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Abstract

In this work, we formulate a new weakly supervised
domain generalization approach for visual recognition by
using loosely labeled web images/videos as training data.
Specifically, we aim to address two challenging issues when
learning robust classifiers: 1) coping with noise in the la-
bels of training web images/videos in the source domain;
and 2) enhancing generalization capability of learnt classi-
fiers to any unseen target domain. To address the first issue,
we partition the training samples in each class into multiple
clusters. By treating each cluster as a “bag” and the sam-
ples in each cluster as “instances”, we formulate a multi-
instance learning (MIL) problem by selecting a subset of
training samples from each training bag and simultaneously
learning the optimal classifiers based on the selected sam-
ples. To address the second issue, we assume the training
web images/videos may come from multiple hidden domain-
s with different data distributions. We then extend our MIL
formulation to learn one classifier for each class and each
latent domain such that multiple classifiers from each class
can be effectively integrated to achieve better generaliza-
tion capability. Extensive experiments on three benchmark
datasets demonstrate the effectiveness of our new approach
for visual recognition by learning from web data.

1. Introduction

Recently, there is an increasing research interest in ex-
ploiting web images/videos crawled from Internet as train-
ing data to learn robust classifiers for recognizing new im-
ages/videos. However, the visual feature distributions of
training and testing samples may differ considerably in
terms of statistical properties, which is known as the dataset
bias problem [39]. To this end, a large number of domain
adaptation approaches have been proposed for various com-
puter vision tasks [4, 44, 16, 38, 29, 22, 13, 15, 33, 14, 8, 9,
32].

Following the terminology in domain adaptation, we re-

fer to the training dataset and testing dataset as the source
domain and target domain, respectively. When target do-
main data is unavailable during the training process, the
domain adaptation problem becomes another related task
called domain generalization, which aims to learn robust
classifiers that can generalize well to any unseen target do-
main [27, 36, 43]. Domain generalization is also an impor-
tant research problem for the real-world visual recognition
applications. For example, the datasets containing the pho-
tos/videos from each user can be considered as one target
domain because different users may use different cameras
to capture the photos/videos in their own ways. So we have
a large number of target domains from various users and
meanwhile some users may not be willing to share their
photos/videos to others as target domain data due to the pri-
vacy issue. In this case, it is more desirable to develop new
domain generalization approaches without using target do-
main data in the training process.

In this work, we study the domain generalization prob-
lem by exploiting web images/videos as source domain da-
ta. In Section 3, we propose an effective weakly supervised
domain generalization (WSDG) approach to address this
problem. In our approach, we consider two important is-
sues when exploiting web images/videos as source domain
data: 1) the training web images and videos are often as-
sociated with inaccurate labels, so the learnt classifiers may
be less robust, and the recognition performance may be sig-
nificantly degraded as well; 2) the test data in the target do-
main usually has a different distribution from the training
images/videos, and the target domain data is often unavail-
able in the training stage.

Specifically, to cope with label noise of web training im-
ages and videos, we partition the training samples from each
class into a set of clusters, and then treat each cluster as a
“bag” and the samples in each cluster as “instances”. In-
spired by the multi-instance learning (MIL) methods, we
only know the labels of training bags, while the labels of in-
stances within each training bag remain unknown. Then, we
aim to select a subset of training samples from each training
bag to represent this bag, such that the training bags from all

1



the classes can be well separated. To this end, we propose
a new multi-class MIL formulation to learn the classifiers
from multiple classes and select the training samples from
each training bag.

On the other hand, we assume the training web im-
ages/videos may come from multiple hidden domains with
distinctive data distributions, as suggested in the recent
works [24, 20, 43]. After multiple latent domains are dis-
covered with the existing technology (e.g., [20]), we aim
to learn one classifier for each class and each latent do-
main. As each classifier is learnt from the training samples
with a distinctive data distribution, each integrated classifi-
er, which is obtained by combining multiple classifiers from
each class, is expected to be robust to the variation of data
distributions, and thus can be well generalized to predict test
data from any unseen target domain. Recall that we only
use a subset of training samples from each training bag for
learning the classifiers, we further introduce a regularizer
based on the maximum mean discrepancy (MMD) criterion
to select the training samples with more distinctive data dis-
tributions in order to further enhance domain generalization
ability.

Moreover, the web images and videos are generally asso-
ciated with valuable contextual information (e.g., tags, cap-
tions, and surrounding texts). Although such textual de-
scriptions are usually not available in the testing images
and videos, they can still be used as privileged informa-
tion [40, 33]. We further extend our WSDG approach by
taking advantage of the additional textual descriptions as
privileged information. In Section 4, we conduct compre-
hensive experiments for visual recognition by learning from
web data, and the results clearly demonstrate the effective-
ness of our newly proposed approaches.

