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Abstract

We present a system for fast and highly accurate 3D lo-
calization of objects like cars in autonomous driving ap-
plications, using a single camera. Our localization frame-
work jointly uses information from complementary modal-
ities such as structure from motion (SFM) and object de-
tection to achieve high localization accuracy in both near
and far fields. This is in contrast to prior works that rely
purely on detector outputs, or motion segmentation based
on sparse feature tracks. Rather than completely commit
to tracklets generated by a 2D tracker, we make novel use
of raw detection scores to allow our 3D bounding boxes to
adapt to better quality 3D cues. To extract SFM cues, we
demonstrate the advantages of dense tracking over sparse
mechanisms in autonomous driving scenarios. In contrast
to complex scene understanding, our formulation for 3D
localization is efficient and can be regarded as an extension
of sparse bundle adjustment to incorporate object detection
cues. Experiments on the KITTI dataset show the efficacy of
our cues, as well as the accuracy and robustness of our 3D
object localization relative to ground truth and prior works.

1. Introduction

The rapid advent of autonomous driving technologies has
introduced the need for accurate 3D localization of objects
such as cars in real-world driving scenarios. The applications
of real-time object localization range from driver safety, to
danger prediction, to better understanding of traffic scenes.
This paper presents a framework for 3D object localization
that combines cues from structure from motion (SFM), ob-
ject detection and ground plane estimation to achieve high
accuracy, using only monocular video as input.

The key to our accurate 3D object localization is the joint
optimization framework of Section 4 that accounts for SFM
and object detection as complementary modalities for scene
understanding. Monocular SFM cues consist of 3D points
on the object and a per-frame estimate of the ground plane,
while detection cues include 2D bounding boxes and detector
scores. The mutual interactions of these cues is governed by
our joint optimization to exploit their relative strengths.

Figure 1. We demonstrate a 3D object localization framework that
combines cues from SFM and object detection. Red denotes 2D
bounding boxes, the horizontal line is the horizon from estimated
ground plane, green denotes estimated 3D localization for far and
near objects, with distances in magenta. Notice that for the closest
object, the 3D bounding box is accurate even though the 2D one
is not. This shows the effectiveness of our joint optimization, that
incorporates SFM cues, raw detection scores and 3D priors.

Intuitively, SFM can estimate accurate 3D points on
nearby objects, but suffers due to the low resolution of those
far away. On the other hand, bounding boxes from object
detection are obtainable for distant objects, but are often in-
consistent with the 3D scene in the near field. Thus, we seek
3D bounding boxes that are most consistent with 2D tracked
ones, while also maximizing the alignment of estimated
object pose with tracked 3D points (Figure 1).

Besides detected 2D bounding boxes, we also make novel
use of object detection scores. Our system is designed for a
real-time application, so cannot afford complex scene under-
standing approaches. Rather, SFM, object detection, object
tracking and 3D localization are sequential operations in our
system, so inaccuracies in earlier stages must be compen-
sated. The input to 3D object localization are 2D tracklets
from tracking-by-detection, which are often noisy and poorly
localized. Section 4 proposes a method to incorporate raw
detection scores in our joint optimization, while avoiding the
prohibitive cost of evaluating the detector model for every
object pose configuration. This allows us to efficiently use
detection bounding boxes with high enough scores that are
more consistent with 3D geometry, to effectively undo any
poor localization of the 2D object tracks.

An important aspect of our object localization is the use
of 3D points as SFM cues, for which we use dense tracking
that exploits intensity-aligned pose optimization [9]. Section
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Figure 2. Overview of our system that estimates 3D object localization by combining SFM cues (green) with object detection cues (brown).
Given monocular video input, camera poses and ground plane are estimated by SFM, while a dense tracking framework is used to obtain 3D
points on objects. These are combined with cues from object detection hypotheses and object tracks in a joint optimization framework that
allows for soft adjustment of track positions to maximize consistency with 3D cues, bounding boxes and detection scores. Details on the
object cues are presented in Section 4, while object SFM is further elaborated in Section 5.

