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Abstract

This paper presents an algorithm for unconstrained 3D
face reconstruction. The input to our algorithm is an “un-
constrained” collection of face images captured under a
diverse variation of poses, expressions, and illuminations,
without meta data about cameras or timing. The output of
our algorithm is a true 3D face surface model represented
as a watertight triangulated surface with albedo data or tex-
ture information. 3D face reconstruction from a collection
of unconstrained 2D images is a long-standing computer vi-
sion problem. Motivated by the success of the state-of-the-
art method, we developed a novel photometric stereo-based
method with two distinct novelties. First, working with a
true 3D model allows us to enjoy the benefits of using im-
ages from all possible poses, including profiles. Second,
by leveraging emerging face alignment techniques and our
novel normal field-based Laplace editing, a combination
of landmark constraints and photometric stereo-based nor-
mals drives our surface reconstruction. Given large photo
collections and a ground truth 3D surface, we demonstrate
the effectiveness and strength of our algorithm both quali-
tatively and quantitatively.

1. Introduction
Obtaining a user-specific 3D face surface model is useful

for a variety of applications, such as 3D-assisted face recog-
nition [7, 19, 28], 3D expression recognition [37], and facial
animations [9]. Despite emerging 3D sensors to acquire 3D
faces, accurately reconstructing the 3D surface model from
2D images is a long-standing computer vision problem.

There are numerous scenarios for face reconstruction.
With access to the subject and a controlled environment,
many techniques provide highly detailed models. For exam-
ple, stereo imaging is applicable when two calibrated cam-
eras capture images simultaneously, or photometric stereo
with a controlled lighting array. The task becomes more
difficult given unconstrained face images captured in an
unstructured scenario. If the images are from a video se-
quence, structure from motion is useful when key points are

...

Figure 1. Given Tom Hanks’ photo collection with pose, expres-
sion, and illumination variations, our system performs surface re-
construction, shown along with a real photo at the same viewpoint.

tracked across the face. If the input is a collection of uncon-
strained face photos, photometric stereo works across areas
of consistent albedo and estimates fine surface details.

Among the aforementioned scenarios, this paper targets
the case of the unconstrained photo collection. As shown
in Fig. 1, given a collection of unconstrained face photos of
one subject, we would like to reconstruct the 3D face sur-
face model, despite the diverse variations in Pose, Illumi-
nation, and Expression (PIE). This is certainly a very chal-
lenging problem, as we do not have access to stereo imag-
ing [36] or video [35, 12]. Kemelmacher-Shlizerman and
Seitz developed an impressive photometric stereo-based
method to produce high-quality face models from photo
collections [23], where the recovering of a locally consis-
tent shape was intelligently achieved by using a different
subset of images. However, there are still two limitations
in [23]. One is that mainly near-frontal images are selected
to contribute to the reconstruction, while the consensus is
that non-frontal, especially profile, images are highly use-
ful for 3D reconstruction. The other is that due to surface
reconstruction on a 2D grid, a 2.5D height field, rather than
a full 3D model, is produced.

Motivated by the state-of-the-art results of photometric
stereo-based methods, as well as amendable limitations, this
paper proposes a novel approach to 3D face reconstruction.
Our approach is also motivated by the recent explosion of
face alignment techniques [27, 39, 21, 31], where the preci-
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sion of 2D landmark estimation has been substantially im-
proved. Specifically, given a collection of unconstrained
face images, we first perform 2D landmark estimation [39]
of each image. In order to prepare an enhanced 3D tem-
plate for the photometric stereo, we deform a generic 3D
face template such that the projections of its 3D landmarks
are consistent with the estimated 2D landmarks on all im-
ages, and the surface normals are maintained. With the en-
hanced 3D template, 2D face images at all poses are back
projected onto the 3D surface, where the collection of pro-
jections will form a data matrix spanning all vertices of the
template. Since there are inevitably missing elements in
the data matrix due to varying poses, matrix completion is
employed and followed by the shape and lighting decom-
position via SVD. With the estimated surface normals, we
further deform the 3D shape such that the updated shape
will have normals similar to the estimated ones, under the
same landmark constraint and an additional boundary con-
straint. To illustrate the strength of our approach, we per-
form experiments on several large collections of celebrities,
as well as one subject where the ground truth 3D model is
collected. Both qualitative and quantitative experiments are
conducted and compared with the state-of-the-art method.

