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Abstract

Detailed analysis of human action, such as action classi-
fication, detection and localization has received increasing
attention from the community; datasets like JHMDB have
made it plausible to conduct studies analyzing the impact
that such deeper information has on the greater action un-
derstanding problem. However, detailed automatic segmen-
tation of human action has comparatively been unexplored.
In this paper, we take a step in that direction and pro-
pose a hierarchical MRF model to bridge low-level video
fragments with high-level human motion and appearance;
novel higher-order potentials connect different levels of the
supervoxel hierarchy to enforce the consistency of the hu-
man segmentation by pulling from different segment-scales.
Our single layer model significantly outperforms the cur-
rent state-of-the-art on actionness, and our full model im-
proves upon the single layer baselines in action segmenta-
tion.

1. Introduction
In recent years, a great emphasis in video understanding

have been action recognition [33, 28, 17] on large datasets
like UCF101 [30] and HMDB51 [20]. To classify a video,
a number of representations has been proposed, from low-
level features that leverage point trajectories and local ap-
pearance/motion information [33, 34], to high-level features
that create a high-dimension action space [28], leverage hu-
man pose [32], or even unsupervised features learned from
deep neural networks [17].

Despite the progress, however, these methods remain
limited in their ability to supply any deeper information than
the video-wise action label. In reaction, sub-communities
have begun to focus on aspects of the broader video under-
standing problem such as classification of group activities
[22] and human-object interactions [11]. However, these
foci still remain at a coarse granularity and are not suitable
for many applications, such as autonomous driving [23] and

robotic surgery [4], that require precise action boundaries in
space-time.

In contrast, action localization [6, 21] and action detec-
tion [31] directly emphasize the finer “when” and “where”
a particular action of interest occurs in a video. Not only do
these finer action inferences enable a broader set of appli-
cation, Jhuang et al. [16] also recently showed that precise
human silhouette boundaries can impact action classifica-
tion itself. They have recently evaluated the impact that dif-
ferent ground-truth scenarios have on action classification;
they thoroughly annotated data of human actions, and find
that a human “puppet” provides significant help towards
better action classification compared with whole video or
even bounding box constraints of a human action. They,
however, do not pose a solution to automatically localizing
and segmenting the silhouette or action automatically.

One line of work in this direction of automatic ac-
tion segmentation follows a template-matching paradigm in
which templates, which are normally in the form of a se-
quence of bounding boxes or a bounding volume, are used
to localize actions in space-time. The templates are ei-
ther rigid, manually chosen [8, 6] or deformable with flex-
ible properties [31, 35]. Another line of work is driven
by low-level segmentation, such as manually cropped hu-
man segments [18], tubelets [14] which merges supervox-
els [9, 36] using motion, and space-time segments [24] that
seek human-like segments with color, shape and motion
cues. The latest results show that both directions [35, 14]
achieve state-of-the-art performance while [35] use stronger
supervision, such as pose annotation for training, which is
non-trivial to acquire.

Leveraging low-level segmentation such as supervoxels
[9, 36] as a precursor to action segmentation, localization
and classification is a promising direction. It could poten-
tially relax the amount of supervision needed and provides
a general representational framework. However, some chal-
lenges need to be addressed. First, according to the study
from Jhuang et al. [16], whole-human segmentation is bet-
ter than a bounding box comprised of pieces of segments,
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Figure 1. Our system output of human action segmentation, the example is from J-HMDB data set. The segmented regions are rendered
using the original RGB pixels for foreground and the background regions are covered with a transparent black mask.

e.g. [24]. Second, segmentation methods that depend only
on motion, e.g. [14], tends to miss objects or human parts
that are static in the video. For example, it is unclear
whether a person sitting at a desk waving hand will be fully
or partially segmented as foreground. Third, segmentation
quality is vital for further video understanding, thus mak-
ing the selection of segmentation granularity a non-trivial
problem [37, 26] shows.

To these ends, our paper proposes a hierarchical MRF
model for human action segmentation that satisfies the fol-
lowing goals.

• Automatically segments the whole human action sil-
houette, as Fig. 1 shows thus further enabling deeper
video understanding tasks, i.e., action classification
and localization.

