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Abstract

The estimation of correspondences between two images
resp. point sets is a core problem in computer vision. One
way to formulate the problem is graph matching leading to
the quadratic assignment problem which is NP-hard. Sev-
eral so called second order methods have been proposed
to solve this problem. In recent years hypergraph match-
ing leading to a third order problem became popular as it
allows for better integration of geometric information. For
most of these third order algorithms no theoretical guaran-
tees are known. In this paper we propose a general frame-
work for tensor block coordinate ascent methods for hyper-
graph matching. We propose two algorithms which both
come along with the guarantee of monotonic ascent in the
matching score on the set of discrete assignment matrices.
In the experiments we show that our new algorithms outper-
form previous work both in terms of achieving better match-
ing scores and matching accuracy. This holds in particular
for very challenging settings where one has a high number
of outliers and other forms of noise.

1. Introduction

Graph resp. hypergraph matching has been used in a va-
riety of problems in computer vision such as object recogni-
tion [20], feature correspondences [7, 24], shape matching
[11, 23, 25] and surface registration [27]. Given two sets of
points, the task is to find the correspondences between them
based on extracted features and/or geometric information.
In general, the graph matching problem is NP-hard, there-
fore, many approximation algorithms have been proposed
over the years. They can be grouped into second order and
third order methods.

Among recent second order approaches, Leordeanu and
Hebert [17] proposed the Spectral Matching (SM) algo-
rithm, and Cour et al. [9] the Spectral Matching with Affine
Constraint (SMAC). Both of these methods are based on the

best rank-1 approximation of an affinity matrix. Leordeanu
et al. later on proposed the Integer Projected Fixed Point
(IPFP) algorithm [19], where they optimize the quadratic
objective using a gradient-type algorithm interleaved with
projection onto the discrete constraint set using e.g. the
hungarian method. Lee et al. [15] tackle the graph match-
ing problem using stochastic sampling, whereas Cho et
al. [6] propose a reweighted random walk (RRWM) where
the reweighting jumps are aiming at enforcing the match-
ing constraints. Recently, Cho et al. [8] proposed a novel
max pooling matching (MPM), where they tweak the power
method to better cope with noise in the affinities. Although
the algorithm comes without theoretical guarantees, it turns
out to perform very well in practice, in particular, when one
has a large number of outliers. Other second order methods
include the work of Zhou and Torre [29] and Zaslavskiy
et al. [25], where they propose deformable graph matching
(DGM) and a path-following algorithm respectively.

As second order methods are limited to pairwise similar-
ities between two correspondences, higher order methods
can integrate better geometric information. While they have
higher computational complexity, they can cope better with
geometric transformations such as scaling or other forms
of noise. Compared to second order methods, higher or-
der approaches are less well studied in literature due to the
difficulty in handling the third order optimization problem.

Duchenne et al. [10] formulated the hypergraph match-
ing problem as a third order tensor optimization problem
and proposed a higher order power method for solving the
problem. This approach has shown significant improve-
ments over second order ones which were proposed earlier.
Zass and Shashua [26] introduced a probabilistic view to
the problem, and proposed a Hypergraph Matching (HGM)
algorithm. Their idea is to marginalize the tensor to a vec-
tor and solve again a lower dimensional problem. Cher-
tok and Keller [4] extended this idea and marginalized the
tensor to a matrix, resulting in a second order matching
problem which is solved by spectral methods. Both meth-
ods are based on tensor marginalization, which leads to



a loss of information. Moreover, they cannot effectively
handle the one-to-one matching constraint during the iter-
ations which is only considered at the final discretization
step. Jungminlee et al. [16] extended the reweighted ran-
dom walk approach of [15] to the third order setting. Their
algorithm aims at enforcing the matching constraint via a
bi-stochastic normalization scheme done for each iteration.
In [27], Zeng et al. proposed to use pseudo-boolean opti-
mization [1] for 3D surface matching, where higher order
terms are decomposed into second order terms and then a
quadratic pseudo-boolean optimization (QPBO) [13] algo-
rithm is used to solve the problem.

In this paper, we propose an algorithmic framework for
solving the hypergraph matching problem based on a ten-
sor block coordinate scheme. The key idea of our frame-
work is to use a multilinear reformulation of the original
objective function. In particular, we solve the third order
graph matching problem by solving an equivalent fourth or-
der one. Based on this reformulation, we derive two new hy-
pergraph matching algorithms. We can guarantee for both
algorithms monotonic ascent in the third order matching
score. In the experiments we show that our new algorithms
outperform previous work both in terms of achieving better
matching score and accuracy. This holds in particular for
very challenging settings where one has a high number of
outliers and other forms of noise. All proofs can be found
in the supplement.

