
our method, we conduct comprehensive experiments on t-
wo popular TV-Series, i.e., the Big Bang Theory and Buffy
the Vampire Slayer.

2. Related Work
In this section, we give a brief review of previous liter-

atures that closely relate to our work in either aspects of
problem and methodology. In Section 2.1, we overview
some existing applications around face video retrieval, and
then in Section 2.2 and Section 2.3 we introduce the rele-
vant single modality and multiple modalities hash learning
methods, respectively.

2.1. Face Video Retrieval

Recent years have witnessed more and more studies on
face video retrieval [33] [2] [3] [10] [31]. Arandjelović and
Zisserman [2] [3] built an end-to-end system to retrieve film
shots, given one or more query face images. They pro-
posed to obtain an identity preserving and variation insen-
sitive signature image to represent face shot. Anyway, it
is a single image based face matching method which does
not fully utilize the video information. Instead of match-
ing single faces, Sivic et al. [33] developed a video shot
retrieval system by matching sets of faces, which are rep-
resented as distributions in the form of histogram and mea-
sured by Chi-square distance. Nevertheless, these works
have large differences from ours. On one hand, they all
exploit real-valued video representation rather than binary-
valued hash code, which is not quite suited for retrieval task,
especially in case of practical large database volume; on
the other hand, such works aim to build a complete end-to-
end system tailored to face video processing, including shot



boundary detection, face detection and tracking, etc. In con-
trast, this paper puts its emphasis on the heterogeneous hash
learning framework, which is expected to have potential ap-
plication in more general object retrieval tasks.

2.2. Single Modality Hash Learning

The pioneering hash learning method, i.e., the well-
known Locality Sensitive Hashing (LSH) [19], is based
on random projections. Although the asymptotic property
is theoretically guaranteed, as a data-independent method,
LSH still requires long codes to achieve satisfactory preci-
sion in practical applications. Realizing the limitation of
LSH, recent endeavors aim at data-dependent hashing by
exploring either data structure or supervision information to
achieve compact hash codes for specific datasets. This new
direction is referred to as Hash Function Learning (HFL).
Representative unsupervised HFL methods include Spectral
Hashing (SH) [41], Anchor Graph Hashing (AGH) [24], It-
erative Quantization hashing (ITQ) [12], etc. More recent-
ly, semi-supervised and supervised HFL methods are grad-
ually coming into view, such as Semi-Supervised Hashing
(SSH) [37], Kernel-based Supervised Hashing (KSH) [23],
Discriminative Binary Codes (DBC) [30], and Supervised
Iterative Quantization hashing (SITQ) [12], etc. These su-
pervised paradigms move us toward higher performance in
practical applications, such as content-based retrieval with
massive data.

2.3. Multiple Modalities Hash Learning

The aforementioned single modality HFL methods have
been applied to a wide range of real-world tasks with great
success. Nevertheless, most of the methods can only deal
with data from a single modality. They cannot deal with
the cross-modality problem. Nowadays, it is quite com-
mon to conduct similarity search involving data from mul-
tiple modalities. For instance, given a textual description
of certain natural scene, one would like to retrieve some
images that depict exactly the described scene. As data
from different modalities (e.g., text vs. image) typically
reside in different feature spaces, it is reasonable to map
the multiple modalities data into a common Hamming s-
pace, which will definitely make the cross-modality com-
parison easier and faster. However, due to its novelty and
challenge of this new task, only few methods are proposed
for this purpose. Representative methods include the pio-
neering Cross-Modal Similar Sensitive Hashing (CMSSH)
[6], Cross-View Hashing (CVH) [22], Multimodal Latent
Binary Embedding (MLBE) [44], Parametric Local Multi-
modal Hashing (PLMH) [43], Predictable Dual-view Hash-
ing (PDH) [29], and the recent neural network based Multi-
Modal NN hashing (MM-NN) [26].

While the above multiple modalities HFL methods have
achieved success in applications such as text-image match-

Figure 3: Face samples in two TV-Series, i.e, the Big Bang
Theory (top row) and Buffy the Vampire Slayer (bottom
row). Even in a same shot, faces suffer many different types
of appearance variations caused by illumination, head pose,
expression, occlusion, etc.

ing, such methods have the limitation that they can only
handle the case where the original modalities are all rep-
resented in Euclidean spaces. However, in our task, only
images lie in Euclidean space, while videos are represented
as points lying on SPD Riemannian manifold. Hence, it is
infeasible to directly apply the traditional multiple modali-
ties hash learning methods to our task (please see Fig. 2 for
more intuitive understanding).