2. Related Work
Our work is related to the multi-instance learning meth-

ods in [41, 31, 30, 33], which explicitly coped with noise
in the loose labels of web images/videos. Particularly, the
training images/videos are partitioned into a set of clusters
and each cluster is treated as a “bag” with the images/videos
in each bag as “instances”. As a result, this task can be for-
mulated as a MIL problem and different MIL methods were
proposed in [41, 31, 30]. Other popular MIL methods in-
clude mi-SVM [2], which uses a heuristic way to iteratively
train the SVM classifier and infer the instance labels, and
KI-SVM [34], which aims to discover the key instance in-
side each bag to represent the bag. However, these works
did not consider the domain generalization task when learn-
ing the SVM classifiers, so they may not generalize well to
any unseen target domain.

Our work is also related to domain generalization.
For domain generalization, Muandet et al. [36] proposed
to learn domain invariant feature representations, while

Khosla et al. [27] proposed an SVM based approach. Xu
et al. [43] proposed an exemplar SVM based method by ex-
ploiting the low-rank structure in the source domain. When
target domain data is available in the training phase, do-
main adaptation methods were recently developed to re-
duce the domain distribution mismatch, and these meth-
ods can be roughly categorized into feature-based methods
[29, 22, 21, 3, 18], classifier-based methods [5, 15, 13], and
instance-reweighting methods [25]. Interested readers can
refer to the recent survey [37] for more details.

Our work is more related to the recent works for discov-
ering latent domains [20, 24, 43]. The source domain is
divided into different latent domains by using a clustering
based approach in [24] or the MMD criterion in [20]. After
the latent domains are discovered, an NN or SVM classifi-
er is trained for each latent domain separately. Finally, all
classifiers are fused to predict the target domain samples.
In contrast, we jointly learn multiple classifiers which are
effectively integrated for each class to maximize the sepa-
rability between different classes, leading to better general-
ization performances.

Moreover, our work is related to the sub-categorization
problem [23], which assumes several subcategories exist
in each class. Some researchers also attempt to combine
sub-categorization with multi-instance learning [42, 45, 46].
However, these works did not consider the domain distribu-
tion mismatch problem between the training and test data.
In contrast, the domain generalization problem aims to han-
dle the test data from different domains with large distribu-
tion variations. So their motivations and formulations are
intrinsically different from our work.

3. Weakly Supervised Domain Generalization
In this section, we propose our weakly supervised do-

main generalization (WSDG) method, in which we simul-
taneously learn robust classifiers and select good samples
by removing the outliers (i.e., training samples with inaccu-
rate class labels). For ease of presentation, a vector/matrix
is denoted by a lowercase/uppercase letter in boldface. The
transpose of a vector/matrix is denoted using the super-
script ′. We also denote 0n,1n ∈ Rn as the n-dim col-
umn vectors of all zeros and all ones, respectively. When
the dimensionality is obvious, we use 0 and 1 instead of 0n

and 1n for simplicity. Moreover, we denote A ◦ B as the
element-wise product between two matrices. The inequali-
ty a ≤ b means that ai ≤ bi for i = 1, . . . , n. The indicator
function is represented as δ(a = b), where δ(a = b) = 1 if
a = b, and δ(a = b) = 0, otherwise.

Suppose the source domain data contains N training
samples belonging to C classes, we denote the source do-
main data as {(x1, y1), . . . , (xN , yN )}, where xi is the i-th
training sample, and yi ∈ {1, . . . , C} is the correspond-
ing class label of xi. In the following, we firstly introduce



how to discover latent domains by using the existing tech-
nology [20], and then propose a multi-class multi-instance
learning method without considering the latent domain is-
sues. Finally, we incorporate the discovered latent domains
into our multi-class multi-instance learning approach in or-
der to learn the integrated classifiers, which are robust to
any unseen target domain.

3.1. Discovering Latent Domains

In this work, we employ the latent domain discovering
method [20], which is based on the Maximum Mean Dis-
crepancy (MMD) criterion. We denote πi,m ∈ {0, 1} as
the indicator, namely, πi,m = 1 if xi belongs to the m-
th latent domain, and πi,m = 0 otherwise. Let us define
Nm =

∑N
i=1 πi,m as the number of samples in the m-th la-

tent domain. In [20], the goal is to make the discovered la-
tent domains as distinctive as possible, which can be formu-
lated as the following optimization problem by maximizing
the sum of MMDs between any two latent domains,

max
πi,m

∑
m ̸=m̃

∥ 1

Nm

N∑
i=1

πi,mϕ(xi)−
1

Nm̃

N∑
i=1

πi,m̃ϕ(xi)∥2, (1)

where ϕ(·) is the feature mapping function induced by a
kernel K ∈ RN×N on the training samples (i.e., K = [Ki,j ]
where Ki,j = ϕ(xi)