2. Hypergraph Matching Formulation

We formulate the correspondence problem as a hyper-
graph matching problem. Hypergraphs allow modeling of
relations which are not only pairwise as in graphs but in-
volve groups of vertices. In this paper, we consider 3-
uniform hypergraphs, that is each hyperedge contains 3 ver-
tices. k-uniform hypergraphs can be modelled as k-th order
tensors which is the point of view we adopt in this paper.

Given two attributed point sets G = (V,A) and G′ =
(V ′, A′) with n1 = |V | ≤ n2 = |V ′|, the matching prob-
lem can be formulated as finding a subset X in the set of
correspondences V × V ′. The subset X can be represented
by the binary assignment matrix X ∈ {0, 1}n1×n2 where
Xij = 1 if vi ∈ V matches v′j ∈ V ′ and Xij = 0 else. A
one-to-one matching X is an element of the set

M =
{
X ∈ {0, 1}n1×n2

∣∣ n1∑
i=1

Xij ≤ 1,

n2∑
j=1

Xij = 1
}
,

that is we consider matchings which assign each vertex of V
to exactly one vertex in V ′. We further assume that we have
a function F3 : (V × V ′)3 → R+ which assigns to each
chosen triple {vi1 , vi2 , vi3} ⊂ V and {v′j1 , v

′
j2
, v′j3} ⊂ V ′

its similarity weight F3
(i1,j1),(i2,j2),(i3,j3)

. Finally, the score

S of a matching X can then be defined as

S(X) =

n1∑
i1,i2,i3

n2∑
j1,j2,j3

F3
(i1,j1),(i2,j2),(i3,j3)

Xi1j1Xi2j2Xi3j3 .

In order to facilitate notation we introduce a linear ordering
in V × V ′ and thus can rewrite X as a vector x ∈ {0, 1}n
with n = n1n2 andF3 becomes a tensor in Rn×n×n so that
the matching score, S3 : Rn → R, is finally written as

S3(x) =

n∑
i,j,k=1

F3
ijk xi xj xk. (1)

An m-th order tensor G ∈ Rn×...×n is called symmetric
if its entries Gi1...im are invariant under any permutation of
their indices {i1, . . . , im}. Note that S3 is the sum of the
componentwise product of the tensor F3 with the symmet-
ric tensor G3ijk = xixjxk. Thus any non-symmetric part of
F3 is “averaged” out and we can without loss of generality
assume that F3 is a symmetric tensor1. In principle, one
can integrate unary terms on the diagonal F3

iii, i = 1, . . . , n
and pairwise potentials F3

ijj , i 6= j. However, the tensors
we consider in Section 5 have just terms of order 3, that is
F3
ijk = 0 if i = j, i = k or j = k.

3. Mathematical Foundations for the Tensor-
Block-Coordinate Ascent Method

In this section we derive the basis for our tensor block
coordinate ascent method to optimize S3 directly over the
set M of assignment matrices. The general idea is to op-
timize instead of a homogeneous polynomial function the
associated multilinear form.

3.1. Lifting the Tensor and Multilinear Forms

Instead of optimizing the third order problem in Equa-
tion (1), we define a corresponding fourth order problem by
lifting the third order tensor F3 to a fourth order tensor F4,

F4
ijkl = F3

ijk + F3
ijl + F3

ikl + F3
jkl. (2)

This might be counter-intuitive at first in particular as pre-
vious work [26, 4] has done the opposite way by reducing
the third order problem to a second order problem. How-
ever, lifting the tensor from a third order tensor to a fourth
order tensor allows us to use structure of even order tensor
which is not present for tensors of odd order. In particular,
the score function S3 is not convex.

Lemma 3.1 Let S3 be defined as in Equation (1). If S3 is
not constant zero, then S3 : Rn → R is not convex.

1If F3 is not already symmetric, then one can define F̃3
ijk =

1
3!

∑
σ∈G3

F3
σ(i)σ(j)σ(k)

, i, j, k = 1, . . . , n where G3 is the set of per-
mutations of three elements.



The convexity is crucial to derive our block coordinate as-
cent scheme. We do not work with the score function di-
rectly but with the multilinear form associated to it.