3. Video Modeling
Compared with treating video as separated frames and

processing it frame by frame, holistic modeling methods,
e.g., single or mixture of linear subspaces [42] [21] [40]
[38], affine subspaces [7] [17], covariance matrices [39]
[25] [36], increasingly exhibit their advantages of not only
compact representation but also superior performance. A-
mong these methods, covariance matrix, as the raw second-
order statistics of the set of video frames, provides a natural
representation for a video with any type of features and any
number of frames, and is able to well capture the complicat-
ed video structure (see Fig. 3) more faithfully [39]. In fact,
as indicated in [39], subspace-based models usually origi-
nate from an eigen-decomposition of the covariance matrix
without utilizing the information in eigenvalues and non-
leading eigenvectors. Taking such into consideration, we
resort to covariance matrices for representing videos in this
paper.

Let F = [ f1, f2, ..., fn] be the data matrix of a video with
n frames, where fi ∈ Rd denotes the ith frame with d-
dimensional feature description. We represent the video
with a d×d covariance matrix Y as follows:

Y =
1

n−1

n

∑
i=1

( fi− f̄ )( fi− f̄ )T , (1)

where f̄ is the mean of all video frames. The diagonal en-
tries of Y record the variance of each individual feature,
and the off-diagonal entries are their respective correlation-
s. In this way, a video is represented as a nonsingular co-
variance matrix Y (in case of singularity, a simple regular-
ization can be imposed to its diagonal [39]), which lies on



Riemannian manifold Sym+
d spanned by d× d Symmetric

Positive Definite (SPD) matrices.
Prior to our study here, covariance matrix has been used

to characterize local regions within an image, named region
covariance [35], and apply to tasks like human detection.
However, region covariance is computed within a local re-
gion for a single image, whereas our video covariance is the
statistic among all frames for a whole video. Moreover, re-
gion covariance is intended to depict region texture, where-
as ours has the potential to model the appearance variance
across frames which is crucial for face video modeling.

4. Heterogeneous Hash Learning
4.1. Problem Description

Assume that we have C categories for training, and da-
ta are organized in pairwise structure, i.e., for the cth cat-
egory we have Nc image-video pairs, where N = ∑

C
c=1 Nc

is the total number of training pairs. Both image and in-
dividual video frame use the same d-dimensional feature
description, as denoted in Section 3. In this paper, we de-
note a Euclidean point (i.e., an image) by xi ∈ Rd , and a
Riemannian point (i.e., a video) by Yi ∈ Sym+

d (here, Yi is
the frame covariance matrix as defined in Eqn. (1)). Our
goal is to learn the hash codes of all the training samples,
i.e., Be ∈ {0,1}K×N for the N images, Br ∈ {0,1}K×N for
the N videos, where the subscripts e and r denote Euclidean
space and Riemannian manifold, respectively, and K is the
hash code length in the final common Hamming space.

4.2. Hash Learning Architecture

As xi and Yi are heterogeneous, it is not trivial to embed
them into a common Hamming space directly. To this end,
we devise a two-step architecture inspired by [16] [18] to
fill the heterogeneous gap and accomplish the common em-
bedding (see Fig. 2). Specifically, in the first step, on the
Riemannian manifold side, we propose to map the Rieman-
nian manifold Sym+

d into a high dimensional Reproducing
Kernel Hilbert Space (RKHS) Hr via η(Yi) : Sym+

d →Hr.
There are two advantages by doing this, 1) the mapping
transforms the non-linear Riemannian manifold into a (lin-
ear) Hilbert space, thus making it possible to utilize algo-
rithms designed for Hilbert space with manifold valued da-
ta; 2) as evidenced by the theory of kernel methods in Eu-
clidean space, it yields a much richer representation of the
original data distribution [13] [8] [14] [39] [36] [20] [15].
On the Euclidean space side, we can also map the Euclidean
space Rd to another RKHS He via ϕ(xi) : Rd →He with-
out loss of generality. After the first-step mappings, gap be-
tween the two original heterogeneous spaces (i.e., Rd and
Sym+

d ) is dramatically reduced to that between two Hilbert
spaces (i.e., He and Hr), and more importantly, this facil-
itates the subsequent hash functions learning. In the sec-

ond step, based on the two Hilbert spaces, we learn a com-
mon discriminant Hamming space, through iteratively opti-
mizing intra- and inter-space discriminability measured by
Hamming distance in a max-margin framework, to guaran-
tee the stability of hash functions of the two heterogeneous
spaces.

