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Abstract

We tackle a fundamental problem to detect and estimate
just noticeable blur (JNB) caused by defocus that spans a
small number of pixels in images. This type of blur is com-
mon during photo taking. Although it is not strong, the
slight edge blurriness contains informative clues related to
depth. We found existing blur descriptors based on local
information cannot distinguish this type of small blur reli-
ably from unblurred structures. We propose a simple yet
effective blur feature via sparse representation and image
decomposition. It directly establishes correspondence be-
tween sparse edge representation and blur strength estima-
tion. Extensive experiments manifest the generality and ro-
bustness of this feature.

1. Introduction

Photos awaken our pictorial memories. A good photo
generally contains clear and sharp objects that are impor-
tant. With the prevalence of high-resolution imaging sen-
sors, blurriness and its spatial change become perceivable.
Our experiments show that a typical 13 mega-pixel mo-
bile phone camera could produce blur spanning up to 5-
8 pixels even we put these points in focus. We name the
commonly occurred small defocus blur just noticeable blur
(JNB), which is formally defined as blur spanning about 3-9
pixels and losing a quantitatively insignificant level of struc-
tures.

JNB commonly exists in images. It actually gives us
useful information to understand the scene. A typical ex-
ample is shown in Fig. 1, where sight blurriness implies
foreground and the salient object we should notice.

Impact These facts motivate us to study the new JNB
detection and estimation problem. It finds loads of poten-
tially interesting applications. For example, it could avail
computer-aided image quality assessment. It can be used
to manipulate images and generate special effects, includ-
ing background blur magnification and partial image de-

Figure 1. This image found over internet was captured with aper-
ture size f/5.6 and exposure time 1/500s. When this supposedly
clear image is viewed in its original resolution, slight blurriness
can still be noticed. It is a general phenomenon.

blurring.
With regard to blur estimation, our work contributes in

spatially-varying blur strength estimation in the pixel level.
The relative blurriness estimation actually carries the scene
depth estimation, which avails many tasks. Besides, depth
itself forms vital data to help object recognition and clas-
sification. Our work does not need to capture extra depth
data. As long as slight blur exists, a single image is enough
to infer usable depth. We will show several results later.

Challenges Though valuable in research, this JNB prob-
lem faces its unique challenges compared to traditional blur
estimation. It is not feasible for existing methods to triv-
ially address it. We explain it with respect to two possible
solutions.

First, advanced deblurring algorithms [5, 17, 25, 12, 28,
13] can estimate blur kernels and deconvolve input images.
But it is still difficult to handle spatially varying blur, es-
pecially when it is not caused by camera motion. Exist-
ing non-uniform deblurring methods assume camera motion
models and are generally computationally expensive even
for a small-resolution image.

Second, there are a limited number of methods to handle
explicit blur detection [8, 14, 19, 24, 31, 30, 29, 22]. Nearly
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Figure 2. A natural image example. (a) An image with clear and blurry regions in red and blue respectively. (b) Close-ups. (c) Gradient
distributions for these regions. The clear region has generally smaller gradients. (d) Spectrum map after Fourier transform on logarithmic
intensities. The JNB patch surprisingly has more high frequency components than the clear one.

all of them make use of local patch information. In the next
section, we discuss that with only local information, the blur
features may lack basic ability to differentiate between JNB
and clear pixels.

Our Method We show a new direction to understand
small image blur via sparse representation based on exter-
nal data. Specifically, we found that when decomposing lo-
cal image patches into dictionary atoms in an additive man-
ner, clear and JNB dictionaries show quantitatively and vi-
sually different results. The diverged effect manifests that
dictionary atoms can characterize structure in just notice-
able blur images, thus amplifying the inherent difference
between slight blur and clear regions. Based on it, we pro-
pose our simple but expressive JNB feature. It is verified on
image data in accordance with our finding.

Our main contributions are as follows. First, we intro-
duce a new framework for small blur identification. Second,
we propose a sparsity-based feature, which can produce us-
able results in blur strength estimation. Moreover, we verify
our approach on two image blur detection datasets with one
containing all JNB images. We also apply our results to ap-
plications of image deblurring, image refocus, and relative
depth estimation, to demonstrate its potential.

2. Existing Blur Descriptors

To know where and how strong the blur happens, a num-
ber of solutions were proposed in this field. Different from
traditional camera motion blur estimation [5, 27, 9, 26, 18]
where blur is significant and anisotropic, just noticeable
blur mainly deals with slight defocus blur. Starting from
Elder and Zucker [8], who utilized the first and second or-
der gradient information for local blur estimation, various
methods have been proposed along this line to detect and
estimate defocus blur.