Definition 3.2 (Multilinear Form) The multilinear form
Fm : Rn × . . . × Rn → R associated to an m-th order
tensor Fm is given by:

Fm(x1, . . . ,xm) =

n∑
i1,...,im

Fmi1...imx1
i1 . . .x

m
im ,

and the score function Sm : Rn → R associated to Fm is
defined by Sm(x) = Fm(x, . . . ,x).

We write F4(x,x, ·, ·) to denote the matrix in Rn×n such
that F4(x,x, ·, ·)kl =

∑n
i,j=1 F4

ijklxixj for all 1 ≤ k, l ≤
n. Note that if F4 is associated to a symmetric tensor, then
the position of the dots do not matter.

It might seem at first that the lift from third to fourth
order defined in (2) should lead to a huge computational
overhead. However,

S4(x) = 4 F3(x,x,x)

n∑
i=1

xi = 4S3(x)

n∑
i=1

xi (3)

and
∑n
i=1 xi = n1, for all x ∈ M , thus we have the fol-

lowing equivalence of the optimization problems,

max
x∈M

F4(x,x,x,x) ≡ max
x∈M

F3(x,x,x) (4)

3.2. Convex Score Functions and Equivalence of
Optimization Problems

The use of multilinear forms corresponding to convex
score functions is crucial for the proposed algorithms. The
following lemma shows that even if we optimize the multi-
linear form F4 instead of S4 we get ascent in S4. We can
either fix all but one argument or all but two arguments,
which leads to the two variants of the algorithm in Sec. 4.

Lemma 3.3 Let F4 be a fourth order symmetric tensor. If
S4 : Rn → R is convex, then for all x,y, z, t ∈ Rn:

1. F4(x,x,y,y) ≤ max
u∈{x,y}

F4(u,u,u,u),

2. F4(x,y, z, t) ≤ max
u∈{x,y,z,t}

F4(u,u,u,u).

The following theorem shows that the optimization of the
multilinear form F4 and the score function S4 are equiva-
lent in the sense that there exists a globally optimal solution
of the first problem which is also globally optimal for the
second problem.

Theorem 3.4 Let F4 be a fourth order symmetric tensor
and suppose that S4 : Rn → R is convex. Then it holds for
any compact constraint set D ⊂ Rn,

max
x∈D

F4(x,x,x,x) = max
x,y∈D

F4(x,x,y,y) (5)

= max
x,y,z,t∈D

F4(x,y, z, t)

As we cannot guarantee that S4 is convex for our chosen
affinity tensor, we propose a modification making it convex.
Importantly, this modification turns out to be constant on the
set of matchings M .

Proposition 3.5 Let F4 be a fourth order symmetric ten-
sor. Then for any α ≥ 3

∥∥F4
∥∥
2
, where

∥∥F4
∥∥
2

:=√∑n
i,j,k,l=1(F4

ijkl)
2, the function

S4
α(x) := S4(x) + α ‖x‖42 (6)

is convex on Rn and, for any x ∈M , we have

S4
α(x) = S4(x) + αn2

1. (7)

One of the key aspects of the algorithms we derive in the
next section is that we optimize the multilinear form F4 in-
stead of the function S4. This requires that we are able to
extend the modification S4

α resp. ‖x‖42 to a multilinear form.

Proposition 3.6 The symmetric tensor G4 ∈ Rn×n×n×n
with corresponding symmetric multilinear form defined as

G4(x,y, z, t) =
〈x,y〉〈z, t〉+ 〈x, z〉〈y, t〉+ 〈x, t〉〈y, z〉

3

satisfies G4(x,x,x,x) = ‖x‖42.

Thus in the algorithm we optimize finally

F4
α(x,y, z, t) = F4(x,y, z, t) + αG4(x,y, z, t).

Discussion: In [21] they proposed a general convexification
strategy for arbitrary score functions where, similar to our
modification, the added term is constant on the set of assign-
ment matrices M . However, as the added term is inhomo-
geneous, it cannot be extended to a symmetric multilinear
form and thus does not work in our framework. In second
order graph matching also several methods use convexified
score functions in various ways [25, 28, 29]. However, for
none of these methods it is obvious how to extend it to a
third order approach for hypergraph matching.