4.3. Objective Function

To learn a desirable hash functions for the two Hilbert s-
paces, we believe that three principles need to be taken into
consideration, 1) discriminability: the common Hamming
space should be first discriminant, where the Hamming dis-
tance between samples of the same category should be mini-
mized, meanwhile samples of distinct categories should bet-
ter have quite different hash codes; 2) stability: let’s imag-
ine each hash function (i.e., each bit) as a split in the Hilbert
space, we want the splits to be as stable as possible. Intu-
itively, a split is stable when it has large margins from sam-
ples around it [11]. Think about such a disillusionary situa-
tion where a split crosses an area with dense samples, many
actually neighboring samples will be inevitably assigned d-
ifferent hash values. In a nutshell, similar samples in the
feature space should be mapped to similar hash codes with-
in a short Hamming distance; 3) compatibility: due to the
heterogeneous representations of two mediums (i.e., images
and videos), we should consider not only the intra- but al-
so the inter-space discriminability constraints. Having such
principles in mind, we formulate our objective function in
Eqn. (2),

min
We,Wr ,ξe,ξr ,Be,Br

λ1Ee +λ2Er +λ3Eer

+ γ1 ∑
k∈{1:K}

∥∥∥wk
e

∥∥∥2
+C1 ∑

k∈{1:K}
i∈{1:N}

ξ
ki
e

+ γ2 ∑
k∈{1:K}

∥∥∥wk
r

∥∥∥2
+C2 ∑

k∈{1:K}
i∈{1:N}

ξ
ki
r

(2)

s.t.Bki
e = sgn(wk

e
T

ϕ(xi)),∀k ∈ {1 : K}, i ∈ {1 : N}

Bki
r = sgn(wk

r
T

η(Yi)),∀k ∈ {1 : K}, i ∈ {1 : N}

Bki
r (w

k
e

T
ϕ(xi))≥ 1−ξ

ki
e ,ξ ki

e > 0,∀k ∈ {1 : K}, i ∈ {1 : N}

Bki
e (w

k
r

T
η(Yi))≥ 1−ξ

ki
r ,ξ ki

r > 0,∀k ∈ {1 : K}, i ∈ {1 : N},

where Bki
∗ is the hash value of the ith sample using the kth

split (hash function), wk
∗ is the weight vector corresponding

to the kth split, ξ ki
∗ is the slack variable corresponding to the

ith sample of the kth split.
In Eqn. (2), the first three terms, i.e., Ee, Er, and

Eer, denote the discriminability energy constraints in Eu-
clidean space, Riemannian manifold, and cross-Euclidean-
Riemannian space. The formulations of them can be found
in Eqn. (3), Eqn. (4), and Eqn. (5), where d(·, ·) can be
any distance in the Hamming space, and λe, λr, and λer



are the pre-computable trade-off parameters to balance the
within-, between-category scales. The original intention to
design these energy functions is to minimize the Hamming
distance between samples of the same category, and mean-
while maximize the Hamming distance between samples
from different categories.

Ee=∑
c∈{1:C}

∑
m,n∈c

d(Bm
e ,B

n
e)−λe ∑

c1∈{1:C}
p∈c1

∑
c2∈{1:C}

c1 6=c2,q∈c2

d(Bp
e ,B

q
e) (3)

Er =∑
c∈{1:C}

∑
m,n∈c

d(Bm
r ,B

n
r )−λr ∑

c1∈{1:C}
p∈c1

∑
c2∈{1:C}

c1 6=c2,q∈c2

d(Bp
r ,B

q
r ) (4)

Eer =∑
c∈{1:C}

∑
m,n∈c

d(Bm
e ,B

n
r )−λer ∑

c1∈{1:C}
p∈c1

∑
c2∈{1:C}

c1 6=c2,q∈c2

d(Bp
e ,B

q
r ) (5)

The fourth and fifth terms in Eqn. (2) correspond to the
stability constraint on hash functions in Euclidean space,
which is accomplished by SVM in practice with its inher-
ent max-margin property. Similarly, the sixth and seventh
terms in Eqn. (2) correspond to the stability constraint on
hash functions in Riemannian manifold. The compatibility
constraint is reflected in two aspects: one is the inter-space
discriminability energy term Eer, and the other is the cross
training scheme incorporated in the last two constraint con-
ditions in Eqn. (2). The motivation behind the cross train-
ing scheme lies in the pairwise structure of training data. In
particular, we would like to make the two elements (i.e., xi
and Yi) in a pair share the same code, so cross space training
naturally serves as an effective way to achieve it, which def-
initely strengthens the connection between the two spaces at
the same time.

4.4. Iterative Optimization

While it is intractable to find the global minimum of
the objective function, here we try to seek a local opti-
ma to obtain good hash codes, which are capable of yield-
ing desirable results. In particular, we exploit an iterative
block coordinate descent method [34] to go down the ob-
jective function. The whole optimization procedure is for-
mulated in Algorithm 1. Here we describe it step by step.
First of all (line 1), the aforementioned two mappings, i.e.,
ϕ(xi) : Rd →He, and η(Yi) : Sym+

d →Hr, are usually im-
plicit in practice. Hence, taking the Euclidean space map-
ping ϕ(·) as an example, we use the kernel trick [4] by ex-
pressing the weight vector wk

e as a linear combination of all
the training samples in the mapped Hilbert space He as

wk
e =

N

∑
i=1

uki
e ϕ(xi), (6)

where uki
e is the ith expansion coefficient. Therefore,

wk
e

T
ϕ(x j) =

N

∑
i=1

uki
e ϕ(xi)