Defocus blur analysis can be generally categorized into
gradient and frequency based solutions. Gradient meth-

ods [8, 14, 19, 24, 31] exploit the fact that blur suppresses
gradients. Thus the gradient distribution in a clear re-
gion should have more heavy-tail components and be flat
to avoid strong peaks. In the frequency point of view [19,
30, 29], blur attenuates high frequency components and in-
creases low frequency ones.

However, all above approaches were designed to esti-
mate defocus blur for narrow depth of field images or im-
ages containing large blur, where the difference of edge
sharpness in in-focus and out-of-focus regions are signif-
icant. They do not work similarly well at JNB level. The
reason is that these descriptors collect local information. On
relatively small regions, local information may not be stable
enough for descriptor construction. So the local statistics on
sharp and JNB regions are hardly distinguishable, making
their classification challenging.

A natural image example in Fig. 2 illustrates this prob-
lem. The red patch is clear and the blue one is blurred.
Although both patches contain edge information, their lo-
cal gradient distributions contradict the common sense that
clear patch should contain more large-magnitude gradients
shown in (c). The local Fourier spectra reveal similar am-
biguity in (d). It is due to the diverse complexity of latent
structures in the two patches, where the blurred region here
has more edges than the clear one. Since such ambiguity
regions appear commonly in JNB images, traditional blur
features could fail on these images. Note local gradient dis-
tribution features were used in [8, 19, 14, 31] and local fre-
quency based metrics include slope of average power spec-
trum [19, 22], wavelet response [29] and Gabor filter. For
these methods, only using information within a local region
is not enough for JNB. Other methods, e.g., matting [7, 6]
and local appearance model maximum saturation [19, 23],
encounter similar issues.

To solve our JNB problem, external data should be re-
ferred to. In our approach, we extract a set of templates
containing rich structural and statistical information from
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Figure 3. Visualizing the dictionary for natural image sparse rep-
resentation. (a) Clear natural image dictionary. (b) Dictionary
trained on a JNB image set.

external data. Then the templates are used to evaluate the
possibility of existence of JNB. We provide comparison and
analysis in Section 4. Hardware solutions for defocus anal-
ysis [15, 11, 3] are out of the scope of this paper. Opti-
cal aberrations correction [21] is also related to estimating
small blur. But it handles images in special situations.

3. Our Blur Detection Features
Our human visual system has the ability to distinguish

blur from clear regions. It implies a possible foundation to
construct an automatic system based on seeing a plenty of
natural image examples in clear or blurry states. We follow
the data-driven strategy via sparsity based natural image de-
composition on extra data.

3.1. Sparse Dictionary

Sparse representation [1, 20] commonly works as fol-
lows. Given a set of n signals Y = {y1, . . . , yn} ∈ Rd×n,
each signal yi can be represented by a sparse number of
dictionary atoms as

min
xi

∥yi −Dxi∥22 s.t. ∥xi∥0 ≤ k, (1)

where D ∈ Rd×m is an over-complete dictionary capturing
all atomic information lying in Y ; xi is the coefficient to
reconstruct yi. The ℓ2 norm in the objective function makes
representation error small, so that the sparsely recovered
signal Dxi is close to the original one. The ℓ0 norm for xi in
the constraint induces sparsity, which allows a small num-
ber of dictionary atoms in D to reconstruct yi. Basically,
sparse representation is to use dictionary atoms to capture
elementary information.

In natural image decomposition, we collect overlapped
image patches as input. Each image patch is vectorized
as yi in Eq. (1). A dictionary D is trained on all image
patches. Based on the constructed dictionary, each im-
age patch is decomposed into a few atoms together with

their non-zero coefficients, forming the reconstructed fea-
ture Dxi via Eq. (1).

3.2. Clear and JNB Dictionaries

As sparse representation can decompose each image
patch into several elementary dictionary atoms, do these
atoms represent clear and JNB input differently? We con-
duct experiments to evaluate it. Our method extracts image
patches each with size 8 × 8, forming a 64D vector. Then
we train a natural image dictionary with 128 atoms using
clear images following the procedure of [1]. The result-
ing dictionary is illustrated in Fig. 3(a). Each atom is an
edge-like component, reasonably representing natural im-
age structure.

In the meantime, we use the same procedure to train
a dictionary on images blurred slightly by Gaussian with
σ = 2. The corresponding image dictionary is shown in
Fig. 3(b), which presents obviously different structures con-
taining nearly no sharp patterns.

The contrast between dictionaries shows how blur, even
slightly, influences the fundamental atoms in image decom-
position. It also manifests that JNB and clear dictionaries
are not interchangeable when performing sparse patch re-
construction.