In summary, this paper has made three contributions.

• A true 3D facial surface model is generated. During
the iterative reconstruction, we perform the photomet-
ric stereo on the entire 3D surface, and the 3D coor-
dinates of all vertices are updated toward the specific
shape of an individual. As a benefit of a 3D surface
model, our approach allows faces from all poses, in-
cluding the profiles, to contribute to the reconstruction.

• Our surface reconstruction utilizes a combination of
photometric stereo-based normals and landmark con-
straints, which leverages the power of emerging face
alignment techniques. It also strikes a good balance of
allowing facial details to deform according to the pho-
tometric stereo, while maintaining the consistency of
the overall shape with 2D landmarks.

• In order to achieve the deformation of a template using
normal estimates, we develop a novel Laplace mesh
editing with surface normals as input, while prior mesh
editing use mean curvature normal as input.

2. Related Work
Face reconstruction Face reconstruction, the process of
creating a 3D model of a face from 2D image(s), is a dif-
ficult problem with many applications. In the biometrics
community, 3D face models are invariant to pose, illumina-
tion, and background and allow warping of the image to new
poses to improve face recognition. The graphics and ani-
mation community desire highly detailed models including

skeletal structure for expressions. With a cooperative sub-
ject, there are range scanners, multi-camera stereo [4, 5],
or photometric stereo with light arrays [16]. In-the-wild
techniques that can operate on a single image include 3D
morphable models [7], shape from shading [24], and warp-
ing to a reference shape [14]. Recently combinations of
techniques are proposed to capture finer details, [40] uses a
3DMM combined with a deformable model to obtain wrin-
kle details and [32] combines a noisy stereo reconstruction
with photometric stereo for generic objects and scenes.

Photometric stereo Photometric stereo is the process of
recovering a 3D shape from a set of 2D images based on
the differences in shading caused by lighting conditions.
Some works require the knowledge of the lighting condi-
tions [13, 16]. Others estimate the lighting conditions tak-
ing advantage of that, for a Lambertian model, the images
lie on a low rank subspace [15, 42, 25, 2, 3, 38]. But
these works operate in a constrained setting where point
correspondences between images are known. Recently, a
novel photometric stereo-based method reconstructs from a
set of in-the-wild face images [23], as well as a video se-
quence [35]. With the exception of [13], these works re-
construct a depth map or 2.5D surface instead of a 3D sur-
face since they tend to operate on an object with a narrow
range of poses. By using an unconstrained photo collection
with a wide range of poses, we can reconstruct a 3D face
with more accurate depths due to wide-angle stereo, and
also wraps accurately around the cheeks and chin.

Surface reconstruction Surface reconstruction is a chal-
lenging process that varies significantly depending on the
nature of input (noise, outlier, etc.), output (mesh, skele-
ton, volume, etc.), and types of shape (man-made, or-
ganic, etc.). The majority of reconstruction algorithms
take a point cloud as their input, including methods with
surface-smoothness priors (e.g., tangent planes [17], mov-
ing least squares [1], radial basis function [10], Poisson
surface reconstruction [22]), visibility-based methods [11],
data-driven methods [29], etc. More details on the topic are
in the state of the art report [6]. One of the most widely
used methods is the Poisson surface reconstruction [22] due
largely to its efficiency and reliability. This method esti-
mates a volumetric normal field based on the point cloud,
and constructs a 3D Poisson equation akin to the 2D Pois-
son equation resulting from photometric stereo. However,
the requirement for the point cloud input renders the 3D
Poisson surface reconstruction not directly applicable to the
normal field and landmark constraints in our case. Thus,
we resort to a template deformation approach, and fit the
template to this input while maintaining the global struc-
ture of the template 3D face. Our technique is based on the
gradient domain methods called the Poisson/Laplace mesh
editing [33, 41], where the mean curvature normal fields are
given, and the surface is deformed under additional (land-