T
ϕ(x j) = uk

e
T

K· je , (7)

Algorithm 1 Optimization
INPUT: Training samples from heterogeneous spaces, i.e.,
{xi,Yi, li}, where xi ∈ Rd , Yi ∈ Sym+

d , i ∈ {1,2, ...,N},
li ∈ {1,2, ...,C}.
OUTPUT: Be,Br ∈ {0,1}K×N .
1. Compute kernel matrices Ke,Kr ∈ RN×N with Eqn. (8)
and Eqn. (9)
2. Ve ∈ RN×K , Vr ∈ RN×K ← KGMMFA or KCCA(Ke,Kr)
3. Be ← sgn(Ve

T Ke)
4. Br ← sgn(Vr

T Kr)
5. repeat
6. Optimize Be with Eqn. (3)
7. Optimize Br with Eqn. (4)
8. Train K kernel SVMs on Ke to update Ue by using Br as
training labels, and inversely train another K kernel SVMs
on Kr to update Ur by using Be as training labels, where
Ue = [u1

e ,u
2
e , ...,u

K
e ] ∈ RN×K , and Ur = [u1

r ,u
2
r , ...,u

K
r ] ∈

RN×K

9. Be ← sgn(Ue
T Ke)

10. Br ← sgn(Ur
T Kr)

11. Optimize B = [Be,Br] ∈ {0,1}K×2N with Eqn. (5) to
further update Be and Br
12. Train K kernel SVMs on Ke to update Ue by using Br as
training labels, and inversely train another K kernel SVMs
on Kr to update Ur by using Be as training labels
13. until Convergence
14. Be ← sgn(Ue

T Ke)
15. Br ← sgn(Ur

T Kr)

where uk
e is an N × 1 column vector with its ith entry be-

ing uki
e , and K· je is the jth column of the kernel matrix

Ke ∈ RN×N . Here Ke is an N×N kernel matrix for the Eu-
clidean points, which is computed as follows,

Ki j
e = ϕ(xi)

T
ϕ(x j) = exp(−

∥∥xi− x j
∥∥2

2
2σe2 ). (8)

Similarly, Kr ∈ RN×N is the kernel matrix for the Rieman-
nian points, which is computed by Eqn. (9).

Ki j
r = η(Yi)

T
η(Y j) = exp(−

∥∥log(Yi)− log(Y j)
∥∥2

F
2σr2 ) (9)

Without loss of generality, in this paper we use Gaussian
kernel on the Euclidean space side, and Gaussian-logarithm
kernel [36] [20] on the Riemannian manifold side. In both
kernel functions, σe and σr can be easily set to the mean
distances of training samples. Actually, the kernel mapping
mainly severs as a building block to complete the first map-
ping step and HER welcomes and is compatible with any
reasonable explicit or implicit kernel for both spaces.

After the computation of two kernel matrices, i.e., Ke
and Kr, we use Kernelized Generalized Multiview Marginal



Fisher Analysis (KGMMFA) [32] or Kernelized Canonical
Correlation Analysis (KCCA) [16] to embed the two Hilbert
spaces (i.e., He and Hr) into a common Euclidean space for
hash codes initialization (line 2∼line 4). After the initial-
ization, we proceed by iterating five steps in sequence (line
5∼line 13). First, we optimize Eqn. (3) and Eqn. (4) to up-
date Be and Br for promoting the intra-space discriminabili-
ty. Here we use the binary optimization algorithm proposed
in [30]1 with an efficient subgradient descent. Second, we
use the updated B∗ to train K two-class kernel SVMs for
each Hilbert space. Specially, we adopt the cross training
strategy by using Be as training labels to train the Rieman-
nian manifold side SVMs with kernel matrix Kr, and vice
versa. This strategy was proven to be effective especially
for pairwise training samples [29] [27]. Third, update the
current value of B∗ to reflect the hash codes that these SVM-
s actually yield. Fourth, Be and Br are mixed together to be
optimized with Eqn. (5) for promoting the inter-space dis-
criminability. Fifth, the same as the second step, i.e, cross
training the SVMs with the updated B∗. The optimization
is finished once converged, and usually in practice a couple
of iterations can lead to convergence and good hash codes
(please refer to our supplementary material).

4.5. Discussion

Application Scope: The Riemannian manifold in this
paper is not limited to that spanned by covariance matrices.
In fact, video modeling methods like linear subspaces (s-
panning Grassmann manifold), affine subspaces (spanning
affine Grassmann manifold) can also be involved in our
framework. Moreover, our framework is not limited to Eu-
clidean space v.s. Riemannian manifold. Actually, it pro-
vides down-level compatibility, e.g., Euclidean space v.s.
Euclidean space, and Riemannian manifold v.s. Riemanni-
an manifold. Furthermore, as a general heterogeneous hash
learning framework, our methodology opens a new way to
any potential practical application in which data come from
heterogeneous spaces.