′ϕ(xj)). Let βi,m =
πi,m

Nm
and βm =

[β1,m, . . . , βN,m]′, the above problem can be relaxed as the
following optimization problem [20],

max
β

∑
m ̸=m̃

(βm − βm̃)
′
K(βm − βm̃) (2)

s.t.
1

N
≤
∑M

m=1
βi,m ≤

1

C
, ∀i, (3)∑N

i=1
δ(yi = c)βi,m =

1

N

∑N

i=1
δ(yi = c), ∀c,m, (4)∑N

i=1
βi,m = 1, βi,m ≥ 0, ∀i,m, (5)

where the first constraint in (3) is to enforce each latent do-
main to contain at least one training sample per class, the
second constraint in (4) is to keep the sample proportion of
each class in each latent domain the same as that in the w-
hole source domain, and the third constraint in (5) is from
the definitions of βi,m and πi,m. We refer interested read-
ers to [20] for the detailed derivations. Although the above
problem is a non-convex quadratic programming problem,
it can still be solved by using the existing solvers to obtain
a satisfactory solution [20, 1].

After discovering latent domains by solving the problem
in (2), we then learn one classifier for each class and each
latent domain, and integrate multiple classifiers from each
class based on the learnt βi,m’s. In the following section, we

firstly discuss how to cope with the label noise problem by
proposing a new multi-class multi-instance learning (MIL)
formulation, and then discuss how to extend our multi-class
MIL formulation to enhance domain generalization ability
of learnt classifiers to any unseen target domain.

3.2. Formulation

Recall that in our task, the labels of training data are
noisy, so we employ the multi-instance learning (MIL)
method, which only requires weakly supervised informa-
tion when training the classifiers. Considering the latent
domain discovery method utilizes the whole training data
for discovering latent domains and includes the class bal-
ance constraint in (4), we first formulate an effective multi-
class MIL method, and then propose a unified formulation
to learn robust classifiers by coping with label noise and
taking advantage of multiple latent domains.

3.2.1 Learning with Weakly Supervised Information

In MIL, training data is organized as a set of bags of train-
ing instances. We only have the labels of training bags,
while the labels of training instances are assumed to be
unknown. We partition our training samples in each class
into different clusters and treat each cluster as a training
bag, i.e., {(Bl, Yl)|l = 1, . . . , L}. In this work, the train-
ing images/videos are collected from the Internet by us-
ing tag-based image/video search, so the bag label Yl ∈
{1, . . . , C} is determined by using the corresponding query
tag. Usually, we assume there are at least a portion of true
positive instances in each positive bag [31]. So we also de-
fine the ratio η to represent the proportion of training in-
stances in each training bag, in which their instance labels
are consistent with the bag-level label Yl. Similarly as in
MIL, η can be estimated according to the prior knowledge.

To effectively learn robust classifiers, we propose to se-
lect good samples from each bag to learn robust classifiers
by removing the outliers in the training data. Let us use a
binary indicator hi ∈ {0, 1} to indicate whether the train-
ing sample xi is selected or not. Namely, hi = 1 if xi is
selected, and hi = 0, otherwise. For ease of presentation,
we denote h = [h1, . . . , hN ]′ as the indicator vector. Con-
sequently, the feasible set of the indicator vector h can be
represented asH = {h|

∑
i∈Il

hi = η|Bl|, ∀l} , where Il is
the set of indices of instances in the bag Bl, and |Bl| denotes
the number of instances in the training bag Bl.

We formulate our multi-class MIL problem based on
multi-class SVM [11]. Specifically, we propose to learn C
classifiers {fc(x)|c = 1, . . . C}, where each fc(x) is the
classifier for the c-th class. We represent each classifier 1 as

1The bias term is omitted here for better representation. In our work,
we augment the feature vector of each training sample with an additional
entry of 1.



fc(x) = (wc)
′ϕ(x). Inspired by the multi-class SVM [11]

and the multi-instance learning method KI-SVM [34], we
present a unified formulation to jointly learn h and C clas-
sifiers as follows,

min
h∈H
wc,ξl

1

2

C∑
c=1

∥wc∥2 + C1

L∑
l=1

ξl (6)

s.t.
1

|Bl|
∑
i∈Il

hi ((wYl
)′ϕ(xi)− (wc̃)

′ϕ(xi))

≥ η − ξl, ∀l, c̃ ̸= Yl, (7)
ξl ≥ 0, ∀l, (8)

where C1 is a tradeoff parameter, ξl’s are slack variables.
The constraint in (7) is to encourage the total decision val-
ue of each bag Bl from the classifier corresponding to its
ground-truth label should be greater than that from the clas-
sifier of any other class. Intuitively, good instances (i.e.,
non-outliers) tend to contribute smaller bag-level loss (i.e.,
ξl), while the outliers tend to contribute larger bag-level
loss. Therefore, we learn the indicator vector h to select
good instances from each bag in order to minimize the total
bag-level loss.

Note the problem in (6) reduces to the multi-class
SVM [11] when setting the bag size |Bl| as 1 and setting
each indicator hi = 1. Moreover, for the binary class clas-
sification setting, the problem in (6) can reduce to the multi-
instance learning method KI-SVM [34] after minor modifi-
cations.