4. Tensor Block Coordinate Ascent for Hyper-
graph Matching

The key idea of both algorithms is that instead of directly
optimizing the score function S4 we optimize the corre-
sponding multilinear form. Lemma 3.3 allows us then to
connect the latter problem to the problem we are actually
interested in. In both variants we directly optimize over the
discrete set M of possible matchings, that is, there is no re-
laxation involved. Moreover, we show monotonic ascent for
both methods. In most cases we achieve higher scores than
all other higher order methods, which is reflected in signifi-
cantly better performance in the experiments in Section 5.

The original graph matching problem is to maximize the
score function S3 over all assignment matrices in M . This
combinatorial optimization problem is NP-hard. As stated
above, instead of working with the original score function
S3, we use the lifted tensor and thus the lifted score func-
tion S4. As we cannot guarantee that S4 is convex, we
optimize finally S4

α resp. the associated multilinear form
F4
α. However, we emphasize that even though we work with

the lifted objects, both algorithms prove monotonic ascent
with respect to the original score function S3 over the set
M . The central element of both algorithms is Lemma 3.3
and the idea to optimize the multilinear form, instead of the
score function directly, combined with the fact that for as-
signment matrices both modifications (lifting and convexifi-
cation) are constant and thus do not change the problem. In
order to simplify the notation in the algorithms we discard
the superscript and write Fα instead of F4

α as the algorithms
only involve fourth order tensors.

4.1. Tensor Block Coordinate Ascent via Linear As-
signment Problems

The first algorithm uses a block coordinate ascent
scheme to optimize the multilinear form Fα. Fixing all but
one argument and maximizing that over all assignment ma-
trices leads to a linear assignment problem which can be
solved globally optimal by the Hungarian algorithm [14, 2]
- this is used for steps 1)-4) in Algorithm 1. However, op-
timization of the multilinear form is not necessarily equiva-
lent to optimizing the score function. This is the reason why
we use Lemma 3.3 in step 5) to come back to the original
problem. The following theorem summarizes the properties
of Algorithm 1.

Theorem 4.1 Let F4 be a fourth order symmetric tensor.
Then the following holds for Algorithm 1:

1. The sequence Fα(xk,yk, zk, tk) for k = 1, 2, . . . is
strictly monotonically increasing or terminates.

2. The sequence of scores S4(um) for m = 1, 2, . . . is
strictly monotonically increasing or terminates. For
every m, um ∈M is a valid assignment matrix.

Algorithm 1: BCAGM

Input: Lifted affinity tensor F4, α = 3
∥∥F4

∥∥
2
,

(x0,y0, z0, t0) ∈M ×M ×M ×M, k = 0, m = 0
Output: x∗ ∈M
Repeat

1. x̃k+1 = arg maxx∈M Fα(x,yk, zk, tk)

2. ỹk+1 = arg maxy∈M Fα(x̃k+1,y, zk, tk)

3. z̃k+1 = arg maxz∈M Fα(x̃k+1, ỹk+1, z, tk)

4. t̃k+1 = arg maxt∈M Fα(x̃k+1, ỹk+1, z̃k+1, t)

5. if Fα(x̃k+1, ỹk+1, z̃k+1, t̃k+1) = Fα(xk,yk, zk, tk)
then

– um+1 = arg max
u∈{x̃k+1,ỹk+1,z̃k+1,t̃k+1}

Fα(u,u,u,u)

– if Fα(um+1,um+1,um+1,um+1) =
Fα(x̃k+1, ỹk+1, z̃k+1, t̃k+1) then return

– xk+1 = yk+1 = zk+1 = tk+1 = um+1

– m = m+ 1

else xk+1 = x̃k+1, yk+1 = ỹk+1, zk+1 = z̃k+1,
tk+1 = t̃k+1

end

6. k = k + 1

3. The sequence of original third order scores S3(um)
for m = 1, 2, . . . is strictly monotonically increasing
or terminates.

4. The algorithm terminates after a finite number of iter-
ations.

We would like to note that all statements of Theorem 4.1
remain valid for α = 0 if S4 is convex. This is also the
motivation why we run the algorithm first with α = 0 until
we get no further ascent and only then we set α = 3‖F‖2.
It turns out that in the experiments often the phase of the al-
gorithm with α = 0 leads automatically to a homogeneous
solution and no further improvement is achieved when set-
ting α = 3‖F‖2. This suggests that the constructed score
functions in the experiments are already convex or at least
close to being convex.

4.2. Tensor Block Coordinate Ascent via a Sequence
of Quadratic Assignment Problems

The second algorithm uses a block coordinate ascent
scheme to optimize the multilinear form Fα where now two
arguments are fixed and one maximizes over the other two.