Parameters Sensitivity: Although quite a few parame-
ters are observed in Eqn. (2), the proposed method is pa-
rameter insensitive as the objective function is optimized in
an iterative manner for each component separately, i.e., λ1,
λ2, λ3, γ1, and γ2 mainly play the role of balancing each
component, and were simply set to equally weight those
components (λ1, λ2, λ3 are set to 1, and γ1, γ2 are set to
0.5). Besides, the only substantial parameters are the soft
margin parameters C1 and C2, which were simply set to 1 as
standard SVM.

1This optimization algorithm can guarantee the code diversity in two
aspects: a) bit-wise balance: for each training sample, the algorithm guar-
antees the balance of bit numbers of -1 and 1; b) sample-wise balance: for
each bit, the algorithm guarantees the balance of distributions of -1 and 1
on all the training samples.

Initialization Option: The initialization of our method
is not limited to KGMMFA and KCCA. Theoretically, any
one of the Kernelized Multi-view Learning (KML) [32]
methods is competent for this purpose (please find more re-
sults in supplementary material).

Kernel Scalability: Inevitably, kernel methods often s-
cale imperfectly with large data size. Fortunately, a series
of mathematically principled solutions, e.g., linear random
projections [1], low-rank approximation [9], and random
features [28], have been well established that are just tai-
lored to the further need of scalability. Moreover, observed
from experimental results in Section 5, only a couple of
hundred training samples can achieve satisfactory perfor-
mance.

5. Experiments
In this section, we evaluate our method, i.e., HER2, on

face video retrieval task with two challenging TV-Series.
Specifically, we conduct two groups of comparisons, i.e.,
HER vs. Single Modality Hash (SMH) learning methods in
Section 5.2, and HER vs. Multiple Modalities Hash (MMH)
learning methods in Section 5.3.

5.1. Databases and Experimental Settings

Databases: The first one consists of 3341 face videos of
the first 6 episodes from season 1 of the Big Bang Theory
(BBT), and the second one consists of 4779 face videos
of the first 6 episodes from season 5 of Buffy the Vampire
Slayer (BVS). These two TV-Series are quite different in
their filming styles, and therefore pose different challenges.
BBT is a sitcom (about 20 minutes an episode) mostly
taking place indoors with a main cast of 5∼8 characters.
It includes many full-view shots which contain multiple
characters at a time, however the faces are rather small (an
average of 75px face size). On the other hand, BVS has
about 40 minutes an episode, with a main cast size around
12 sometimes up to 18 in specific episodes. Many shots
are set at night and outdoors, resulting in a large range of
different illumination. However, it also contains a sizable
number of face close-up shots (an average of 116px face
size). We use the extracted face videos represented by block
Discrete Cosine Transformation (DCT) feature as used in
[5]. More specifically, each face frame is represented with a
240-d DCT feature, and thus forms a 240×240 covariance
video representation. Faces are aligned and normalized
without special preprocessing, and nothing constraint is
added to query image. The distribution of face videos per
character can be found in supplementary material.

Experimental Settings: The initialization of Algorithm
1 was accomplished by KGMMFA, because KGMMFA

2The matlab implementation of HER can be downloaded from http:
//vipl.ict.ac.cn/resources/codes.

http://vipl.ict.ac.cn/resources/codes
http://vipl.ict.ac.cn/resources/codes


Table 1: Comparison with the state-of-the-art single modality and multiple modalities hash learning methods with mAP on
two databases. K means the length of hash code.

Type Method the Big Bang Theory Buffy the Vampire Slayer
K = 16 K = 32 K = 64 K = 128 K = 16 K = 32 K = 64 K = 128

single modality
hash learning method

LSH [19] 0.2086 0.2092 0.1963 0.1994 0.1508 0.1517 0.1568 0.1578
SH [41] 0.2652 0.2665 0.2623 0.2673 0.2046 0.2237 0.2177 0.2222
ITQ [12] 0.3025 0.2989 0.3029 0.3060 0.1848 0.1972 0.2265 0.2457
SSH [37] 0.2855 0.2662 0.2584 0.2586 0.2193 0.2202 0.2141 0.2120
DBC [30] 0.4495 0.4235 0.4005 0.3867 0.3858 0.4460 0.4707 0.4547
KSH [23] 0.4366 0.4454 0.4567 0.4604 0.3542 0.4149 0.4385 0.4517
SITQ [12] 0.3909 0.4298 0.4576 0.4799 0.3869 0.4580 0.4738 0.4990

multiple modalities
hash learning method

CMSSH [6] 0.2047 0.2143 0.2024 0.2478 0.1569 0.1559 0.1593 0.1688
CVH [22] 0.2110 0.2092 0.2231 0.2407 0.1579 0.1570 0.1644 0.1900