• Bridges low-level segmentation and a high-level hu-
man prior to recover both static body parts and diffi-
cult, articulating body parts.

• Improves the segmentation quality by enforcing super-
voxel consistency between different scales (levels) in
the hierarchy.

1.1. Overview of our Method

We first propose a human motion saliency representation
that is able to account for camera motion and balance hu-
man motion and human appearance cues automatically. A
similar concept called “actionness” was proposed by Chen
et al. [5]: it produces a rank ordering of video regions ac-
cording to the degree to which they contain an action, but
the regions to be ranked are small 3D cuboid-volumes (see
Fig. 2f) and the ground-truth is agnostic to the human action
boundaries. Our human motion saliency, on the contrary,
has the human action silhouette naturally incorporated. To
be specific, we estimate foreground motion by forming a
camera model via long term trajectories [3], and obtain a
human prior by DPM-based person models [7]. We com-
pare our human motion saliency with an optical flow based
camera motion estimation method [25] and actionness [5],

and find a +16% relative improvement in actionness rank-
ing. (See Sec. 4.1 for more details.)

Then, to segment the human action, we start by applying
hierarchical graph-based video segmentation [38] to form
a hierarchy of supervoxels. On this hierarchy, we define
an MRF model, using our novel human motion saliency as
the unary term. As Jain et al. [15] noted, supervoxels with
vast temporal-extent variance can make the graph over all
supervoxels brittle. So, instead of choosing frame based
superpixel graph, which may lose the human action bound-
ary, we alternatively design a pairwise potential based on
neighboring supervoxels connected only in the direction of
optical flow. Hence, we only consider pairwise supervoxels
temporally. On the other hand, to address the problem of
static human body parts, we extract a shape prior from the
learned parts of a person-DPM [7] and consider connections
between supervoxels and the shape prior in the pairwise po-
tential.

In this hierarchical MRF, we design an innovative high-
order potential between different supervoxels on different
levels of the hierarchy. Intuitively, supervoxels in higher
levels of the hierarchy carry better human or human parts
semantic meaning, but are more vulnerable to leaks corre-
spondingly. Similarly, supervoxels in lower levels have less
leaks but also carry less semantic meaning. Most existing
approaches manually choose the hierarchy level based on
visual inspection and the optimal choice of hierarchy level
is different based on different videos, Oneata et al. [26]
determine hierarchy level of supervoxels by finding best lo-
calization scores in the training set. Xu et al. [37] propose
a flattening process which select supervoxels from differ-
ent hierarchies of the segmentation by using the uniform
entropy slice criterion. To alleviate leaks and sustain better
semantic information, our high-order potential favors super-
voxels from higher levels with constraints from motion and
appearance cues. The strategy is tailored for the human mo-
tion segmentation problem, and we find it effective in both
our quantitative and qualitative experiments in Sec. 4.2.

Finally, we minimize the energy of the hierarchical MRF
by the α-expansion algorithm [1, 19] and present a method
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Figure 2. Motion saliency and human saliency feature. (a) Original image. (b) Visualization of human saliency response. (c) Initial 2
clusters of trajectories from GMM (red are foreground and blue are background). (d) Visualization of our motion saliency response (Note
that misclassified trajectories from (c) have low response). (e) Visualization of foreground motion estimated with optical flow, used by
[25, 14, 13]. (f) Actionness ranking [5].

to automatically learn the model parameters based on GMM
estimation.

The remaining sections are organized as follows. Sec-
tions 2 and 3 formulate the problem and presents our model
in detail. Section 4 presents quantitative and qualitative
evaluations on our method. Section 5 concludes the paper
and discusses future works.

2. Human Motion Saliency for Human Action
Segmentation

Our approach inputs a video clip containing human ac-
tion and outputs a space-time segmentation that labels all
the human-action pixels as foreground and otherwise as
background. We make no assumptions about the scene con-
text or the level of articulation in the humans; we hence
use datasets such as JHMDB [16], UCF-sports [27], Penn
Action [39] because they contain human action with large
variation, gross deformation and strong camera motion. De-
tailed annotations such as human puppet or pose joints are
available for detailed evaluation.