3.2.2 Weakly Supervised Domain Generalization

When the source domain consists of M latent domains, it is
more desirable to learn one classifier for each class and each
latent domain to enhance generalization ability of learn-
t classifiers to the test data from any unseen target domain
(see the discussion in Section 3.2.3).

In particular, we propose to learn C × M classifiers
{fc,m(x)|c = 1, . . . C, and m = 1, . . . ,M}, where the
classifier for the c-th class and the m-th latent domain is
represented fc,m(x) = (wc,m)′ϕ(x). Then the decision
function on the training sample xi for each class can be
obtained by integrating the classifiers from different do-
mains as fc(xi) =

∑M
m=1 β̂i,mfc,m(xi), where β̂i,m is

the probability that the i-th training sample belongs to the
m-th latent domain. Such probabilities can be precom-
puted by using the latent domain discover method in [20].
Specifically, we can calculate each corresponding β̂i,m as
β̂i,m =

βi,m∑M
m=1 βi,m

, where βi,m’s are obtained by solv-
ing the optimization problem in (2). Our goal is to learn
those C×M classifiers such that the discriminability of the
integrated classifiers fc(xi)’s is maximized by only using
weakly labeled training data.

Moreover, one problem when using the latent domain
discovery method in [20] is that the objective function in
(2) is originally designed for training data with clean labels.
When there are outliers in training data, it is more desirable
to seek for an optimal h to remove the outliers such that the
objective in (2) can be maximized. For ease of presenta-
tion, let us denote B = [β1, . . . ,βM ] ∈ RN×M , then the
objective in (2) can be written as ρ(B,K) =

∑
m ̸=m̃(βm−

βm̃)′K(βm−βm̃). To learn an optimal indicator h, we in-
troduce a new regularizer ρ(B,K ◦ (hh′)). Then we arrive
at the final formulation of our WSDG method for learning
the optimal classifiers fc,m(x)’s as follows,

min
h∈H

wc,m,ξl

1

2

C∑
c=1

M∑
m=1

∥wc,m∥2 + C1

L∑
l=1

ξl

−C2 ρ(B,K ◦ (hh′)) (9)

s.t.
1

|Bl|
∑
i∈Il

hi

(
M∑

m=1

β̂i,m(wYl,m)′ϕ(xi)− (wc̃,m̃)′ϕ(xi)

)
≥ η − ξl, ∀l, m̃, c̃ ̸= Yl, (10)
ξl ≥ 0, ∀l. (11)

where C2 is a tradeoff parameter. The constraint in (10)
can be explained similarly as that in (6) except that we re-
place (wYl

)′ϕ(xi) in (6) with
∑M

m=1 β̂i,m(wYl,m)′ϕ(xi)
and (wc̃)

′ϕ(xi) with (wc̃,m̃)′ϕ(xi).

3.2.3 Discussion

Why Latent Domain Works: In order to learn robust clas-
sifiers that can generalize well to any unseen target domain,
we train one classifier for each latent domain and each class
after softly partitioning the training samples into differen-
t latent domains by using the existing latent domain dis-
cover technology in [20]. Since the training samples from
the same class and the same latent domain are usually with
more similar data distribution [20], it is easier to learn a
discriminative classifier for each class and each latent do-
main. In the testing process, we predict the label of a given
test sample x by using y = argmaxc maxm(wc,m)′ϕ(x).
Namely, for each class, we use the best classifier with the
highest decision value among the classifiers from all latent
domains in order to find the best matched latent domain for
this test sample. By finding the best matched latent source
domain for each test sample, we conjecture the classifiers
learnt by using our WSDG method can generalize well to
test data from any unseen target domain.
Utilizing Privileged Information: The web images and
videos are often associated with rich and valuable contextu-
al information (e.g., tags, captions, and surrounding texts).
Such textual descriptions which are not available in the test-
ing images and videos can still be used as privileged infor-
mation for improving the learnt classifiers in the training



phase [40, 33]. To this end, we extend our WSDG ap-
proach to WSDG-PI by additionally using the textual fea-
tures extracted from the contextual descriptions of web im-
ages and videos as privileged information. Specifically,
inspired by [40, 33], we replace the loss ξl in (10) and
(11) with 1

|Bl|
∑

i∈Il
hi(
∑M

m=1 β̂i,m(f̃Yl,m(zi)−f̃c̃,m̃(zi)),
where zi is the textual features for the i-th training sample
and the slack function f̃c,m(z) = (w̃c,m)′ϕ(z) is similarly
defined as fc,m(x) in (9). An additional regularizer term∑C

c=1

∑M
m=1 ∥w̃c,m∥2 is also added in the the objective to

control the model complexity. Note the solution to the op-
timization problem in (9), which will be discussed below,
can be similarly used to solve the optimization problem of
our WSDG-PI approach.