5 makes a crucial observation that such an approach has
distinct advantages over a pose estimation based on sparse
feature matching, which is severely limited in autonomous
driving scenarios. The intensity-aligned pose provides epipo-
lar constraints to guide a TV-L1 optical flow, which leads
to improved accuracy [16]. Unlike PnP-based pose estima-
tion, these epipolar constraints are not derived from feature
tracks, so can instead be used to improve the quality of dense
tracking. Further, accurate dense tracks added through our
mechanism prevent the system from catastrophic breakdown,
as would happen if too few sparse features are available for
a stable PnP-based pose estimation.

We show in Section 6 that combining cues from SFM and
object detection significantly improves 3D localization for
both near and distant objects. The benefit of our cue combi-
nation is available even for more comprehensive monocular
scene understanding frameworks like [3, 20]. We demon-
strate this experimentally by using the object tracks of [3]
within our joint optimization framework, to achieve a signif-
icant improvement in object localization accuracy.

To summarize, our main contributions are:

• A joint optimization framework for 3D object localization
that combines SFM cues such as ground plane and 3D
points on the object, with object cues such as 2D bounding
boxes and detection scores, to achieve high accuracy in
both near and far fields.

• Incorporation of raw detection scores to allow 3D bound-
ing boxes to “undo” tracking errors, that is, achieve con-

sistency with both 3D geometry and detection scores.
• A dense tracking framework for challenging objects like

cars in driving scenarios that can compensate for unstable
detection outputs, to reliably estimate 3D object pose.

2. Related Work
Multibody SFM has been proposed in the past to sim-

lutaneously localize a moving camera and moving objects
[11, 12]. In addition, Schindler et al. [15] propose a model
selection for segmentation. However, multibody SFM for
moving object localization has been demonstrated only for
short sequences. Indeed, in real driving scenarios, it is chal-
lenging to obtain reliable feature tracks in sufficient numbers
for multibody SFM by itself to be robust, due to small object
size, fast speeds and lack of texture.

To localize moving objects, Ozden et al. [12] and Kundu
et al. [10] use joint motion segmentation and SFM. Brox et
al. [2] use a combination of sparse SFM and dense optical
flow for joint tracking and segmentation. In practice, it
is difficult to obtain stable feature tracks on low-textured
objects like cars when they are not close and segmentation
is challenging in actual driving videos where camera and
various object motions are often correlated. A different
approach is that of multi-target tracking frameworks that
combine object detection with stereo [4] or monocular SFM
[3, 20]. Detection can handle farther objects, decouples
feature tracking for individual objects and together with the
ground plane, provides a cue to estimate object scales that



are difficult to resolve for traditional monocular SFM even
with multiple segmented motions [13].

The utility of an adaptively estimated ground plane is
shown in [17], however, localization is performed only as a
triangulation against a common ground plane. In contrast,
this paper proposes a joint optimization based on cues from
object detection and dense 3D points, while also allowing
variations in the ground plane among objects. Multi-target
tracking works like [3, 4, 20] do not show 3D localization
results, although it plays a role in their frameworks. Also
related are works on 3D object detection in a single image [6,
14]. Similarly, systems like [7] use a stereo setup to infer the
layout of urban traffic junctions. Recent scene understanding
frameworks also reason about object relationships to handle
occlusions in monocular input [23]. Unlike those works, the
sequential design in our system is governed by efficiency
requirements, but we do handle object tracks in a soft fashion
to achieve a localization most consistent with both 3D cues
and object detection. Our contributions are complementary
to the above scene understanding and multi-target tracking
frameworks, which can also benefit from our novel use of
3D points and detection cues. To demonstrate this benefit,
we incorporate object tracks from [3] in our framework and
obtain a significant improvement in localization.

Our input is monocular video, so a robust mechanism is
needed to estimate 3D points despite challenges in driving
scenarios. As our experiments show, traditional sparse SFM
does not suffice. Instead, we use a combination of dense
intensity-aligned pose estimation [9], an epipolar-guided
extension [16] to TV-L1 optical flow of [22] and consistency
checks in the spirit of sparse SFM, to extract 3D points for
our joint optimization framework. Unlike [19], we do not
use a fundamental matrix to constrain flow vectors, since
sparse feature matches on objects are not reliable. While
more accurate optical flow methods are available [1, 21], we
choose TV-L1 for its balance of accuracy and speed.