The resulting problem is equivalent to a quadratic assign-
ment problem (QAP) which is known to be NP-hard. Thus a
globally optimal solution as for the linear assignment prob-
lem in Algorithm 1 is out of reach. Instead we require a
sub-algorithm Ψ which delivers monotonic ascent for the
QAP

max
x∈M

〈x, Ax〉 , (8)

where A ∈ Rn×n is a nonnegative symmetric matrix. As
in Algorithm 1, we go back to the optimization of the score
function in step 3) using Lemma 3.3. The following theo-
rem summarizes the properties of Algorithm 2.

Algorithm 2: BCAGM-Ψ

Input: Lifted affinity tensor F4, α = 3
∥∥F4

∥∥
2
,

(x0,y0) ∈M ×M, k = 0, m = 0,
z = Ψ(A,xk) is an algorithm for the QAP in (8)
which provides monotonic ascent, that is
〈z, Az〉 ≥

〈
xk, Axk

〉
Output: x∗ ∈M
Repeat

1. x̃k+1 = Ψ
(
Fα(·, ·,yk,yk), xk

)
2. ỹk+1 = Ψ

(
Fα(x̃k+1, x̃k+1, ·, ·),yk

)
3. if Fα(x̃k+1, x̃k+1, ỹk+1, ỹk+1) = Fα(xk,xk,yk,yk)

then

– um+1 = arg max
u∈{x̃k+1,ỹk+1}

Fα(u,u,u,u)

– if Fα(x̃k+1, x̃k+1, ỹk+1, ỹk+1) =
Fα(um+1,um+1,um+1,um+1) then return

– xk+1 = yk+1 = um+1

– m = m+ 1

else xk+1 = x̃k+1, yk+1 = ỹk+1.
end

4. k = k + 1

Theorem 4.2 Let F4 be a fourth order symmetric tensor
and let Ψ be an algorithm for the QAP which yields mono-
tonic ascent. Then the following holds for Algorithm 2:

1. The sequence Fα(xk,xk,yk,yk) for k = 1, 2, . . . is
strictly monotonically increasing or terminates.

2. The sequence of scores S4(um) for m = 1, 2, . . . is
strictly monotonically increasing or terminates. For
every m, um ∈M is a valid assignment matrix.

3. The sequence of original third order scores S3(um)
for m = 1, 2, . . . is strictly monotonically increasing
or terminates.

4. The algorithm terminates after a finite number of iter-
ations.

In analogy to Theorem 4.1 all statements of Theorem 4.2
remain valid for α = 0 if S4 is convex. Thus we use the
same initialization strategy with α = 0 as described above.
There are several methods available which we could use for
the sub-routine Ψ in the algorithm. We decided to use the
recent max pooling algorithm [8] and the IPFP algorithm
[19] and use the Hungarian algorithm to turn their output
into a valid assignment matrix in M . It turns out that the
combination of our tensor block coordinate ascent scheme
using their algorithms as a sub-routine yields very good per-
formance on all datasets.

5. Experiments
We evaluate our hypergraph matching algorithms on

standard synthetic benchmarks and realistic image datasets
by comparing them with state-of-the-art third order and sec-
ond order approaches. In particular, we use the following
third order approaches: Tensor Matching (TM) [10], Hyper-
graph Matching via Reweighted Random Walks (RRWHM)
[16], Hypergraph Matching (HGM) [26]. For second
order approaches, Max Pooling Matching (MPM) [8],
Reweighted Random Walks for Graph Matching (RRWM)
[6], Integer Projected Fixed Point (IPFP) [19], and Spec-
tral Matching (SM) [17] are used. We denote our tensor
block coordinate ascent methods as BCAGM from Algo-
rithm 1 which uses the Hungarian algorithm as subroutine,
and BCAGM+MP and BCAGM+IPFP from Algorithm 2
which uses MPM [8] and IPFP [19] respectively as subrou-
tine. MPM has recently outperformed other second order
methods in the presence of a large number of outliers with-
out deformation. Thus, it serves as a very competitive can-
didate with third order approaches in this setting. For all the
algorithms, we use the authors’ original implementation.

In all experiments below, we use the all-ones vector as
starting point for all the methods. Moreover, we apply the
Hungarian algorithm to the output of every algorithm to turn
it into a proper matching.