3.3. Optimization

The problem in (9) is a nontrivial non-convex mixed in-
teger optimization problem. Inspired by the recent works
on MIL [31][34], we relax the dual form of (9) as a mul-
tiple kernel learning (MKL) problem, which can be solved
similarly as in [28]. In the following, we first present the
relaxation in the dual form of (9), and then introduce the
detailed solution to the relaxed problem.

3.3.1 Reformulation in the Dual Form

Proposition 1. The dual form of (9) can be written as fol-
lows,

min
h∈H

max
α
−1

2
α′Qhα+ζ′α−C2 ρ(B,K◦(hh′)) (12)

s.t.
∑
c,m

αl,c,m = C1, ∀l

αl,c,m ≥ 0, ∀l, c,m,

where α ∈ RD̃ is a vector with each entry being the
dual variable αl,c,m, D̃ = L · C · M , ζ ∈ RD̃ is
a vector with each entry ζl,c,m = η if c ̸= Yl and
ζl,c,m = 0 otherwise, and Qh ∈ RD̃×D̃ is a matrix
in which each element can be obtained by Qh

u,v =
1

|Bl||Bl̃|
∑

i∈Il

∑
j∈Il̃

hihjϕ(xi)
′ϕ(xj)γ(i, j, c, c̃,m, m̃),

u = (l − 1) · C · M + (c − 1) · M + m,
v = (l̃ − 1) · C · M + (c̃ − 1) · M + m̃, and
γ(i, j, c, c̃,m, m̃) is a scalar which can be calculated as
γ(i, j, c, c̃,m, m̃) = [1− δ(c = yi)][1− δ(c̃ = yj)][δ(yi =

yj)
∑M

q=1 β̂i,qβ̂j,q + δ(c = c̃)δ(m = m̃)] − [1 − δ(c =

c̃)]{[1 − δ(c = yi)]δ(c = yj)β̂j,m + [1 − δ(c̃ = yj)]δ(c̃ =

yi)β̂i,m̃}.

Proof. In order to simplify the primal form (9), we firstly
introduce an intermediate variable θi,c,m,m̃ as follows,

θi,c,m,m̃ =

{
β̂i,m c = yi,

δ(m = m̃) c ̸= yi.
(13)

Note here yi = Yl, ∀i ∈ Il. Then, we have
∑M

m=1 β̂i,m
(wyi,m)′ϕ(xi) =

∑M
m=1 θi,yi,m,m̃ (wyi,m)′ϕ(xi) and

(wc,m̃)′ϕ(xi) =
∑M

m=1 θi,c,m,m̃(wc,m)′ϕ(xi). Then, the
constraints (10) and (11) can be uniformly written as

1

|Bl|
∑
i∈Il

hi(

M∑
m=1

θi,Yl,m,m̃(wYl,m)′ϕ(xi)

−
M∑

m=1

θi,c,m,m̃(wc,m)′ϕ(xi))

≥ ζl,c,m̃ − ξl, ∀l, c, m̃, (14)

in which ζl,c,m is defined below (12).
We concatenate all wc,m’s and define w = [w′

1,1, . . . ,
w′

1,M , w
′
2,1, . . . , w

′
C,M ]′. We also define a new map-

ping function for each Bl as φ(h,Bl, c, m̃) = [ 1
|Bl|

∑
i∈Il

hi

θi,1,1,m̃δ(c = 1)ϕ(xi)
′, . . . , 1

|Bl|
∑

i∈Il
hi θi,C,M,m̃δ(c =

C)ϕ(xi)
′]′. By further denoting ψ(h,Bl, c, m̃) =

φ(h,Bl, Yl, m̃)− φ(h,Bl, c, m̃), the problem in (9) can be
simplified as,

min
h∈H
w,ξl

1

2
∥w∥2 + C1

L∑
l=1

ξl − C2 ρ(B,K ◦ (hh′)) (15)

s.t. w′ψ(h,Bl, c,m) ≥ ζl,c,m − ξl, ∀l, c,m. (16)

Let us introduce a dual variableαl,c,m for each constraint
in (16), then we arrive at its Lagrangian as follows,

Lw,ξl,αl,c,m
=

1

2
∥w∥2 + C1

N∑
i=1

ξi − C2 ρ(B,K ◦ (hh′))

−
∑
l,c,m

αl,c,m (w′ψ(h,Bl, c,m)− ζl,c,m + ξl) (17)

By setting the derivatives of L w.r.t. w and ξl as zeros,
and substituting the obtained equalities back into (17), we
can arrive at the dual form (12).

The problem in (12) is a mixed integer programming
problem, which is NP hard. So it is difficult to solve it.
Inspired by the recent works on multi-instance learning,
instead of directly optimizing over the indicator vector h,
we alternatively seek for an optimal linear combination of
hth

′
t’s based on all feasible ht ∈ H, i.e.,

∑
ht∈H dthth

′
t,

where dt is the combination coefficient for hth
′
t. For ease

of presentation, we denote T = |H|, d = [d1, . . . , dT ]
′, and

D = {d|d′1 = 1,d ≥ 0} as the feasible set of d. We also



denote A as the feasible set of α in (12). Then, we obtain
the following optimization problem,

min
d∈D

max
α∈A

−1

2

T∑
t=1

dtα
′Qhtα+ ζ′α

−C2

T∑
t=1

dtρ(B,K ◦ (hth
′
t)), (18)

where we move the sum operator over dt outside Qht and
ρ(B,K ◦ (hth

′
t)), because both are linear terms of hth

′
t.