We begin the discussion of our method with a new ap-
proach to automatically measure human motion saliency.
This new feature can be directly used to localize and rank
human action, which we directly evaluate (Sec. 4), and it
can be used as an action feature for later modeling, as we
do in Sec. 3.

Our human motion saliency incorporate two parts: fore-
ground motion and human appearance information. For
foreground motion estimation, building a camera model is a
natural choice. Current methods for foreground estimation
generally fall into two categories, 1) use optical flow and
RANSAC to find the dominate motion as background mo-
tion [29], and 2) do spectral clustering with long term tra-
jectories and find dominant trajectory group [2]. Our early
experiments show optical flow could be unreliable, see Fig.
2(e) for an example; and clustering of trajectories, though
robust, sometimes could also leave outliers, such as the red
dot in background in Fig. 2(c).

We hence combine these two schemes and propose a new
motion saliency feature, we use the long term trajectories to
build a camera motion model, and then measure the motion

saliency via the deviation from the camera model. We use a
2D parametric affine motion model for the camera motion.

Concretely, given a trajectory set Tr of a video clip with
L frames. The velocity difference between two trajectories
tri and trj at time t is

dt(tr
i, trj) =

1

T
(uit − u

j
t )

2 + (vit − v
j
t )

2 (1)

where uit and vjt denote the motion of tri aggregated over T
frames. We measure tri using the median value of the ve-
locity distances between tri and all the others and further fit
a 1D Gaussian Mixture Model to get two clusters as in [10].
However, without the structure information, the background
trajectories are susceptible to being grouped in foreground
clusters. To alleviate the false clustering, we compute the
affine motion model and fit the trajectory points with the
robust penalty on the background cluster as

θ̂ = arg min
θ

∑
p∈Ω

ρ(rθ(p, t)) (2)

where θ is the affine motion model parameters, ρ(·) is de-
fined as robust Tukey function [12] and rθ(p, t) is the dis-
placed frame difference at trajectory point p on frame t. We
further reweight the motion saliency of all the trajectories
by calculating the mean deviation through the clip. As can
be seen in Fig. 2(d), the misclassified trajectories in (c) are
re-classified to background.

For human appearance information, we use a DPM [7]
person detector trained on PASCAL VOC 2007 and con-
struct a saliency map by averaging the normalized detec-
tion score of all the scale and all components, as shown in
Fig. 2(b). We further encode our foreground motion and
human saliency in supervoxel as presented in Sec. 3.1.

3. Hierarchical MRF Graph Structure
In this section, we introduce our hierarchical Markov

Random Field (MRF) model on the hierarchy of supervox-
els. We denote a graph G consisting of nodes X and edges
E , where X is the set of supervoxels over the entire video
volume and E is the edge set as shown in Fig. 3. As dis-
cussed in Sec. 1, building a graph with all supervoxels from
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Figure 3. Proposed hierarchical MRF graph. Nodes are supervox-
els, candidate edges exist if two supervoxels are neighbors, but are
confirmed only if they are connected by supervoxel optical flow
or overlapping person detectors. Higher-order cliques are defined
by corresponding supervoxels among higher-level supervoxel lev-
els. Only a small subset of nodes and connections are depicted for
simplicity.

a video may lead to a brittle graph due to the large size of
neighbors. Unlike [15], who build the graph with super-
pixels from each frame and propagate them to subsequent
frames, we devise a mechanism to constrain the number
of edges in our graph. Intuitively, we only build an edge
between two supervoxels (xi, xj) when 1) they are neigh-
bors in the direction of optical flow, which finds two super-
voxels that are neighbors temporally, or 2) two supervoxels
are both overlapping with a person detection that has con-
fidence value larger than a certain threshold, which largely
finds two supervoxels that are neighbors spatially but con-
strained by human appearance.

The nodes inside the red dash line in Fig. 3 represents
a confirmed edge. We refer the reader to Sec. 3.1 for a
more detailed presentation. We use V to denote the set of
supervoxels in higher layer of the hierarchy. Each element
v ∈ V represents a higher-order clique (with blue dashed
line representing the correspondence in Fig. 3). And, yv
denotes the set of labels assigned to the supervoxel nodes
belonging to the supervoxel v. We associate a random vari-
able yi ∈ {+1,−1} with every node to represent the label
it may take, which can be either human-with-action (+1) or
background (−1). Our goal is to label all the supervoxels
X = {xi}Ni=1 over the entire video.