Table 1. Common notations.
Symbol Dim. Description
I image
q scalar number of landmarks
n scalar number of images
p scalar number of vertices
Q 3×q 3D landmarks
Wi 2×q 2D image landmarks
Pi 2×3 image projection matrix
F n×p backprojected photo collection
M n×p matrix completed photo collection
L n×4 lighting matrix
S 4×p shape matrix
St 4×p template shape matrix
X0 3p template shape vector
X 3p shape vector
H 3p mean curvature normal

mark) constraints. Our method differs from the existing
variants of Laplace mesh editing in that we are only given
the normal fields, and have to infer the mean curvature.

3. Proposed Algorithm
The proposed algorithm operates on a photo collection

of an individual. No constraints are placed regarding poses
or expressions for the images, but it is assumed that the col-
lection contains a variety of, albeit unknown, lighting con-
ditions. An initial generic face template mesh including la-
beled 3D landmark locations is also given. We assume weak
perspective camera projection and Lambertian reflection.

Table 1 provides notations for the major variables used
throughout the algorithm. Figure 2 illustrates the major
components and pipeline of our proposed algorithm.

3.1. 2D Landmark Alignment

Proper 2D face alignment is vital in providing registra-
tion among images in the photo collection and registration
with the 3D template, although the proposed approach is ro-
bust to a fair amount of error. We employ the state-of-the-
art cascade of regressors approach [39] to automatically fit q
(=68) landmarks onto each image. An example of the land-
mark fitting is given in Figure 2. Given an image I(x, y),
the landmark alignment returns a 2×q matrix Wi.

3.2. Landmark Driven 3D Warping

The initial template face is not nearly isometric to the
individual face, e.g., the aspect ratio of the face may be dif-
ferent and, as such, it will not fit closely to the images even
in the absence of expression. Therefore, it is highly desir-
able to warp the initial template toward the true 3D shape
of the individual so that the subsequent photometric stereo
can have a better initialization.

Since the estimated 2D landmarks provide the corre-
spondences of q points between 3D and 2D as well as across
images, they should be leveraged to guide the template
warping. Based on this observation, we aim to warp the
template in a way such that the projections of the warped 3D
landmark locations can match well with the estimated 2D
landmarks. The technique we use is based on Laplacian sur-
face editing [33] and adapted for the landmark constraints.
Specifically, in order to maintain the shape of the original
template face while reducing the matching error from the
3D landmarks to the 2D landmarks, we minimize the fol-
lowing energy function,∫

Ω

‖∆x−∆x0‖2 + λl
∑
i

‖PiQ−Wi‖2, (1)

where the first term measures the deviation of the Laplace-
Beltrami operator ∆ (trace of Hessian) of the deformed
mesh x from that of the original mesh x0 integrated over the
entire surface Ω; the second term measures the squared dis-
tance between the set of 3D landmarks weakly perspective
projected through Pi and the 2D landmark locations Wi for
image i; and λl is the weight for landmark correspondence.
Note that the operator ∆ measures the difference between
a function’s value at a vertex with the average value at the
neighboring vertices, so the minimization of the first term
helps maintain the geometric details.