A Naive Method So a straightforward strategy is to
learn the dictionary for each set of patches. If it contains
smooth elements, the patches are possibly blurred ones.
This scheme has a few blatant limitations. It assumes all
patches in an image are either blurred or clear in order to
learn dictionaries correctly. It is also costly to learn dic-
tionaries again and again for different input data. Finally, it
may be possible to tell whether the set of patches are blurred
or not; but it is difficult to estimate blur size in terms of blur-
ring strength.

Our proposed method is different from this naive
scheme. It only needs to construct one dictionary via offline
training. It is then used afterwards to classify new patches
individually without assuming that all or a group of patches
are in the same class. Blur degree estimation is achievable
as well in this simple framework.

3.3. Sparsity JNB Feature

Considering inherent discrepancy between the two types
of dictionaries, we propose a new blur metric. We first learn
a blur dictionary D following Eq. (1). The dictionary D is
trained over 100,000 patches randomly cropped from 1,000
natural images blurred by the Gaussian kernel of σ = 2. We
have tried other choices, including increasing and decreas-
ing Gaussian variance, and replacing Gaussian with other
types of blur. It is found that this configuration is sufficient
for our feature construction. The maximum number k cor-



(a) Clear input, 59 atoms

(d) Gaussian blur =1.2, 24 atomsσ

(b) Gaussian blur =0.6, 46 atomsσ

(e) Gaussian blur =1.5, 20 atomsσ

(c) Gaussian blur =1, 33 atomsσ

(f) Gaussian blur =2, 19 atomsσ

Figure 4. Sparsity features for different blur degrees. As blurriness gets strong, variation of patches decreases. The number of atoms used
to represent images correspondingly drops.

responding to the used dictionary atoms is set to 5 in patch
decomposition and the total dictionary size is 128.

After D is learned, it is applied to all image patches, both
JNB and clear, for blur identification. For each new patch
input yi, we use another spare representation to decompose
it into basic atoms. It is expressed as

min
xi

∥xi∥1 s.t. ∥yi −Dxi∥2 ≤ ϵ, (2)

where ϵ is a constant (0.07 in our experiment). Different
from the traditional form that selects a relatively large ϵ to
resist noise and outliers, we set this value small to make the
resulting averaged PSNR between the original and recon-
structed patches over 50. This special setting is based on
the consideration that detail-level structural information is
central to image blur assessment in human perception.

The output atoms and corresponding coefficients reflect
whether the input is blurred or not and how strong it is. We
build our sparsity feature fa for input yi as the number of
non-zero elements in xi, expressed as

fa = ∥xi∥0. (3)

Note these patches should not be flat in color in order to
avoid classification ambiguity. Actually it does not matter
that much if we label one flat patch as blur or clear for many
applications such as deblurring and blur magnification.

Understanding and Verification Why is the number
of atoms to decompose each patch essential in blur identi-
fication? The rationale is that sharp edges have more high-
frequency sharp components than the JNB regions. In fre-
quency decomposition, to fully encode a high-frequency
edge, many small low-frequency components need to be
recorded. They are added with their respective weights.

Taking a 1D signal as example, to represent the clear
box signal well, many smoothed atoms need to be added
together with their respective coefficients, as illustrated in
the first row of Fig. 5. Contrarily, a blurred signal requires

Figure 5. Major atom difference when using the blur dictionary to
represent inputs in 1D. The first-row clear input signal needs many
blurred atoms in representation due to structure divergence. The
bottom blurred signal, contrarily, can be reconstructed sparsely.

much less atoms for optimal reconstruction, illustrated in
the second row of Fig. 5.

We choose to use the blurry-image dictionary but not the
clear one for image reconstruction. It is because in the
blurry-image dictionary, there is barely sharp component
because it is established from blurry training data. So to
represent a clear patch using blurry bases, a large number
of atoms must be used. This situation differs greatly from
that to represent a blur patch.

It is notable using the clear-image dictionary does not
achieve similar effect, as there inevitably exist flat or
smooth regions in clear images. They make the dictionary
have comparable ability to reconstruct blurry and clear im-
ages using similar numbers of atoms.

Our blurry-image dictionary D is shown in Fig. 3(b). A
clear image patch and those blurred by 5 different kernels,
are decomposed into atoms contained in Fig. 4. Since the
blurred dictionary mainly contains various smooth struc-
tures, to represent a clear input, the used dictionary atoms
are almost as many as the patch dimension. With blur de-
gree increasing, edges become less sharp. Thus a small
number of elements can already form the basis. The trend
can be statistically obtained: more atoms generally corre-
spond to less blurry patches. We thus use this clue as our
small blur indicator.