3.1. Energy function

Given the graph structure G = (X , E) induced by the
supervoxel hierarchy (E is the set of edges in the graph hier-
archy). We introduce an energy function over G = (X , E)
that enforces hierarchical supervoxel consistency through
higher order potentials derived from supervoxel V .

E(Y ) =
∑
i∈X

Φi(yi) +
∑

(i,j)∈E

Φi,j(yi, yj) +
∑
v∈V

Φv(yv)

(3)

where Φi(yi) denotes unary potential for a supervoxel with
index i, Φi,j(yi, yj) denotes pairwise potential between two
supervoxels with edge, and Φv(yv) denotes high order po-
tential of supervoxels between two layers.

Unary potential: We encode the motion saliency and
human saliency feature into supervoxels to get the unary
potential components:

Φi(yi) = γMMi(yi) + γPPi(yi) + γSSi(yi) (4)

where γM , γP and γS are weights for the unary terms.
Mi(yi) reflect the motion evidence, Pi(yi) and Si(yi) re-
flect the human evidence respectively. Mi(yi) can be calcu-
lated as:

Mi(yi) = exp

− λm
|xi|

∑
trj∈xi

wM (trj)

 (5)

where λm is the scale parameter, wM (trj) is the motion
saliency weight for trajectory trj and |xi| is the size of su-
pervoxel xi.

The human saliency Pi(yi) can be formed as:

Pi(yi) =
1

1− exp(− λp
|xi|

∑
pxj∈xi

wP (pxj))

(6)

where wP (pxj) is the human saliency weight for pixel j.
We use a DPM detection with a person-model trained on
PASCAL VOC 2007 for human detection and form the
saliency map with average of normalized detection score of
all scales and components.

Following [24], background objects with straight bound-
aries are common in man-made scenes, but human body
boundaries contain fewer points of zero curvature. So we
also compute the curvature at all boundary points of each
supervoxel as the shape saliency feature.

Si(yi) = exp

− λs
|xi|

∑
pxjpxk∈Bi

wS(pxj , pxk)

 (7)

where Bi is the set of boundary point in supervoxel xi,
(pxj , pxk) are two nearby pixels and wS is the curvature.

Pairwise potential: As described in Sec. 3, we constrain
the edge space by only two types of neighbors: temporal
supervoxel neighbors and human appearance-aware spatial
neighbors, so we define the pairwise potential as:

Φi,j(yi, yj) = γIIi,j(yi, yj) + γKKi,j(yi, yj)) (8)

where γI and γK are pairwise potential weights. Ii,j(yi, yj)
is the cost between supervoxel i and supervoxel j with hu-
man detection constraints, which ensures the smoothness
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Figure 4. Human with action representation (a) DPM human detec-
tion with root and part bounding box. (b) Corresponding DPM part
mask extracted from PASACAL VOC. (c) supervoxel response for
the part masks. (d) and (e) Supervoxel pairwise connections of
motion saliency map and segmentation respectively, bold line rep-
resent strong connections.

spatially. Note that i and j could be determined as neigh-
bors without pixel-level connection. Ki,j(yi, yj) is the vir-
tual dissimilarity which ensures the smoothness temporally.

The mixture components of a part-based model typically
reflect a number of body parts of human. We exploit this
by defining new potentials which utilize a shape prior for
each part. We incorporate this information in our model by
encouraging the supervoxels in the same human detection
with stronger consensus. Therefore, we define rti to be the
response of supervoxel i given detection on frame t:

rti = strµ
t
r max(µtp) (9)

where str is the root detection score. µtr is percentage that a
superpixel (we use the 2D plane from supervoxel) lies in the
bounding box and µtp is the percentage that the superpixel
lies in the part mask extracted from PASCAL VOC, see Fig
4(b) for an example. The human connection score for two
supervoxel i, and j at frame t is Sti,j = min(rti , r

t
j). Thus

we define

Ii,j(yi, yj) = δ(yi 6= yj) exp(−βI
∑
t∈T

Si,j) (10)

where βI is the scale parameter. Fig. 4 depicts this process.
The temporal smoothness term Ki,j(yi, yj) is defined as

Ki,j(yi, yj) = δ(yi 6= yj) exp(−βDD(xi, xj)) (11)

where D(xi, xj) is the χ2 distance between the histogram
feature of two supervoxels. For each supervoxel, we com-
pute two features: 1) an RGB color histogram with 33 bins
(11 bins per channel), and 2) a histogram of optical flow
with 9 bins.