To solve Eq 1, we discretize the surface patch Ω as a
triangle mesh with p vertices, with the vertex locations con-
catenated as a 3p-dimensional vector X. Throughout the
deformation process, we keep the connectivity of the ver-
tices (i.e., which triplets form triangles) fixed and the same
as the given template mesh. We deform the mesh only
through modifications to the vertex locations. Eq 1 is thus
turned into a quadratic function on X,

Ewarp(X,Pi) = ‖LX−LX0‖2 + λl
∑
i

‖PiDiX−Wi‖2,

where L is a discretization of ∆. Using linear finite el-
ements, it is turned into a symmetric matrix with entries
Lij = 1

2 (cotαij +cotβij), where αij and βij are the op-
posite angles of edge ij in the two incident triangles (see
Figure 3), known as the cotan formula [30], and Di is the
selection matrix picking out the landmarks that have a cor-
respondence in image i, i.e., it is a diagonal matrix with
1’s on the diagonal for the vertices corresponding to such a
landmark and 0 everywhere else.

In order to find the minimizer, we first estimate an initial
Pi via the corresponding pairs of 2D and 3D landmarks.
With the projection matrices Pi fixed, the minimizer of the
energy Ewarp can be obtained by solving a linear system.

However the above procedure is not rotation invariant.
As in [33, 41], we can resolve this issue by noting that

∆x = −Hn,
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Figure 2. Overview of our 3D face reconstruction. Given a photo collection, a generic template face mesh, and 2D landmark alignment,
we propose an iterative process to warp the mesh based on the estimated 3D landmarks and the photometric stereo-based normals.
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Figure 3. The mean curvature normal indicates how a vertex devi-
ates from the average location of its immediate neighbors, which
can be evaluated as the Laplacian of the position. The mean cur-
vature Hi can be evaluated through n.

which means that the Laplacian of the positions is the
mean curvature H times the unit normal of the surface n.
The rotation-invariant geometric details are captured by the
Laplacian operator and the mean curvature scalar H . Thus,
to keep the original geometric detail while allowing it to
rotate, we compute the original mean curvatureH0 (the dis-
cretization of which corresponds to the integral of the mean
curvature in a neighborhood around each vertex), and up-
date nk according to the direction of LXk for the shape Xk

at iteration k, and solve for

Xk+1 =argmin
X

(‖LX+H0n
k‖2+λl

∑
i

‖Pk
i DiX−Wi‖2),

which leads to a linear system,

(L2 + λl
∑
i

Di(P
k
i )ᵀPk

i Di)X

= −LH0n
k + λl

∑
i

(Pk
i )ᵀWi. (2)

In practice, the procedure of iteratively estimating Pk
i and

Xk+1 converges quickly in 10-20 iterations in our tests.

3.3. Photometric Normals

Fitting the landmarks allows for a global deformation
of the template mesh toward the shape of the individual,
but the fine details of the individual are not present. To
recover these details, we use the photometric stereo with
unknown lighting conditions, similar to the one described
by Kemelmacher-Shlizerman and Seitz [23]. The approach
in [23] estimates an initial lighting and shape based on the
factorization of a 2D image set, and refines the estimate
based on localized subsets of images that match closely to
the estimate for a given pixel. One key difference is that
in [23] the input to factorization is the frontal-projected 2D
images of the 3D textures, rather than the collection of 3D
texture maps themselves in our algorithm. That is, our pho-
tometric stereo is performed on the entire 3D surface. We
present the photometric normal estimation as follows.

We assume a Lambertian reflectance along with an am-
bient term for any point x in an image,

Ix = ρx(ka + kd` · nx),

where ka is the ambient weight, kd is the diffuse weight, `
is the light source direction, ρx is the point’s albedo, and
nx is the point’s surface normal. We assemble the numbers
into a row vector for the lighting l = [ka, kd`] and a column
vector for the shape sx = ρx[1,nx ]T , so that Ix = lsx.

3.3.1 Initial Normal Estimation

In this section, we assume point correspondence between
the current mesh and each image in the collection. Thus,
we store in Fi,j the reflectance intensity Ix corresponding
to the projected location x of vertex j in image i. This cor-
respondence is established by projecting the warped shape
template onto the images via the Pi matrices from Sec-
tion 3.2. For non-frontal images, there are vertices that are
not visible due to the projection. When this occurs, we set
Fi,j = 0 and use matrix completion [26] to fill in the miss-
ing values to obtain M. Our experiments show that given



an image set with diverse poses, missing data occurs at dif-
ferent areas of F and is handled well by matrix completion.