PLMH [43] 0.2447 0.2461 0.2487 0.2608 0.1859 0.1800 0.1828 0.1853
PDH [29] 0.2949 0.2903 0.3095 0.2916 0.1769 0.1865 0.1846 0.1980

MLBE [44] 0.2600 0.2648 0.3917 0.3858 0.1550 0.1720 0.1759 0.1840
MM-NN [26] 0.3955 0.4664 0.5124 0.4922 0.2207 0.2681 0.3671 0.4045

Ours HER 0.5049 0.5227 0.5490 0.5539 0.3770 0.4852 0.5281 0.5877

utilizes more discriminant information compared with
KCCA in which only side information is used. The length
of hash code ranges from 16 to 128, as no more obvious
performance improvement is observed with 256 bits. For
the competing methods, source codes of them were kindly
provided by the original authors. For fair comparison,
important parameters of each method were empirically
tuned according to the recommendations in the original
references as well as the source codes.

Tasks and Measurements: Our task is conducting face
video retrieval with image query. The images were ac-
quired by randomly extracting a frame from each video. For
each database, we randomly selected 300 image-video pairs
(both elements of the pair come from the same subject) for
training (300 is a trade-off between retrieval accuracy and
computational cost), and then selected 100 images from the
rest as query for the retrieval task. For quantitative evalua-
tion, we use the standard definitions of mean Average Pre-
cision (mAP) and precision recall curves calculated among
the range of whole database as measurements. For space
limitation, we only show the evaluation on image query vs.
video database, and actually HER is also qualified to the in-
verse task, i.e., video query vs. image database (please find
corresponding results in supplementary material).

5.2. Comparison with Single Modality Hash Learn-
ing Methods

Strictly speaking, SMH learning methods are not quali-
fied to accomplish the cross-modality matching task. Nev-
ertheless, our task has its own characteristic, where video is
just composed of frames which actually are images. There-
fore, as mentioned in Section 1, we can straightforwardly
treat video as a set of separated frames, then compute the
similarities between the image and each frame, and finally
integrate such similarities by computing the average (in fac-
t, we had evaluated the maximum, minimum, and average

strategies. Here only the average version is shown because
of its relatively higher performance).

In this group of experiment, we compare HER with sev-
en representative SMH learning methods, including LSH
[19], SH [41], ITQ [12], SSH [37], DBC [30], KSH [23],
and SITQ [12]. The performance comparison is shown
in top rows of Table 1. According to the results on t-
wo databases, we have the following two consistent ob-
servations: 1) Our method outperforms the SMH learn-
ing methods as expected. This is partly attributable to the
promising holistic modeling of video by covariance matrix,
which can characterize all kinds of complicated variation-
s in face video, including illumination, head pose, facial
expression, etc; 2) Supervised SMH methods, i.e., DBC,
KSH, SITQ, unsurprisingly outperform the unsupervised
and semi-supervised ones. This mainly benefits from the
identity label information utilized during the hash functions
learning. We can also observe that, in some specific setting,
e.g., BVS database with 16 bits hash code, SITQ even sur-
passes HER. However, the core superiority of our method
is the compact representation for videos. Note that, under
fixed hash code length for a k-frame video, SMH learning
methods will cost k times of bits as much as ours. In case
of large volume video, this gap will be unaffordable.

5.3. Comparison with Multiple Modalities Hash
Learning Methods

As pointed before, traditional MMH learning methods
can only deal with the restricted situation, where the modal-
ities are all represented in Euclidean spaces. Therefore, to
conduct the comparison, we have to modify these method-
s by applying an explicit Riemannian kernel map ϑ(·) as
[39] to map the covariance matrices Y from Riemannian
manifold Sym+

d to Euclidean space Rd×d , i.e., ϑ(Y ) : Y →
log(Y ). After that, traditional MMH learning methods can
be applied to our task.

In this group of experiment, we compare HER with six



representative MMH learning methods, including CMSSH
[6], CVH3 [22], PLMH [43], PDH [29], MLBE [44], and
MM-NN [26]. The mAP comparison is shown in bottom
rows of Table 1. Moreover, as this class of methods are
closely related to our method, we also show the precision
recall curves in Fig. 4 (please find more results in supple-
mentary material).

We can see that HER significantly outperforms all the
competing methods, due to their inherent limitations as ex-
plained below: CMSSH ignores the intra-modality rela-
tional information which could be very useful for cross-
modality matching; CVH is limited to a relatively narrow
class of globally linear multiple modalities hash function
learning that often cannot capture well the structure of the
data for each modality; PDH only uses the side information
which is doomed to limited discriminability; MLBE has
limitations on the restrictive global intra-modality weight-
ing matrices involved in the probabilistic model; PLMH
models the complex structure of datasets via using differen-
t hash functions at different locations, but a lot of sensitive
parameters need to be tuned; compared with the above ones,
MM-NN performs the best based on a coupled siamese neu-
ral network architecture.