Higher order potential: We define the hierarchical su-
pervoxel label consistency potential. Different from [15],

which use the higher order potential as temporal smooth-
ness of superpixels, we utilize the connection between dif-
ferent supervoxel hierarchical levels. In practice, we adopt
the Robust Pn model [19] to define the potentials

Φv(yv) =

{
N(yv)

1
Qγmax(v) if N(yv) 6 Q

γmax(v) otherwise

where yv denotes the labels of all the nodes corresponding
to higher-level supervoxel hierarchy v ∈ V . N(yv) is the
number of nodes within v that do not take the dominant
label. Q is a truncation parameter that controls how rigidly
we want to enforce the consistency within the supervoxels
in two layers.

The penalty γmax(v) is a function considering the size,
color and motion diversity of supervoxels. If the foreground
supervoxel and background supervoxel are inappropriately
merged in v, γmax(v) should be large and less penalty is
paid for label inconsistencies. Specifically, γmax(v) =
|yv| exp(−η(σcv + σmv )) where σcv and σmv is the variance
of RGB color as well as motion in supervoxel v.

3.2. Energy minimization and parameters

The energy function defined in Eqn. 3 can be efficiently
minimized using the α-expansion algorithm [19]. Local
color prior is a strong evidence for segmentation. Since we
do not have the initial labeled frame, we use the output of
our first segmentation result and further refine our output by
learning a Gaussian mixture model (GMM) on RGB color
space.

The value of γM , γP and γS reflects the weight for mo-
tion and human cue. For most videos, we set the unary
weights at reasonable value, γM = 6, γP = 4 and γS = 3
in our experiment. However, for videos with little motion,
such as golf, we want the human detection feature to domi-
nate the unary term. Thus, we automatically determine γM
and γP by comparing the mean of estimated gaussian cen-
ters and the mean of all individual distance terms. We em-
pirically found that GMM estimation performs better. But
GMM estimation can fail if µ2 is located on an outlier. In
this case, the values of the two estimations are significantly
different. If the difference is larger than a threshold, we set
γM = 3, γP = 7.

We set the weight parameter γI = γK = 0.1, γH =
2. The scale parameter λm, λp, βI , βD and η are all set
automatically as the inverse of the mean of all individual
distance terms. The truncation parameter Q = 0.3|yv|. We
use the same parameter setting in all dataset.

4. Experiments

To fully evaluate our method, we report results on three
tasks: first, with our human motion saliency feature, we



evaluate actionness ranking and compare with state-of-the-
art methods [5, 25] in Sec. 4.1; second, we evaluate our hu-
man action segmentation with baseline methods that with-
out pairwise or high order terms, in Sec. 4.2; third, with our
segmentation output, we evaluate action classification and
localization with other state-of-the-art methods, in Sec. 4.3.
Dataset As presented in previous sections, our approach
makes no assumptions about scene context, camera motion
or the level of articulation in the humans, so general action
recognition or localization dataset “in-the-wild” is suitable.
In addition, due to the segmentation nature of our method,
we favor data set with ground truth segmentation, e.g., JH-
MDB [16], or at least with bounding box ground truth, e.g.
UCF-Sports [27] and Penn Action [39].

UCF-Sports contains 150 videos over 10 classes with
large human action variation, gross deformation and strong
camera motion, we fully evaluate actionness ranking, action
segmentation, classification and localization on this data set
because it is widely used and evaluated in the community.
We use training/testing split from [5] for these tasks.

JHMDB is a subset of HMDB and contains 928 clips
comprising 21 action categories, all frames are annotated
with a “human puppet”, which we take as our human action
segmentation ground truth for evaluation. We evaluate our
action segmentation and action recognition with this data
set.