If we assemble li for image i into an n×4 matrix L, and
the shape vector sj for each vertex j into a 4×p matrix S,
we have M = LS. To obtain the lighting and normal es-
timation L and S from M, we use a typical photometric
stereo technique knowing that a Lambertian surface will be
rank-4 ignoring self-shadows. We factorize M via singu-
lar value decomposition (SVD) to obtain M = UΛVᵀ and
use the rank-4 approximation M = L̃S̃ where L̃ = U

√
Λ

and S̃ =
√

ΛVᵀ. L̃ and S̃ are the same size as the desired
lighting and shape matrices L and S, but the factorization
is not unique as any invertible 4×4 matrix A gives a valid
factorization since LS = (L̃A−1)(AS̃).

The ambiguity can be resolved up to a generalized bas-
relief transform through integrability constraints, but [23]
states that it may be unstable for images with expres-
sion variations. Thus, we follow the approach from [23],
where we select images that are modeled well by the low
rank approximation, i.e., ‖M − L̃S̃‖2 < ε, and solve for
argminA ‖St−AS̃‖2, where St is the shape matrix for the
template shape. This allows us to then estimate the lighting
and shape for the individual via L = L̃A−1 and S = AS̃.

3.3.2 Albedo Estimation

The ambiguity recovery requires the template shape ma-
trix St including a surface albedo component, which we
estimate for the individual based on the photo collection.
For a row Mi corresponding to image i, we know from
our lighting assumption that each vertex is a linear com-
bination of a shared light source direction and the surface
normal scaled by albedo, i.e., Mi,j = ρjLinj for a ver-
tex j, where ρj and Li are unknown. We initialize all ρj
to 1, and then solve iteratively until convergence for Li by
argminLi

∑
j ‖ρjLinj −Mi,j‖2 and then for ρj directly

by ρj = Mi,j/(Linj). We average all ρ estimates for the
same set of images that are modeled well by the low rank
approximation, thereby allowing us to compute St for use
in the ambiguity recovery.

3.3.3 Local Normal Refinement

The initial normal estimation produces a smoothed result
that is akin to the mean shape. We follow the procedure
from [23] where different local regions of the face are re-
fined by using different subsets of images. Thereby select-
ing a set of consistent images for each point with less ex-
pression variation to cause smoothing, e.g., closed mouth.

The local image selection is similar to [23]. We select
a subset of k images with the minimum distance ‖Mj −
LSj‖2 with k≥4 images and enough to produce a low con-

dition number of Lk×4. We recover the local shape Sj via

min
Sj

‖Mk×1 − Lk×4Sj‖2, (3)

where we omitted the Tikhonov regularization term pro-
posed by [23], as the Minkovski norm is not positive definite
and should be properly treated through a Lagrange multi-
plier, but we found the above energy produces sufficiently
close results.

3.4. Surface Reconstruction

Given the shape vectors S we can assemble the normals
n by normalizing the last three components for each ver-
tex. Then, we reconstruct the triangulated surface patch Ω
with p vertices X that is consistent with fine details speci-
fied by n. As in 3D landmark-driven warping, we keep the
connectivity of the vertices intact.

Assuming that the template has a similar metric tensor
(distance measure on the surface) to the output mesh, we
can reconstruct the shape X from the normal field n through
the mean curvature formula ∆x = −Hn, i.e., we minimize

‖LX−H‖2,

where H is the mean curvature normal, obtained by collect-
ing −Hini into a 3p-dimensional vector.