We use the blurred images to create the dictionary in-
stead of blurring the clear dictionary directly because the
clear-image dictionary in Fig. 3(a) contains many edge-like
structures with three or more major value clusters, while
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Figure 6. Sparsity values v.s. blur strength. Height of each bar
indicates the average sparsity value corresponding to a particular
blur strength measured by blur standard deviation. The short gray
lines represent the standard deviation. It statistically proves that
our sparsity measure is strongly and stably correlated with blur
strength.

most blur dictionary atoms are smooth boundaries with two
main value sets in (b). The atoms generated by blurring
the clear dictionary are still different from those in (b) and
do not work similarly well in our experiments. Our current
blur dictionary thus captures the elementary information to
represent JNB images.

Final Blur Strength Measure We verify the generality of
the phenomenon that less used dictionary atoms correspond
to stronger blurriness. We capture about 200 images with
different levels of defocus blur, where their blurriness can
be roughly matched with the Gaussian kernel of variance
ranging from 0.3 to 2, in a controlled laboratory environ-
ment. Along with natural images blurred by Gaussian defo-
cus kernels, in total we collect 5,000,000 sampled patches
variously smoothed in different degrees. We remove flat re-
gions to avoid ambiguity.

Fig. 6 lists our sparsity values fa and their corresponding
standard derivation under different blurriness levels. The
sparsity decreases as blur increases. Moreover, the sparsity
feature values for each particular blur level are rather con-
sistent under a small standard deviation. This manifests the
effectiveness and usability of the sparsity blur feature.

The statistically stable correspondence between blur
standard deviation σ and sparsity feature values f enables
us to fit a logistic regression function as

f =
a

1 + exp(bσ + c)
+ d, (4)

where a, b, c and d are the fitted variables with correspond-
ing values 39.49, 4.535, −3.538, and 18.53 respectively.
Eq. (4) allows our system to even estimate the degree of
blurriness for each patch even if it is small, and empowers
spatial-varying blur strength estimation.

4. Experiments and Comparisons
Our method does not handle flat regions due to their in-

herent ambiguity. As aforementioned, it does no matter to
determine them as sharp or blur. We simply mask them out
to indicate uncertain pixels. We fill in these holes using
closed form matting [16]. The final blur map is bilateral
filtered to remove noise and preserve sharp boundaries.

We provide an example in Fig. 7. (a) is the input image,
and (b) is its corresponding ground-truth mask to indicate
the clear region with respect to the just noticeable blur re-
gion. Our raw feature in (j) is already powerful enough to
classify the background toy as blurry. The final map in (k)
is perceptually more reasonable. Given the color input and
the blur map, we apply a graph-cut algorithm to label the
blur region in (l). It is close to the ground-truth.

The JNB detection task is actually not easy. We com-
pare our sparsity based method with other blur estimation
approaches including [2, 19, 4, 31, 30, 23, 22] in (c)-(i). We
either implement their methods or directly use public codes
for comparison. Our method outperforms others. All the
results are normalized to [0, 1]. In particular, the method
of [4] (result shown in (c)) is for directional blur via local
Fourier transform from a set of candidates. It shows directly
applying local FFT is not that discriminative for small blur.

The methods of (d) and (e) estimate blur at strong edge
regions, and then propagate them to get final results [2, 31].
These methods rely on accurate estimate of edge blur. The
Gaussian kernel and noise-free assumptions could be un-
suitable when dealing with our problem. The background
toy in (d) and the star region in (e) are not correctly labeled.
The result of [30] is shown in (f). It provides reasonable es-
timate but computation is time consuming. Also graph-cut
optimization makes the final result only have a few discrete
values.

Finally, the methods of [19, 22] with results shown in (g)
and (h) generate local blur estimates based on local gradient
or frequency statistics. They do not produce significant dif-
ference between clear and JNB regions. So there are clear
errors in the results. A decomposition based approach is
also employed via local SVD in [23] with the result shown
in (i). Without additional training data, this method does not
perform similarly well on textured regions such as the head
of the front toy. Our method is specially designed to detect
JNB. The final result after filtering in (k) is visually com-
pelling. The generated binary map in (l) can be regarded as
direct foreground segmentation.