Penn Action contains 15 actions and 2326 video clips,
the annotations consist of 2D keypoint positions, in which
we recover ground truth bounding box. We evaluate action
segmentation and recognition with this data set.
Evaluation protocol For actionness evaluation, we fol-
low the protocol of [5]: rank our human motion saliency
map and get mean AP. For action segmentation, with our
output binary mask, we evaluate Intersection Over Union
(IOU) value, precision (IOU over our segmentation area)
and recall (IOU over ground truth area) with ground truth.
Note that ground truth is segmentation mask in JHMDB and
bounding box in UCF-sports and Penn Action data set. For
action recognition, we extract dense trajectory feature [33]
and evaluate a number of settings with segmentations, we
follow the standard bag-of-visual-words procedure to obtain
codebooks with five channels of dense trajectory and train
χ2 kernel SVM for action classification. For action local-
ization, we evaluate mean IOU of our segmentation masks
only when it is correctly classified, and set the IOU as 0
when the mask is misclassified.

4.1. Evaluate Actionness

Following [5], we measure mean average precision
(mAP) of actionness ranking of our motion saliency map
and joint human motion saliency map, described in Sec.
2, and compare with [5] which use a ranking-CRF to rank
the actionness of 3D cuboid volumes, and Motion 2D [25]

subset of video all video
[5] [25] Motion Joint [25] Motion Joint

dive 58.7 63.9 69.5 66.4 58.1 66.7 64.1
golf 61.8 41.9 66.6 66.8 35.2 63.7 69.1
kick 68.7 71.1 73.0 61.3 70.7 67.9 60.7
lift 86.7 61.5 76.4 77.1 67.2 76.1 75.4
ride 18.8 52.4 51.3 52.5 33.1 35.7 42.3
run 48.4 48.2 61.6 61.0 51.5 58.4 59.1
skate 57.6 65.4 81.1 63.8 55.4 57.7 66.6
sw-b 80.1 89.8 87.3 84.4 85.7 80.9 77.3
sw-s 54.0 64.9 78.9 79.5 61.8 72.7 67.0
walk 50.4 55.3 70.3 79.1 40.5 57.1 69.1
Avg. 60.8 61.9 71.8 68.6 56.0 63.9 65.4

Table 1. mAP of our actionness with proposed motion and joint
feature against actionness [5] on UCF sport dataset
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Figure 5. Action segmentation results with IOU measurement on
JHMDB data set. We report three baselines and our full model on
all 21 classes.

which generate foreground motion saliency map with opti-
cal flow and RANSAC. From Table. 1, we can see our hu-
man motion saliency map shows a significant improvement
of more than 10% mAP gain over state-of-the-art method
[5]. In addition, our method needs very limited supervi-
sion (only image-based person models trained with PAS-
CAL VOC), which makes a good potential for further de-
tailed action understanding tasks. We also observe that the
score for whole UCF-Sports data set is much lower than
testing set, which could indicate that the test set has more
human action cues and less noise compared with training
set.

4.2. Human Action Segmentation

We thoroughly evaluate our human action segmentation
methods with all three data sets and all baselines, we denote
U as only using unary potential, U + P as using unary and
pairwise potential, U+P+H as using additional high order
potential and All as our full model. Table. 2 summarizes
mean IOU, mean precision and mean recall, it demonstrates
pairwise potential generally contribute 1% − 3% gain over
the unary potential, and with high order term we observe
another 1%− 3% gain over U + P . Surprisingly, a second
path of inference with additional color prior fromU+P+H
shows another 1% − 4% gain. The score demonstrate the
effectiveness our model. Qualitatively, Fig. 6 illustrates
the ground truth, unary segmentation mask and full model



IOU Precision Recall
U U+P U+P+H All U U+P U+P+H All U U+P U+P+H All

UCF-Sport 40.0 42.1 44.2 47.6 67.8 70.4 73.8 72.8 54.4 55.2 56.3 60.6
J-HMDB 42.7 44.6 45.8 48.8 57.2 60.5 63.0 62.7 70.0 68.0 67.7 72.0
Penn Action 48.9 49.0 49.9 51.5 66.1 67.0 69.6 69.8 68.1 67.7 65.8 69.4

Table 2. Table shows mean IOU (Intersection over union), mean Precision and mean Recall of UCF-Sports, J-HMDB and Penn Action data
sets, with only unary potential(U), unary and pairwise potential (U+P), with high order (U+P+H) and our full model (All).