The above problem shares a similar form with the dual of
the MKL problem, where each base kernel is Qht . We
therefore solve it by optimizing a convex optimization prob-
lem in its primal form as follows,

min
d∈D,wt,ξl

1

2

T∑
t=1

∥wt∥2

dt
+ C1

L∑
l=1

ξl

−C2

T∑
t=1

dtρ(B,K ◦ (hth
′
t)) (19)

s.t.
T∑

t=1

w′
tψ(ht,Bl, c,m) ≥ ζl,c,m − ξl, ∀l, c,m,(20)

where ψ(ht,Bl, c,m) is defined above (15), and wt can be
obtained by

wt = dt
∑
l,c,m

αl,c,mψ(ht,Bl, c,m). (21)

3.3.2 The Solution to (19)

As the problem in (19) is a convex problem, we solve it by
alternatively updating d and wt.
Update d: To solve d, we firstly write the Lagrangian
of (19) by introducing a dual variable τ for the constraint
d′1 = 1. By setting the derivative of the Lagrangian w.r.t.
each dt to zero, we obtain

τ =
∥wt∥2

2d2t
+ C2ρ(B,K ◦ (hth

′
t)), ∀t = 1, . . . , T. (22)

We rewrite (22) as follows,

dt =
∥wt∥√

2τ − 2C2ρ(B,K ◦ (hth′
t))
, ∀t = 1, . . . , T. (23)

Note that the righthand side of (23) is a monotonical-
ly decreasing function w.r.t. τ . Considering the constraint
d′1 = 1, we use binary search to find the value τ such that∑T

t=1 dt = 1 is satisfied. Then we can calculate dt’s by
using (23).
Update wt: When fixing d, we solve α in its dual form
(18) and recover wt by using (21). The problem in (18)

is a quadratic programming problem w.r.t. α, which can be
solved by using the existing QP solvers. However, the exist-
ing QP solvers are very inefficient due to too many variables
(i.e., L · C ·M variables). Inspired by [7] and [17], we de-
velop a sequential minimal optimization (SMO) algorithm
to solve this QP problem.

3.3.3 Cutting-Plane Algorithm

The major challenge when using the above alternating op-
timization procedure is that there are too many base k-
ernels. Inspired by Infinite Kernel Learning (IKL) [19],
we employ the cutting-plane algorithm, in which we start
from a small set of base kernels, and at each iteration we
iteratively add a new kernel that violates the constraints.
As we only need to solve an MKL problem based on a
small set of h at each iteration, the optimization proce-
dure is much more efficient. In particular, let us intro-
duce a dual variable τ for the constraint d′1 = 1 and re-
place ρ(B,K ◦ (hth

′
t)) equivalently with h′

tPht by defin-
ing P =

∑
m ̸=m̃ K ◦ ((βm − βm̃)(βm − βm̃)′). Then we

can rewrite (18) to its equivalent form as follows,

max
τ,α∈A

−τ + ζ′α, (24)

s.t.
1

2
α′Qhtα+ C2h

′
tPht ≤ τ, ∀t, (25)

which has many constraints.
To solve (24), we start to solve α by using only one con-

straint, and then iteratively add a new constraint which is
violated by the current α. In particular, as each constraint
is associated with an ht, so we can find the violated con-
straint by optimizing the following problem,

max
h

1

2
α′Qhα+ C2h

′Ph (26)

After a simple deduction, we can rewrite (26) as follows,

max
h

h′(
1

2
Q̂ ◦ (α̂α̂′) + C2P)h, (27)

where Q̂ ∈ RN×N is the shrinked Q with its ele-
ment Q̂i,j =

∑
c,c̃,m,m̃ γ(i, j, c, c̃,m, m̃)ϕ(xi)

′ϕ(xj), and
α̂ ∈ RN is the shrinked α with its element α̂i =
1

|Bl|
∑

c,m αl,c,m if i ∈ Il . We can solve (27) approxi-
mately by enumerating the binary indicator vector h in a
one bag by one bag fashion iteratively to maximize the ob-
jective value of (27) until h remains unchanged.

The whole algorithm for our weakly supervised domain
generalization (WSDG) approach is listed in Algorithm 1.

2We initialize h1 by assigning 1 to its entries corresponding to the
η|Bl| instances in each bag Bl with highest decision values, and 0 to other
entries. Specifically, we first train the SVM classifiers by assigning the bag
label to each instance and obtain the decision values of training instances
by using the trained SVM classifiers.



Algorithm 1 Weakly Supervised Domain Generalization
(WSDG) Algorithm
Input: Training data {(Bl, Yl)|Ll=1}.