In contrast, the superiority of our method against tra-
ditional multiple modalities hash learning methods main-
ly benefits from three points: 1) the integration of intra-
and inter-space discriminability constraints (i.e., Ee, Er,
and Eer) via an iterative optimization based on Hamming
distance; 2) the two-step architecture, i.e., Euclidean s-
pace (Riemannian manifold) to RKHS and then to com-
mon Hamming space, involves nonlinear maps from the o-
riginal spaces into high dimensional Hilbert spaces, which
would yield much richer representations of the original da-
ta distributions; 3) the max-margin strategy accomplished
by SVM further ensures the stability and generalizability of
the learned hash functions, which is a crucial element for
practical retrieval system.

To further justify the effectiveness of the proposed
method, we have also evaluated HER on one more video
surveillance database, and also compared HER with several
representative key-frame based video classification method-
s. For space limitation, please find details in supplementary
material.

6. Conclusions

In this paper, we have proposed a novel heterogeneous
hash learning method named HER, with which two entirely
heterogeneous spaces, e.g., Euclidean space and Riemanni-
an manifold, can be embedded into a common discriminan-
t Hamming space. During the learning of hash functions,

3Because the code is not publicly available, the implementation of CVH
is kindly provided by the MLBE authors
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Figure 4: Comparison with the state-of-the-art multiple
modalities hash learning methods with precision recal-
l curves on two databases. K means the length of hash code.
For space limitation, we only showed experimental results
with 128 bits, and more results can be found in supplemen-
tary material.

three principles - discriminability, stability, and compatibil-
ity - were explored to iteratively optimize the cross-space
hash codes (in a max-margin framework). Extensive exper-
iments on face video retrieval demonstrated the superiori-
ty of our method over the state-of-the-art single modality
and multiple modalities hash learning methods. For future
work, we would like to investigate three possible extension-
s: 1) integration of temporal information with current video
modeling; 2) extension to multiple heterogeneous spaces
embedding from the current dual-space version; 3) appli-
cation to the challenging particular pedestrian retrieval via
massive surveillance video.

Acknowledgements
This work is partially supported by 973 Program un-

der contract No. 2015CB351802, Natural Science Foun-
dation of China under contracts Nos. 61390511, 61222211,
61379083, and the FiDiPro program of Tekes.

References
[1] D. Achlioptas, F. McSherry, and B. Schölkopf. Sampling

techniques for kernel methods. In NIPS, volume 1, page 335.
MIT Press, 2002.
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[5] M. Bäuml, M. Tapaswi, and R. Stiefelhagen. Semi-
supervised learning with constraints for person identification
in multimedia data. In CVPR. IEEE, 2013.

[6] M. Bronstein, A. Bronstein, F. Michel, and N. Paragios.
Data fusion through cross-modality metric learning using
similarity-sensitive hashing. In CVPR, pages 3594–3601.
IEEE, 2010.

[7] H. Cevikalp and B. Triggs. Face recognition based on image
sets. In CVPR, pages 2567–2573. IEEE, 2010.

[8] R. Chaudhry, A. Ravichandran, G. Hager, and R. Vidal. His-
tograms of oriented optical flow and binet-cauchy kernels on
nonlinear dynamical systems for the recognition of human
actions. In CVPR, pages 1932–1939. IEEE, 2009.

[9] P. Drineas and M. W. Mahoney. On the nyström method
for approximating a gram matrix for improved kernel-based
learning. JMLR, 6:2153–2175, 2005.

[10] M. Everingham, J. Sivic, and A. Zisserman. Hello! my name
is... buffy–automatic naming of characters in tv video. 2006.

[11] A. Farhadi, D. Forsyth, and R. White. Transfer learning in
sign language. In CVPR, pages 1–8. IEEE, 2007.

[12] Y. Gong and S. Lazebnik. Iterative quantization: A pro-
crustean approach to learning binary codes. In CVPR, pages
817–824. IEEE, 2011.

[13] J. Hamm and D. Lee. Grassmann discriminant analysis: a
unifying view on subspace-based learning. In ICML, pages
376–383. ACM, 2008.

[14] M. Harandi, C. Sanderson, S. Shirazi, and B. Lovell. Graph
embedding discriminant analysis on grassmannian manifolds
for improved image set matching. In CVPR, pages 2705–
2712. IEEE, 2011.

[15] M. T. Harandi, C. Sanderson, A. Wiliem, and B. C. Lovell.
Kernel analysis over riemannian manifolds for visual recog-
nition of actions, pedestrians and textures. In WACV, pages
433–439. IEEE, 2012.

[16] D. Hardoon, S. Szedmak, and J. Shawe-Taylor. Canonical
correlation analysis: An overview with application to learn-
ing methods. Neural computation, 16(12):2639–2664, 2004.