Generation of affinity tensor/matrix: To build the
affinity tensor for the third order algorithms, we follow the
approach of Duchenne et al. [10]: for each triple of points
in the same image we compute a feature vector f based
on the angles of the triangle formed by those three points.
Let fi1,i2,i3 and fj1,j2,j3 denote two feature vectors for two
triples (i1, i2, i3) and (j1, j2, j3) in two corresponding im-
ages. Then we compute the third order affinity tensor as:

F3
(i1,j1),(i2,j2),(i3,j3)

= exp(−γ ‖fi1,i2,i3 − fj1,j2,j3‖
2
2)

(9)
where γ is the inverse of the mean of all squared distances.
As shown by Duchenne et al. [10] these affinities increase



the geometric invariance compared to second order models
making it more robust to transformations, like translations,
rotations and scalings. This partially explains why third or-
der approaches are preferred to second order ones in this
regard. As the computation of the full third order affinity
tensor is infeasible in practice, we adopt the sampling strat-
egy proposed by [10, 16].

The affinity matrix for all the second order methods are
built by following [8, 6], where the Euclidean distance of
two point pairs is used to compute the pairwise similarity:

F2
(i1,j1),(i2,j2)

= exp(−|dPi1i2 − d
Q
j1j2
|
2
/σ2

s) (10)

where dPi1i2 is the Euclidean distance between two points
i1, i2 ∈ P , dQj1j2 is the distance between the points j1, j2 ∈
Q and σs is a normalization parameter specified below.

5.1. Synthetic Dataset

This section presents a comparative evaluation on match-
ing point sets P and Q in R2. We follow the approach in
[8] for the creation of the point sets. That is, for P we sam-
ple nin inlier points from a Gaussian distribution N (0, 1).
The points inQ are generated by adding Gaussian deforma-
tion noise N (0, σ2) to the point set P . Furthermore, nout
outlier points are added to Q sampled from N (0, 1). We
test all matching algorithms under different changes in the
data: outliers, deformation and scaling (i.e. we multiply the
coordinates of the points in Q by a constant factor).

In the outlier setting, we perform two test cases as fol-
lows. In the first test case, we vary the number of outliers
from 0 to very challenging 200, which is 20-times more than
the number of inliers nin, while σ is set to 0.01 and no scal-
ing is used. In the second case, we set σ to 0.03 and scale all
the points inQ by a factor of 1.5, making the problem much
more difficult. This test shows that third order methods are
very robust against scaling compared to second order meth-
ods. In all the plots in this section, each quantitative re-
sult was obtained by averaging over 100 trials. The accu-
racy is computed as the ratio between the number of correct
matches and the number of inlier points. We use σs = 0.5
in the affinity construction for the second order methods as
suggested by [8]. The results in Figure 1 show that our al-
gorithms are robust w.r.t. outliers even if deformation and
scaling are involved. When the deformation is negligible
as shown in Figure 1a, MPM and BCAGM+MP perform
best followed by BCAGM, BCAM+IPFP and RRWHM. In
a more realistic setting as shown in Figure 1b, where out-
lier, deformation and scaling are present in the data, our
algorithms outperform all other methods. One can state that
BCAGM+MP transfers the robustness of MPM to a third
order method and thus is able to deal with scaling which is
difficult for second order methods.

In the deformation setting, the deformation noise σ is
varied from 0 to challenging 0.4 while the number of inliers
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Figure 2: Robustness of matching algorithms w.r.t. defor-
mation. (nin = 20, nout = 0, scale = 1.)

(a) 34 pts vs 44 pts, 10 outliers (b) TM 10/34 (1715.0)

(c) HGM 9/34 (614.7) (d) RRWHM 28/34 (5230.5)

(e) BCAGM 28/34 (5298.8) (f) BCAGM+MP 34/34 (5377.3)

Figure 4: Car dataset: the number of correct matches and
the objective score are reported. (Best viewed in color.)

nin is fixed to 20. There are no outlier and scale changes
in this setting. This type of experiment has been used in
previous works [8, 16]. where σ has been varied from 0 to
0.2. The result in Figure 2 shows that our algorithms are
quite competitive with RRWHM which has been shown to
be robust to deformation [16]. It is interesting to note that
while MPM is very robust against outliers (without scal-
ing) it is outperformed if the deformation is significantly in-
creased (without having outliers). However, note that even
though our BCAGM+MP uses MPM as a subroutine, it is
not affected by this slight weakness. Considering all ex-
periments our BCAGM+MP and to a slightly weaker extent
BCAGM and BCAGM+IPFP outperform all other methods
in terms of robustness to outliers, deformation and scaling.
Runtime: Figure 1 shows that the running time of our al-
gorithms is competitive in comparison to other higher order
and even second order methods. In particular, BCAGM is
always among the methods with lowest running time (more
results in the supplementary material).