1: Initialize t = 1 and 2C = {h1}.
2: repeat
3: Set t← t+ 1.
4: Based onH = C, optimize the MKL problem in (18)

to obtain (d,α).
5: Find the violated ht by solving (27) and set C ←

C
∪
ht.

6: until The objective of (18) converges.
Output: The learnt classifier f(x).

4. Experiments
In this section, we demonstrate the effectiveness of

our weakly supervised domain generalization (WSDG) ap-
proach for visual event recognition and image classification
on three benchmark datasets. Moreover, we compare our
WSDG-PI method with WSDG in order to demonstrate it is
beneficial to utilize additional textual features as privileged
information.
Experimental Settings: We evaluate our WSDG method
for video event recognition and image classification by re-
spectively using the crawled web videos and web images as
training data.

For video event recognition, we use two benchmark
datasets Kodak [35] and CCV [26] as the test sets. The Ko-
dak dataset consists of 195 consumer videos from 6 event
classes. The CCV dataset [26] consists of a training set of
4659 videos and a test set of 4658 videos from 20 semantic
categories. Following [14], we only use the videos from the
event related categories and merge the categories with sim-
ilar semantic meanings. Finally, for the CCV dataset, we
have 2440 videos from our classes as test samples.

To collect the training set, we crawl the web videos from
the Flickr website by using those 6 (resp., 5) event class
names as queries for the Kodak (resp., CCV) test set. We
use the top 100 relevant web videos for each query to con-
struct 20 bags for each class by uniformly partitioning those
relevant videos based on their ranks, in which each bag con-
tains 5 instances.

We extract the improved dense trajectory features for
each video in Kodak/CCV/Flickr. Specifically, follow-
ing [8], we use three types of space-time (ST) features
(i.e., 96-dim Histogram of Oriented Gradient, 108-dim His-
togram of Optical Flow and 192-dim Motion Boundary His-
togram). We use the BoW representation for each type of
ST features, in which the codebook is constructed by using
k-means to cluster the ST features from all videos in the
Flickr dataset into 2000 clusters. Finally, we concatenate
the bag-of-words features from three types of descriptors to
obtain a 6000-dim feature vector for each video.

For image classification, we use the BING dataset pro-

vided in [4] as the source domain and the benchmark
Caltech-256 dataset as the test set. Following the setting
in [24], we use the images from the first 30 categories in
BING and Caltech-256. As suggested in [24], we use 20
training samples and 25 test samples for each category, so
there are totally 600 training images and 750 test images.
Similarly as for the Flickr dataset, we construct the bags
for each category by uniformly partitioning the training im-
ages, in which each bag contains 5 instances. We use the
DeCAF features [12], which has shown promising perfor-
mance for image classification. Following [12], we use the
outputs from the 6th layer as the visual features, which leads
to 4, 096-dim DeCAF6 features.

As the number of latent domains is unknown for web da-
ta, we set the number of latent domains as 2 for all methods
as suggested in [24]. For our WSDG method, we empiri-
cally fix C1 = C2 = 1, η = 0.2 (resp., 0.8) for video event
recognition (resp., image classification). For the baseline
methods, we choose the optimal parameters according to
their best accuracies on the test dataset.
Baselines: We compare our WSDG method with three
groups of baseline methods, the domain generalization
methods, the latent domain discovering methods, and the
multi-instance learning (MIL) methods. The domain gener-
alization methods include the domain-invariant component
analysis (DICA) method [36] and the low-rank exemplar
SVM (LRESVM) method [43]. The work in [27] can not
be applied to our tasks, because we do not have the ground-
truth domain labels for the training web datasets. The la-
tent domain discovering methods include two methods in
[24, 20] by using two strategies called “Match” and “En-
semble” as suggested in [43]. Specifically, the ensemble s-
trategy is to learn the domain probabilities with the method
in [24] and re-weight the decision values from differen-
t SVM classifiers corresponding to different latent domains.
In the match strategy, we first use the MMD criterion to se-
lect the latent source domain, which is the most relevant one
to the target domain, and then apply the SVM classifier cor-
responding to the most relevant latent source domain on the
test samples. The MIL methods include two bag-level meth-
ods sMIL [6], KI-SVM [34] and two instance-level methods
mi-SVM [2], MIL-CPB [31].

As the sub-categorization related methods are also rele-
vant to our work, we further compare our work with the dis-
criminative sub-categorization(Sub-Cate) method [23] and
the MMDL method in [42].