Since we are only given n, we first estimate Hi, the in-
tegral of mean curvature around vertex i from n through
the discretization of H = ∇A · n, i.e., the mean curva-
ture is how fast the area changes when surface points move
along the normal direction [34]. The discretization of the
first variation of the area can be measured by the difference
between ni and nj as follows,

Hi =
1

4Ai

∑
j∈N(i)

(cotαij+cotβij) eij · (nj−ni), (4)

where N(i) is the set of immediate neighboring vertices of
i, Ai is the sum of the triangles’ areas incident to i, eij is
the edge from i to j (Figure 3). Note the cotan weights are
the same as those in the Laplace operator. For more accurate
results, we update the cotan weights in each global iteration.

One unique challenge in handling a 3D model instead of
a height field is the boundary. On the boundary, the mean
curvature formula degenerates into a 1D version

LbX = κb,

which is based on the 1D Laplace operator Lb with non-
zero entries corresponding to boundary edges, with Lb,ij =
1/eij , where j is one of the two boundary vertices adjacent
to boundary vertex i, and κ is the geodesic curvature along
the boundary and b is the cross product between the surface
normal and the boundary tangent. Since the photometric



Algorithm 1: Unconstrained 3D face reconstruction
Data: photo collection, template X0

Result: 3D face mesh X
1 compute 2D landmarks for all images (Sec. 3.1)

// warp template through landmarks (Sec. 3.2)

2 while template deformation > threshold do
3 estimate projection Pi for each image
4 solve Eq 2

5 while 3D face vector X change > threshold do
// estimate n and ρ (Sec. 3.3)

6 re-estimate Pi

7 perform matrix completion on F to obtain M
8 estimate lighting, L, and shape, S, by SVD
9 estimate albedo, ρ

10 resolve ambiguity by estimating A
11 refine local normal estimate via Eq 3

// deform X with n (Sec. 3.4)

12 update n via Eq 6
13 estimate mean curvature via Eq 4
14 solve Eq 5

normal does not provide information about κ, we simply
use κkbk = LbX

k where Xk is the estimated shape in k-th
iteration.

We can finally put all the constraints and equations to-
gether into an overall energy,

‖LX−Hk‖2+λb‖LbX−LbX
k‖2+λl

∑
i

‖Pk
i DiX−Wi‖2,

leading to a linear system for X after we fix the projection
matrices,

(L2 + λbL2
b + λl

∑
i

Di(P
k
i )ᵀPk

i Di)X

= LHk + λbL2
bX

k + λl
∑
i

(Pk
i )ᵀWi, (5)

where λb is the boundary constraint weight. Figure 4 illus-
trates the effects of the above system in aligning the normals
while optimizing the landmark locations.

Smoothing of shadowed regions. We additionally set a
threshold θ to detect attached shadow regions through L ·
n < θ, where L is the average incoming light direction,
and replace the entries in n corresponding to the vertices in
those regions by nk. We then smooth the resulting normal
field ñ by the following procedure. First, we construct a
diagonal selection matrix T, with Tii = 1 only if vertex i
is not in attached shadow region. We then update n using
the following linear system

(I + wdT(L + wsL2)T)n = (I + wdTLT)ñ, (6)

deformation

Figure 4. The effects of the deformation-based surface reconstruc-
tion. The black arrows indicate the photometric normal estimates
and the orange arrows show the actual surface normal. The black
dots are the target landmark locations and the orange dots are the
corresponding vertices in the mesh.

where I is the identity matrix. The procedure fixes the non-
shadowed region, blends the shadowed region through im-
painting with weight wd, and smooths out the shadowed re-
gion with a weight ws.

Finally, Algorithm 1 summarizes the overall procedure
in our algorithm.

4. Experiments
In this section we present our experiments. We first de-

scribe the pipeline to prepare a photo collection for face re-
construction. We then demonstrate qualitative results com-
pared with 2.5D reconstruction on the Labeled Faces in the
Wild (LFW) database [20], and on celebrities downloaded
from Bing image search. Finally, we compare quantitatively
on a personal photo collection where we have the ground
truth model captured via a range scanner.