To further evaluate our approach, we collect 8 JNB im-
ages, where blurry regions are masked out as ground-truth.
On these data, we compare our sparsity based feature with
other blur estimation approaches including [2, 19, 4, 31,
30, 23, 22]. Other blur analysis methods do not generate
blur maps and thus are not included. We show quantita-
tively comparison on our data via precision-recall (PR) in



(h) Shi et al. [22]

(g) Liu et al. [19]

(i) Su et al. [23]

(e) Zhuo and Sim [31]

(d) Bae and Durand [2]

(f) Zhu et al. [30]

(a)  Input

(b) Ground truth

(c) Chakrabarti et al. [4]

(j) Our raw feature

(k) Our final blur map

(l) Our binary map

Figure 7. Blur map comparison.
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Figure 8. Precision-recall comparison on the JNB data.

Fig. 8. The final maps to calculate the PR curve are chosen
as binary at possible thresholds within range [0, 255]. Our
method achieves the highest precision in the entire recall
range in [0, 1].

We also test our method on images proposed in [22]
where the input image are not restricted to just noticable
blur. Based on the results in Fig. 9, our method surprisingly
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Figure 9. Precision-recall comparison on the blur dataset [22].

outperforms others [19, 4, 23, 22] in the full range, which
indicates that our method is also able to handle general blur
in most cases. To further investigate the latent informa-
tion, we manually select 62 images out of the 1000. All
images contain not-so-obvious out-of-focus blur and back-
ground still has visible structures. These data are difficult
to handle in general. Our results are shown in Fig. 10.

5. Applications

In what follows, we apply our blur map results to sev-
eral applications including deblurring, refocus, and depth



(a) Input (b) Deblurring result

(c) Ground truth mask (d) Feature map (e) Blur mask

Figure 11. Deblurring using our blur estimate.
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Figure 10. Precision-recall comparison on small blur data in [22].

estimation.

5.1. Deblurring Using the Blur Estimate

We handle spatially varying blur in this section. The
input JNB image is shown in Fig. 11(a) with ground-truth
clear mask in (c). We create the blur region mask by crop-
ping our blur feature map with values over 45. The obtained
mask is shown in Fig. 11(d). It is close to the ground truth
mask. Then we deconvolve it [10]. The deblurring result
is shown in Fig. 11(b), which manifests that our estimated
blurriness is usable to recover a clear image.

5.2. Refocus Using Blur Estimate

The estimated blur maps can be regarded as a coarse rep-
resentation for depth maps, which are used to produce the
refocus effect. We first generate 20 different blurred ver-
sions for an image, and quantize the blur map into 20 dif-
ferent levels. For each pixel, according to the distance be-
tween its blur feature value and the referenced blur feature
in the current round, we choose one result from previous
20 blurred images. An input image and its corresponding
feature map are shown in Fig. 12(a) and (b). Two different
refocus effects are shown in (c) and (d).

5.3. Depth Estimation

A set of images taken under the same aperture size but
with different distances are used to verify how blur esti-
mate relates to depth. Fig. 13 shows our 6 reference im-
ages with their corresponding blur feature values in differ-
ent distances. As distance increases, feature values for the
central object decreases. We use the median feature value
on the toy region as reference to describe the image, which
excludes the influence from the confusing totally blurred
background. The six images have corresponding feature
values 55, 48, 41, 32, 20 and 16. For the test image, we
also select a reasonable region to calculate the feature value.
Three test cases are shown in Fig. 14(a), (c), and (e). The
feature values in (b), (d), and (f) are 44, 55, and 36 respec-
tively, which are consistent with the feature values in their
reference distances.



(a) Input and feature map (c) Refocus result(b) Refocus result

Figure 12. Refocusing using our blur map. (a) is the input image. (b) is our learned feature map. (c) shows different refocusing result given
our blur feature map. The arrow highlights the focus point.

(a) 0.5m (b) 0.6m (c) 0.7m (d) 0.8m (e) 0.9m (f) 1.0m

Figure 13. Calibrated image with their corresponding blur features. The set of images are taken using aperture size f/5.0 in different
distances.

(a) (b) (c) (d) (e) (f)

Figure 14. (a), (c), and (e) are three test examples with distances 0.8m, 0.5m, and 0.7m. (b), (d), and (f) are their corresponding features.

6. Conclusion and Discussion
We have explored an important topic to estimate just no-

ticeable blur. We first analyzed previous local feature meth-
ods. Then, a new sparse feature was developed for just
noticeable blur detection. We showed that this feature di-
rectly corresponds to blur strength. The learned blur fea-
tures can benefit various applications, including image de-
blurring, image refocus and depth estimation.

Our current framework does not consider strong noise
as it could be taken similarly as details in clear regions.

Our possible future work includes developing a more robust
propagation method adaptive to blur feature applications, as
well as using the blur map to assist high level vision appli-
cations, such as image classification and detection.
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