3. Background
Notation A vector in Rn is denoted x = (x1, · · · , xn)>.
A matrix is denoted as X. The homogeneous representation
of vector x is x̃ = (x>, 1)>. A variable x in frame t of
a sequence is represented as xt or x(t). A set of variables
indexed by i is denoted {xi}.

Ground plane geometry As shown in Figure 3, the cam-
era height (also called ground height) h is defined as the
distance from the principal center to the ground plane. Usu-
ally, the camera is not perfectly parallel to the ground plane
and there exists a non-zero pitch angle θ. The ground height
h and the unit normal vector n = (n1, n2, n3)> define the
ground plane. For a 3D point (x, y, z)> on the ground plane,
we have h = y cos θ − z sin θ.

Figure 3. Coordinate sys-
tem definitions for 3D object
localization. The SFM ground
plane is (n>, h)>.

Object localization through ground plane Accurate es-
timation of both ground height and orientation is crucial for
3D object localization. Let K be the camera intrinsic cali-
bration matrix. As [3, 4, 20], the bottom of a 2D bounding
box, b = (x, y, 1)> in homogeneous coordinates, can be
back-projected to 3D through the ground plane {h,n}:

c = (cx, cy, cz)
> = − hK−1b

n>K−1b
, (1)

Similarly, the object height can also be obtained using the
estimated ground plane and the 2D bounding box height.

Monocular SFM and ground plane estimation For the
background SFM (camera self-localization), we use the
monocular system of [17], with scale drift corrected using
an adaptive ground plane estimation. This is an important
choice – as shown in our experiments, using an inaccurate
or fixed ground plane from calibration cannot be an option
for reliable 3D localization over long sequences.

4. Joint Use of SFM and Detection Cues

As discussed in Section 1, SFM and 2D object bound-
ing boxes offer inherently complementary cues for scene
understanding. We now present a framework that combines
SFM cues (3D points and ground plane) with those from
object detection (2D bounding boxes and detection scores),
to localize both near and far objects in 3D. We formulate the
problelm in an energy minimization framework consisting
of SFM and object costs, with additional terms to enforce
consistency with prior knowledge. We begin by defining the
3D coordinate system and our representation of object pose.
Figure 2 illustrates an overview of the system.

4.1. 3D Coordinate System

Consider camera coordinate system C with orthonormal
axes (αc,βc,γc) and an object coordinate system O with
axes (αo,βo,γo). Let the origin of object coordinates be
the 3D point co = (xc, yc, zc)

>, expressed in camera coor-
dinates, corresponding to center of the line segment where
the back plane of the object intersects the ground. Let the
ground plane be parameterized as g = (n>, h)>, where
n = (cos θ cosφ, cos θ sinφ, sin θ)> = (n1, n2, n3)> and
h = −cTc n. We assume that the object lies on the ground
plane and is free to rotate in-plane with yaw angle ψ. Thus,



the pose of the object i is completely determined by a six-
parameter vector Ωi = (xic, z

i
c, ψ

i, θi, φi, hi)>. The coordi-
nate system definitions are visualized in Figure 3.

With the above definitions, one may transform between
object and camera systems using the ground plane, object
yaw angle and object position. Define N = [nα,nβ ,nγ ],
where nγ = (−n1, n3,−n2)>, nβ = −n and nα = nβ ×
nγ . Then, given a homogeneous 3D point x̃o in the object
coordinate system, the transformation from object to camera
coordinates is given by x̃c = PπPψx̃o, with:

Pπ =

[
N co
0> 1

]
, Pψ =

[
exp ([ωψ]×) 0

0> 1

]
, (2)

where ωψ = (0, ψ, 0)> and [·]× is the cross product ma-
trix. The projection function for a 3D point xo in object
coordinates to the 2D point u on the image plane is denoted
u = πΩ(xo), which is the inhomogeneous version of

λũ = K [ I | 0 ] PπPψx̃o. (3)

4.2. SFM Cues

The pathways for incorporating 3D cues in our system
are illustrated in green in Figure 2.