[17] Y. Hu, A. S. Mian, and R. Owens. Sparse approximated
nearest points for image set classification. In CVPR, pages
121–128. IEEE, 2011.

[18] Z. Huang, R. Wang, S. Shan, and X. Chen. Learning
euclidean-to-riemannian metric for point-to-set classifica-
tion. In CVPR, pages 1677–1684. IEEE, 2014.

[19] P. Indyk and R. Motwani. Approximate nearest neighbors:
towards removing the curse of dimensionality. In ACM
Symposium on Theory of Computing, pages 604–613. ACM,
1998.

[20] S. Jayasumana, R. Hartley, M. Salzmann, H. Li, and M. Ha-
randi. Kernel methods on the riemannian manifold of sym-
metric positive definite matrices. In CVPR, pages 73–80.
IEEE, 2013.

[21] T.-K. Kim, J. Kittler, and R. Cipolla. Discriminative learning
and recognition of image set classes using canonical correla-
tions. PAMI, 29(6):1005–1018, 2007.

[22] S. Kumar and R. Udupa. Learning hash functions for cross-
view similarity search. In IJCAI, pages 1360–1365. AAAI
Press, 2011.

[23] W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang. Su-
pervised hashing with kernels. In CVPR, pages 2074–2081.
IEEE, 2012.

[24] W. Liu, J. Wang, S. Kumar, and S.-F. Chang. Hashing with
graphs. In ICML, pages 1–8, 2011.

[25] J. Lu, G. Wang, and P. Moulin. Image set classification using
holistic multiple order statistics features and localized multi-
kernel metric learning. In ICCV, 2013.

[26] J. Masci, M. Bronstein, A. Bronstein, and J. Schmidhuber.
Multimodal similarity-preserving hashing. PAMI, 2013.

[27] F. Mirrashed and M. Rastegari. Domain adaptive classifica-
tion. In ICCV, pages 2608–2615, 2013.

[28] A. Rahimi and B. Recht. Random features for large-scale
kernel machines. In NIPS, pages 1177–1184, 2007.

[29] M. Rastegari, J. Choi, S. Fakhraei, D. Hal, and L. Davis.
Predictable dual-view hashing. In ICML, pages 1328–1336,
2013.

[30] M. Rastegari, A. Farhadi, and D. Forsyth. Attribute discov-
ery via predictable discriminative binary codes. In ECCV,
pages 876–889. Springer, 2012.

[31] C. Shan. Face recognition and retrieval in video. In Video
Search and Mining, pages 235–260. Springer, 2010.

[32] A. Sharma, A. Kumar, H. Daume, and D. Jacobs. General-
ized multiview analysis: A discriminative latent space. In
CVPR, pages 2160–2167. IEEE, 2012.

[33] J. Sivic, M. Everingham, and A. Zisserman. Person spot-
ting: video shot retrieval for face sets. In Image and Video
Retrieval, pages 226–236. Springer, 2005.

[34] P. Tseng. Convergence of a block coordinate descent method
for nondifferentiable minimization. Journal of optimization
theory and applications, 109(3):475–494, 2001.

[35] O. Tuzel, F. Porikli, and P. Meer. Human detection via clas-
sification on riemannian manifolds. In CVPR, pages 1–8.
IEEE, 2007.

[36] R. Vemulapalli, J. K. Pillai, and R. Chellappa. Kernel learn-
ing for extrinsic classification of manifold features. In CVPR,
pages 1782–1789. IEEE, 2013.

[37] J. Wang, S. Kumar, and S.-F. Chang. Semi-supervised hash-
ing for scalable image retrieval. In CVPR, pages 3424–3431.
IEEE, 2010.

[38] R. Wang and X. Chen. Manifold discriminant analysis. In
CVPR, pages 429–436. IEEE, 2009.

[39] R. Wang, H. Guo, L. S. Davis, and Q. Dai. Covariance dis-
criminative learning: A natural and efficient approach to im-
age set classification. In CVPR, pages 2496–2503. IEEE,
2012.



[40] R. Wang, S. Shan, X. Chen, and W. Gao. Manifold-manifold
distance with application to face recognition based on image
set. In CVPR, pages 1–8. IEEE, 2008.

[41] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In
NIPS, pages 1753–1760, 2008.

[42] O. Yamaguchi, K. Fukui, and K.-i. Maeda. Face recogni-
tion using temporal image sequence. In FG, pages 318–323.
IEEE, 1998.

[43] D. Zhai, H. Chang, Y. Zhen, X. Liu, X. Chen, and W. Gao.
Parametric local multimodal hashing for cross-view similar-
ity search. In IJCAI, pages 2754–2760. AAAI Press, 2013.

[44] Y. Zhen and D.-Y. Yeung. A probabilistic model for mul-
timodal hash function learning. In KDD, pages 940–948.
ACM, 2012.