5.2. CMU House Dataset

The CMU house dataset has been widely used in previ-
ous work [6, 16, 10, 29] to evaluate matching algorithms. In
this dataset, 30 landmark points are manually tracked over a
sequence of 111 images, which are taken from the same ob-
ject under different view points. In this experiment, “base-
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Figure 1: Matching point sets in R2: each row shows the accuracy, matching score and running time of all algorithms. The
number of outliers has been varied from 0 to 200. (a) Increasing number of outliers with slight deformation and no scaling.
(b) Increasing number of outliers with larger deformation and scaling. (Best viewed in color.)

(a) 23 pts vs 28 pts, 5 outliers (b) TM 9/23 (2502.6)

(c) HGM 7/23 (1435.8) (d) RRWHM 16/23 (4059.4)

(e) BCAGM 19/23 (4016.2) (f) BCAGM+MP 16/23 (4133.6)

Figure 5: Motorbike dataset: the number of correct matches
and the objective score are reported. (Best viewed in color.)

line” denotes the distance of the frames in the sequence and
thus correlates well with the difficulty to match the corre-
sponding frames.

We matched all possible image pairs with “baseline”
of 10, 20, 30, . . . , 100 frames and computed the average
matching accuracy for each algorithm. The algorithms are
evaluated in three settings. In the first experiment, we match
30 points to 30 points. Then we make the problem signifi-

cantly harder by randomly removing points from one image
motivated by a scenario where one has background clutter
in an image and thus not all points can be matched. This
results in two matching experiments, namely 10 points to
30 points, and 20 points to 30 points. For the choice of σs
in the affinity tensor for second order methods, we follow
[6, 29] by setting σs = 2500.

The experimental results are shown in Figure 3. While
most algorithms perform rather well on the 30 to 30 task,
our methods perform significantly better than all other
methods in the more difficult tasks, thus showing as for the
synthetic datasets that our methods are quite robust to dif-
ferent kind of noise in the matching problem.

5.3. Car Motorbike Dataset

In this experiment, we compare our algorithms with
other third order approaches on the car and motorbike
dataset introduced in [18]. The dataset contains 30 resp.
20 pairs of car resp. motorbike images. Each image con-
tains a number of inliers and outliers from the cluttered
background. Ground-truth correspondences are given for
the inlier points in both images. Figures 4 and 5 show
some examples of matching results. To test the algorithms
against noise, we kept all the inlier points in both images
and randomly added a number of outliers from the cluttered
background to the second image (between 0 to 15). For
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images where the baseline is 50. The yellow/red lines indicate correct/incorrect matches. The third row shows the average
performance of algorithms with different number of points in the first image. (Best viewed in color.)
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Figure 6: Evaluation of higher order GM algorithms on the
car and motorbike dataset. (Best viewed in color.)

each number of outliers, we test all algorithms on all the
image pairs of each dataset and report the average perfor-
mance in Figure 6. It shows that our methods achieve bet-
ter overall performance than other third order approaches
in both datasets. However, we expect that the performance
can be significantly improved if also other features are in-
tegrated rather than just relying on geometric information

[28, 29], or graph learning methods can be also be inte-
grated [5, 3, 18, 22, 24].

6. Conclusion and Outlook
We have presented a new optimization framework for

higher order graph matching. Compared to previous meth-
ods for higher order matching we can guarantee monotonic
ascent for our algorithms in the matching score on the set of
assignment matrices. Our new algorithms achieve superior
performance in terms of objective but also yield competi-
tive or significantly better matching accuracy. This is par-
ticularly true for large number of outliers and other forms
of noise. Moreover, both algorithms are also competitive in
terms of runtime compared to other methods.

An interesting line of future research is the use of glob-
ally optimal solutions of relaxations of the hypergraph
matching problem. We computed via the method of [12]
the maximal singular vectors of the fourth order tensor and
used these as initialization of Algorithm 1. This lead to an
improvement in matching score of up to 2% and in accuracy
of up to 3%. We will explore this further in future work.
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