Tracked 3D points Let N objects be tracked in the scene
over T frames, with object i being tracked from frames
si to ei. During this interval, suppose Mi feature points
are triangulated by the object SFM mechanism (detailed in
Section 5). In the object coordinates, we denote this set of
3D points as Xi

o = [xi1, · · · ,xiMi
]. Since the object is rigid,

note that the location of each xij does not depend on time.
Let uij(t) = (uij(t), v

i
j(t))

> be the 2D point corresponding
to xij in frame t. Then, the first component of the SFM
cost favors the object poses {Ωi(t)}, for i = 1, · · · , N , that
minimize the reprojection error:

Ereproj
(
{Ωi(t)}

)
=

N∑
i=1

ei∑
t=si

Mi∑
j=1

‖uij(t)−πΩi(t)(x
i
j)‖2. (4)

Note that there is an overall ambiguity in the origin of O
with respect to C that cannot be resolved by SFM alone. To
do so, we require input from object bounding boxes.

Ground plane Recall that the background monocular
SFM outputs a ground plane estimate at every frame. The ob-
ject pose defined in Section 4.1 also depends on the ground
plane. Unlike prior works, we do not impose a shared ground
plane for all objects. Rather each object resides on its own
ground plane, which is useful in practical situations where
the ground plane variation within the field of view is high.
The background SFM ground plane, ḡ(t), is now used as a
prior for the object ground plane, gi(t):

Eground
(
{Ωi(t)}

)
=

N∑
i=1

ei∑
t=si

‖gi(t)− ḡ(t)‖2. (5)

The combined cost from the SFM cues (point tracks and
ground plane) is now a weighted sum:

Esfm = Ereproj + λgEground. (6)

4.3. Object Cues

The framework for incorporating object detection cues in
our system is shown in brown in Figure 2.

Object bounding box Let the dimensions of the object
3D bounding box (to be estimated) be lα, lβ , lγ along the
αo,βo,γo axes. Then, locations of the 3D bounding box
vertices, in object coordinates, are B = [v1, · · · ,v8], where
v1 = (−lα/2, 0, 0)

>
, · · · ,v8 = (lα/2,−lβ , lγ)

>. Note
that the B is in object coordinates and does not vary over
time. Let the projected edges of the 3D bounding box at
frame t be b(t) ∈ R4, which are the extrema of the projected
3D vertices along both the image axes. With a mild abuse of
notation, we will denote b(t) = πΩ(t)(B). Let d(t) be the
corresponding four sides of the tracked 2D bounding box in
frame t. Then, we define an object bounding box error:

Ebox
(
{Ωi(t)}, {Bi}

)
=

N∑
i=1

ei∑
t=si

‖πΩi(t)(B
i)−di(t)‖2. (7)

Object detection scores While we use the output of an
object tracker, we must also be aware that tracked bounding
boxes are not always accurate. There are two issues that 3D
localization must address:

• A 2D tracker might not always pick the detection bound-
ing box with the highest score, rather it would pick one
with a high score that is most consistent with priors like
smoothness and track length. However, these constraints
are imposed in 2D by most trackers, so our 3D localization
must be provided an opportunity to undo any suboptimal
choices made by the 2D tracker.

• Further, many tracking-by-detection frameworks use a dis-
crete set of 2D bounding boxes obtained after nonmaximal
suppression of the detector output. Our localization frame-
work considers a continuous model of the raw detection
output, which is crucial for 3D consistency.

To address the first issue, a straightforward approach
would be to simply attempt to find the 3D bounding box B
whose projection maximizes the detection score. However,
note that this requires the detector model to be evaluated at
every function evaluation of the 3D localization, which can
be too expensive for real-time operation. So, we adopt an
alternative approach that approximates the detection scores
with a model that is easy to evaluate. In particular, given the
set of 2D bounding box hypothesis from an object detector
[5] over the four-dimensional space of image position, length
and width, we model the corresponding detection scores as
a sum of Gaussians, fitted for the amplitude, mean and full



covariance matrix. Note that the number of objects at each
frame is already known from the 2D tracking output, thus,
the estimation of the means and 4 × 4 convariances of the
Gaussians is a straightforward non-linear minimization (for
which we use a Levenberg-Marquardt routine).