UCF-Sport JHMDB Penn Action
Baseline DT 83.0 54.4 94.5
Seg DT∗ 93.6 58.6 95.0
GT bbox DT 89.0 55.5 95.4
GT puppet mask DT - 56.2 -

Table 3. Action Recognition results

subset of frames all frame
[21] [24] Ours [24] Ours

dive 43.4 46.7 48.0 44.3 48.3
golf 37.1 51.3 49.6 50.5 50.0
kick 36.8 50.6 36.0 48.3 35.5
lift 68.8 55.0 57.2 51.4 57.1
ride 21.9 29.5 29.8 30.6 29.8
run 20.1 34.3 33.9 33.1 33.7
skate 13.0 40.0 46.1 38.5 45.9
swing-b 32.7 54.8 62.6 54.3 62.3
swing-s 16.4 19.3 53.9 20.6 54.9
walk 28.3 39.5 58.1 39 58.1
Avg. 31.8 42.1 48.1 41.0 48.0

Table 4. Action localization results measured as average IOU (in
%) on the UCF sports dataset

mask, the full model can effectively remove mis-segmented
regions with unary segmentation, e.g. “Diving”, “Riding-
Horse” and “Running”, due to the pairwise and high order
consistency. In addition, our full model may also complete
missing segments with unary segmentation, such as “Golf”
and “Kicking”, possibly because of our human-aware edges
in pairwise potential.

In Fig. 5, we show class-wise segmentation results in JH-
MDB data set, actions with full upright human pose, such
as “golf” and “pull” perform relatively better than actions
with large body motion articulations, e.g. “jump”, or the hu-
man motion is more from small child instead of adult, e.g.
“push”. Qualitatively, in Fig. 6, our automatically gener-
ated masks align very well with ground truth masks. Some
of our masks have leaks due to supervoxel segmentation
such as “pick”, “push” and “sit”, but notably, as the ground
truth is annotated with deforming “puppet”, the alignment
may not be perfect when the human body cannot fit the pup-
pet such as “wave” and “push”. In these cases our method
generate masks that cover whole human body.

4.3. Action Recognition and Localization

After getting human action segmentation, we further
evaluate how it will impact action recognition and local-

ization. First, we extract dense trajectory features inside
1) whole video, 2) our segmentation mask, 3) ground truth
bounding box and 4) ground truth puppet mask (only for
JHMDB). We find using bounding box or segmentation
mask can generally improve classification accuracy over
whole video, and specifically, using segmentation mask
generally get better results than bounding box. The find-
ing is consistent with evaluations from [16] and demon-
strating our method is a plausible tool for better video un-
derstanding. Notably, our UCF-Sports classification accu-
racy achieves +10% gain over recent segmentation-based
video understanding papers [24] (with 81.7%) and [14]
(with 80.24%).

In addition, in JHMDB data set, we find using our seg-
mentation mask achieves even better accuracy than ground
truth puppet mask, which echoes the finding in Sec. 4.2 that
our mask covers more complete human body.

For action localization, we compare average IOU scores
with [21] and [24], although it is not tailored for localiza-
tion, we still achieve 6− 7% gain in mean IOU.

5. Conclusion
In this paper, we introduce a hierarchical MRF model to

automatically segment human action boundaries in videos
“in-the-wild”. We make several contributions, including a
strong human motion saliency feature and a novel higher-
order potentials that connect different granularities of video
segments, to empower accurate action segmentation, and
achieve promising results in several important video under-
standing tasks such as action recognition, localization and
actionness ranking. Our approach needs minimum super-
vision compared with many existing methods, and show
potential for more complex tasks such as human pose es-
timation. In future work, we plan to extend this model and
learn better human action representation for action detec-
tion and human pose estimation in the video. Code for our
method and segmentation results on three datasets are avail-
able from the authors’ website.
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