4.1. Data Preparation

Photo collection pipeline For the celebrities, we use the
Bing API to access up to the first 1, 000 image results by
searching on their first and last names. We remove du-
plicate images from the retrieval results. The images are
then imported into Picasa, which performs face detection
and groups similar images. After manually naming a few
groups, further images are suggested by Picasa and auto-
matically added to the collection. In the end, about half of
the images remain for each person since many search re-
sults are not photographs of the person of interest or are
duplicates. A landmark detector estimates 68 landmarks in
each image around the eyes, eyebrows, nose, mouth, and
chin line. For the initial shape template, we use the space-
time faces neutral face model [43], which we subdivide to
create more vertices and thereby a higher resolution.

Ground truth models We use a Minolta Vivid 910 range
scanner to construct ground truth depth maps for a personal
photo collection. The scanner produces a 2.5D depth scan;



[23] Ours [23] Ours Real [23] Ours Albedo ρ
Figure 5. Visual comparison on Bing celebrities with images from [23] to the left of each of our viewpoints. Note how our method can
incorporate the chin and more of the cheeks, as well as producing more realistic reconstructions especially in the detailed eye region.

so we capture three scans, one frontal, and two at ∼ 45 de-
gree yaw. We align the scans via Iterative Closest Point and
merge them to produce a ground truth model.

4.2. Results

Qualitative evaluation We process the same celebrities
as used in [23], George Clooney (476 photos), Tom Hanks
(416), Kevin Spacey (316), and Bill Clinton (460), as
well as the four individuals with the most images in LFW,
George Bush (528), Colin Powell (236), Tony Blair (144),
and Donald Rumsfeld (121). The resolution of LFW is
250 × 250 and we scale all Bing face regions to 500 pixels
height. Figure 5 compares the results between our approach
and the figures from [23]. Figure 6 shows our reconstruc-
tions on the LFW dataset. We see that our reconstruction
provides more accurate fine details in areas with high mean
curvatures, e.g., the eyes and mouth, as well as allowing for
reconstruction of the chin and cheeks when the surface nor-
mal points away from the frontal pose. Furthermore, the fa-
cial features in our results are less caricature-like than [23],
but closer to the true geometry.

Table 2. Distances of the reconstruction to the ground truth.
Methods 2.5D 2.5 Improved 3D

Mean 7.86% 7.79% 5.42%

RMS 9.71% 9.04% 6.89%

Quantitative evaluation We also implement the 2.5D ap-
proach by warping our estimated photometric normals to a
frontal view and integrating the depth. Since the 2.5D ap-
proach from [23] is not metrically correct as they mention,
we also perform an improved 2.5D approach where we first
use our landmark driven 3D warping as a preprocessing step
to resolve the aspect ambiguities.

To compare the approaches numerically, we compute the
shortest distance from each vertex in the ground truth to the
closest point on the reconstructed surface face. Meshes are
aligned by their internal landmarks according to the abso-
lute orientation problem [18]. We report the mean euclidean
distance and the root mean square (RMS) of the distance, af-
ter normalized by the eye-to-eye distance, in Table 2. Fig-
ure 7 shows a coloring of the template to visualize where
on the face is close for reconstruction. The base 2.5D ap-



Figure 6. Results on subjects from the LFW dataset. The recon-
structed 3D model, sample image from which we extract the tex-
ture, and a novel rendered viewpoint.

(a) (b) (c)

Figure 7. Distance from the ground truth to the face reconstructed
via (a) 2.5D, (b) 2.5D improved, and (c) 3D reconstruction. Dis-
tance increases from green to red. Best viewed in color.

proach (a) has incorrect depth information at the nose since
the shape ambiguity is recovered from the flatter initial tem-
plate, the improved 2.5D approach (b) better approximates
the depth, but the bridge of the nose protrudes too far, and
our 3D reconstruction best matches with the ground truth
across all the details of the face.