Let the estimated model of detection scores at time t be
denoted St, which yields a score St(b) for a 2D bounding
box b at frame t. As a result of the above modeling, during
every function evaluation for 3D localization, for each puta-
tive 3D bounding box B and object pose Ω, we can estimate
the detector score St(πΩ(B)) without having to evaluate the
detection model. We are now in a position to propose an
efficient detection cost for 3D localization, which simply
attempts to find the 3D bounding box and object pose that
achieves the best detection score:

Edet
(
{Ωi(t)}, {Bi}

)
=

N∑
i=1

ei∑
t=si

(
1

St(πΩi(t)(Bi))

)2

. (8)

Thus, we use the raw detection output to allow the estimated
3D bounding box to overcome any suboptimal choices made
by the 2D tracker in assignment of bounding boxes, while
avoiding the cost of too many detector evaluations for every
putative 3D bounding box and object pose.

The total object cost is a weighted sum of the bounding
box and detection costs:

Eobj = Ebox + λdEdet. (9)

4.4. Priors

We impose two priors for 3D localization: object size and
trajectory smoothness. Let xw(t) be the 3D position of the
object, in world coordinates, at frame t. Then the trajectory
smoothness prior constitutes an energy given by

Esmooth=

N∑
i=1

ei+1∑
t=si−1

‖xw(t−1)−2xw(t)+xw(t+1)‖2. (10)

Let {l̄α, l̄β , l̄γ} be the priors on the object dimensions, ob-
tained from the KITTI dataset [7]. Then, the size energy is

Esize =

N∑
i=1

∑
j∈{α,β,γ}

(lij − l̄j)2. (11)

The total energy from imposing priors on 3D localization is
then given by a weighted sum:

Eprior = Esmooth + λsEsize. (12)

4.5. Joint Optimization

With the above definitions of the various cues, we define
the combined energy function to be minimized over the set of
object poses {Ωi(t)}, 3D bounding box dimensions Bi and
the set of tracked 3D points on each object Xi

o, for objects
i = 1, · · · , N , each of which is visible in frames si to ei:

E
(
{Ωi(t)}, {Bi}, {Xi

o}
)

= Esfm + λoEobj + λpEprior,
(13)

where Esfm, Eobj and Eprior are defined in (6), (9) and (12),
respectively. The optimization in (13) may be regarded as
an extension of traditional bundle adjustment to incorporate
object cues, since it is defined over a set of variables {Ωi(t)}
that constitutes “poses” and another set given by {Bi,Xi

o}
that constitutes “3D points”. Thus, it can be solved efficiently
using a sparse Levenberg-Marquardt algorithm and is fast
enough to match the real-time monocular SFM.

To maintain computational efficiency over long se-
quences, we perform the above joint optimization over a
sliding window of maximum size T = 50 previous frames.
Note that the computation is online and output is produced
instantaneously. In all our experiments, the parameter values
are empirically set to the following fixed values: λ0 = 0.7,
λp = 2.7, λg = 2.7, λd = 0.03 and λs = 0.03.

4.6. Initialization

The success of a local minimization framework as defined
in (13) is contingent on a good initialization. We rely on the
ground plane along with cues from both 2D bounding boxes
and SFM to initialize the variables in (13), as follows.

Object Poses, {Ωi}: The initial position of an object,
ĉo = (x̂c, ŷc, ẑc)

>, is computed from the object bound-
ing box and ground plane using (1). The initial yaw can be
estimated from initial object positions in two frames ĉt−1o

and ĉt+1
o . The object’s ground height and orientation are

initialized to the SFM ground plane. The initial pose of the
object is now available as Ω̂ = (x̂c, ẑc, ψ̂, θ, φ, h)>.

3D Bounding Boxes, {Bi}: The initial object dimensions
(l̂α, l̂β , l̂γ) are computed as the optimal alignment to the 2D
bounding box, by fixing l̂γ = ηl̂α and minimizing the cost
Ebox over l̂α and l̂β , with a prior that encourages the ratio of
bounding box sizes along γo and αo to be η. The practical
reason for this regularization is that the camera motion is
largely forward and most other vehicles in the scene are
similarly oriented, thus, the localization uncertainty along
γo is expected to be higher. By training on ground truth 3D
bounding boxes in the KITTI dataset, we set η = 2.5.

3D Points, {Xi}: For initialization, each tracked 2D fea-
ture point u is assumed to lie on the plane nγ , orthogonal to
the ground. Its position in camera coordinates is

xc = −(n>γ cc)(n
>
γ K−1ũ)−1K−1ũ, (14)

thus, from (2), the initial 3D point in object coordinates O is
x̃o = P−1π P−1ψ x̃c.