In order to show the effectiveness for exploiting the la-
tent domains and validate the MMD-based regularizer in
(9), we also report the results of two simplified versions
(referred to as WSDG sim1 and WSDG sim2) of our WS-
DG approach. In WSDG sim1, we remove the MMD-based
regularizer ρ(B,K ◦ (hh′)) from our WSDG method by
setting C2 = 0. Based on WSDG sim1, we further do



not consider the latent domain issues by setting the num-
ber of latent domains M=1 and call this special case as WS-
DG sim2. In this case, we only have one source domain and
our objective function in (9) reduces to that in (6).
Experimental Results: The experimental results are sum-
marized in Table 1. We observe the domain generalization
methods DICA and LRESVM, the sub-categorization meth-
ods Sub-Cate and MMDL, and the latent domain discover-
ing methods [20] and [24] are generally better than SVM.
The results demonstrate that it is beneficial to exploit the ad-
ditional information like low-rank structure, subcategories,
or latent domains in training web data for visual recognition
by learning from web data.

We also observe the MIL baselines, including sMIL, mi-
SVM, MIL-CPB, and KI-SVM, achieve better results than
SVM on all three datasets, while those methods use differ-
ent MIL assumptions for solving the MIL problem. More-
over, MMDL is better than the Sub-Cate method and MIL
baselines, because it simultaneously uses the MIL technique
for handling label noise in web data and exploits subcate-
gories to learn more robust integrated classifiers.

Our special case WSDG sim1 is better than the MIL
baselines. One possible explanation is that we jointly learn
the classifiers for multiple classes. WSDG sim2 outper-
forms WSDG sim1 on all three datasets, which shows it is
useful to integrate multiple classifiers learnt from differen-
t latent domains. Our WSDG method further outperforms
WSDG sim2 on all three datasets, which validates the ef-
fectiveness of the MMD-based regularizer in (9). We also
observe that WSDG sim2 and WSDG outperform all the
MIL methods [6, 34, 2, 31], which indicates that it is ben-
eficial to use the discovered latent domains in our WSDG
method to improve generalization capability of learnt clas-
sifiers to any unseen test domain. Moreover, WSDG sim2
and WSDG are also better than the domain generalization
methods DICA and LRESVM, which demonstrates their ef-
fectiveness for learning robust classifiers by handling label
noise in the web images/videos .

Finally, our WSDG method achieves the best results on
all three datasets, which clearly demonstrates the effective-
ness of our method for video event recognition and image
classification by learning from web data.
Utilizing Privileged Information: We use the Flickr web
video dataset as the training set and the CCV and Kodak
datasets as the test sets to evaluate our proposed WSDG-
PI method discussed in Section 3.2.3. Note we cannot e-
valuate our WSDG-PI on the Caltech-256 dataset because
textual information is not available for the Bing dataset pro-
vided in [4]. The tags associated with each Flickr video
are crawled, from which we extract a 2, 000-dim term fre-
quency (TF) feature for each video by using the 2, 000 most
frequent words as the vocabulary. We also remove the stop-
words before extracting the textual features. We use the

Table 1. Accuracies (%) of different methods for video even-
t recognition and image classification. The best results are denoted
in boldface.

Method Testing Dataset
Kodak CCV Caltech-256

SVM [10] 34.36 40.84 70.93
sMIL [6] 38.46 41.34 71.33

mi-SVM [2] 37.95 46.38 71.47
MIL-CPB [31] 38.97 46.29 71.6
KI-SVM [34] 40.00 42.85 71.20

DICA [36] 42.05 44.10 70.80
LRESVM [43] 41.94 48.12 72.93
[24] (Match) 37.13 41.37 71.07

[24] (Ensemble) 37.42 41.40 70.08
[20] (Match) 40.93 44.44 71.47

[20](Ensemble) 42.39 47.51 72.40
Sub-Cate [23] 38.59 47.93 72.27
MMDL [42] 40.51 48.87 72.80
WSDG sim1 42.56 47.47 71.87
WSDG sim2 43.59 49.93 74.00

WSDG 45.64 51.18 75.20

Table 2. Accuracies (%) of different methods for video even-
t recognition. The best results are denoted in boldface.

Method Testing Dataset
Kodak CCV

SVM+ [40] 36.92 45.05
sMIL-PI [33] 42.50 46.20

WSDG-PI (Ours) 47.69 52.80
textual features as privileged information because they are
not available in the testing videos. The other experimental
settings remain the same.

In Table 2, we compare our WSDG-PI method with
sMIL-PI, which outperforms other existing methods using
privileged information as reported in [33]. We also include
SVM+ [40] as a baseline method. After using the addition-
al textual features, SVM+, sMIL-PI, and WSDG-PI achieve
better results than the corresponding methods in Table 1
without using the textual features (i.e., SVM, sMIL, and
WSDG). Moreover, our WSDG-PI outperforms SVM+ and
sMIL-PI, which again demonstrates it is beneficial to cope
with label noise and simultaneously learn robust classifiers
for better generalization capability.

5. Conclusion
In this paper, we have proposed a weakly supervised do-

main generalization (WSDG) approach for the visual recog-
nition task by using loosely labeled web images/videos as
training data. Our WSDG approach can handle label noise
of training web images/videos and also enhance general-
ization capability of learnt classifiers to any unseen target
domain. The effectiveness of our new approach has been
demonstrated by the extensive experiments.
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