Usage of profile views One advantage of the landmark-
based deformation approach combined with photometric
stereo is the ability to use the profile images more effec-
tively. With only photometric stereo, the extreme poses ob-

(a) (b) (c)

Figure 8. Comparison of (a) frontal only, (b) including side view
for landmark warping, and (c) ground truth scan. The addition of
side view improves the nose and mouth region (see arrows) while
also allowing for reconstruction further back on the cheeks.

scure parts of the face and also cause increased possibility
for distortion when rendering in a frontal view. However,
the profile views provide rich 3D landmark depth informa-
tion. We run an experiment on the personal photo collection
where we use 70 nearly frontal images with < 10 degree
yaw, and then add 40 images with side view information
of > 45 degree yaw. Figure 8 shows the improved depth
of reconstruction and accurate mouth details from using ad-
ditional side view images. Note that we manually labeled
the ground truth for these images due to the deficiency of
our 2D face alignment implementation when points are oc-
cluded, but there are detectors that work well even in these
situations [8].

5. Conclusions
We presented a method for 3D face reconstruction from

an unconstrained photo collection. The entire pipeline of it-
erative reconstruction is coherently conducted on the 3D tri-
angulated surface, including texture mapping, surface nor-
mal estimation and surface reconstruction. This enables
consuming faces with all possible poses in the reconstruc-
tion process. Also, by leveraging the recently developed im-
age alignment technique, we use a combination of 2D land-
mark driven constraint and the photometric stereo-based
normal field for surface reconstruction. Both qualitative
and quantitative experiments show that our method is able
to produce high-quality 3D face models. Finally, there are
multiple directions to build on this novel development, in-
cluding incorporating automatically detected 2D landmarks
in the profile views, validating our approach on a diverse set
of populations, and extending to non-face objects.
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and H.-P. Seidel. Laplacian surface editing. In Proc. of the
2004 Eurographics/ACM SIGGRAPH symposium on Geom-
etry processing, pages 175–184. ACM, 2004. 2, 3

[34] M. Spivak. A comprehensive introduction to differential ge-
ometry, vol. 5. Publish or Perish, 1979. 5

[35] S. Suwajanakorn, I. Kemelmacher-Shlizerman, and S. M.
Seitz. Total moving face reconstruction. In ECCV, pages
796–812. Springer, 2014. 1, 2

[36] L. Valgaerts, C. Wu, A. Bruhn, H.-P. Seidel, and C. Theobalt.
Lightweight binocular facial performance capture under un-
controlled lighting. ACM Trans. Graph., 31(6):187, 2012.
1



[37] J. Wang, L. Yin, X. Wei, and Y. Sun. 3D facial expression
recognition based on primitive surface feature distribution.
In CVPR, volume 2, pages 1399–1406. IEEE, 2006. 1

[38] L. Wu, A. Ganesh, B. Shi, Y. Matsushita, Y. Wang, and
Y. Ma. Robust photometric stereo via low-rank matrix com-
pletion and recovery. In ACCV, pages 703–717, 2010. 2

[39] J. Yan, Z. Lei, D. Yi, and S. Z. Li. Learn to combine multiple
hypotheses for accurate face alignment. In ICCVW, pages
392–396, 2013. 1, 2, 3

[40] C. Yang, J. Chen, N. Su, and G. Su. Improving 3D face
details based on normal map of hetero-source images. In
CVPRW, pages 9–14. IEEE, 2014. 2

[41] Y. Yu, K. Zhou, D. Xu, X. Shi, H. Bao, B. Guo, and H.-
Y. Shum. Mesh editing with poisson-based gradient field
manipulation. ACM Trans. Graph., 23(3):644–651, 2004. 2,
3

[42] A. L. Yuille, D. Snow, R. Epstein, and P. N. Belhumeur. De-
termining generative models of objects under varying illu-
mination: Shape and albedo from multiple images using svd
and integrability. IJCV, 35:203–222, 1999. 2

[43] L. Zhang, N. Snavely, B. Curless, and S. M. Seitz. Spacetime
faces: high resolution capture for modeling and animation.
ACM Trans. Graph., 23:548–558, Aug. 2004. 6