5. Object Structure from Motion
In this section, we describe how we overcome practical

challenges for extracting SFM cues on challenging objects



like cars. Since the background SFM relies on sparse fea-
ture matching, it is natural to initially consider a similar
mechanism to estimate 3D points on objects. However, the
PnP-based pose computation of the sparse pipeline requires
prior knowledge of feature tracks, which are not plentiful on
objects like cars. Instead, we use a dense pose estimation
based on image intensity alignment similar to Kerl et al. in
[9]. This has several advantages as discussed below and our
experiments also demonstrate that the quality of pose esti-
mated by intensity alignment is better in our application than
obtainable by a sparse framework similar to the background
SFM. An illustration of the system is shown in Figure 4.

Pose Estimation by Intensity Alignment Recall our def-
inition of the object pose, Ω = (xc, zc, ψ, θ, φ, h)>, pre-
sented in Section 4.1. Suppose the object pose Ω(t) in frame
t is known, along with a set of reliable 3D points, {x}. Then
the object pose Ω(t + 1) can be estimated by minimizing
the intensity difference between the projections of the 3D
points in two neighboring frames:

min
Ω(t+1)

N∑
i=1

[
It
(
πΩ(t)(xi)

)
− It+1

(
πΩ(t+1)(xi)

)]2
(15)

As this intensity alignment is only valid for a small motion
between Ω(t) and Ω(t+ 1), the above optimization is em-
bedded into an iterative warping approach to handle large
motions. Note that at every frame, this estimated object pose
undergoes a refinement akin to bundle adjustment through
the joint optimization framework of Section 4, taking into
account all the cues including 3D points and object bounding
boxes. We are now in a position to use this pose for improv-
ing the quality of 3D points obtained by dense tracking.

Epipolar Guided TV-L1 Optical Flow Having access to
the object pose computed from intensity alignement, rather
than from sparse feature tracks, allows us to use epipolar
constraints from the computed pose to guide an optical flow
process that generates dense features tracks. Similar to [16],
this reduces the optical flow from a 2D search on the im-
age plane to a 1D search on the epipolar line, enhancing
the accuracy of feature tracks since flow vectors are now
constrained to be consistent with epipolar geometry. We use
an implementation similar the 1-D stereo case in [22].

Dense Feature Tracking The TV-L1 optical flow between
neighboring frames t and t+ 1 is used as input to the dense
feature tracking. To maximize efficiency, we only compute
optical flow within the small sub-image defined by the object
bounding box. To ensure high quality for the tracks, we use
the feature selection mechanism of [18] and divide each
object region into 8× 8 buckets, with only the pixels having
the highest Harris corner responses selected to be tracked.

Figure 4. System overview for obtaining SFM cues on objects, de-
picted in green. An intensity-based pose alignment allows epipolar
guidance for optical flow-based dense feature tracking. A validation
step yields candidate 3D points that are added to the main thread
when needed. The dense 3D points as well as intensity-aligned
pose estimates undergo bundle adjustment together with object
cues, using the framework of Section 4, to yield refined camera
poses for use in the next time step.

Validation for 3D Points The tracks obtained by epipolar-
guided optical flow are triangulated to obtain 3D points.
However, to eliminate errors due to dense tracking drift, the
3D points must be validated before use in object localization.
Each triangulated 3D point is reprojected into the past few
images where it is visible. As a consistency check, only those
points are retained for whom the NCC scores corresponding
to all the reprojections are above a threshold. Now we have
a new set of 3D points ready to be added to the main thread,
on which the joint optimization of Section 4 resides, when
required. It may be noted that the 3D points themselves are
also refined by the joint optimization framework of Section
4 that incorporates other cues too.

6. Experiments

We present evaluation on the KITTI dataset [8], which
contains real-world driving sequences. Since KITTI doesn’t
provide a benchmark for object localization and the ground
truth 3D labels are not public for test sequences, we evalu-
ate our 3D localization with the training sequences of the
tracking benchmark. In particular, KITTI tracking training
sequences 00–05, 10, 14, 15 and 18 that have moving cars
are used for testing, while others are used for parameter
tuning of SFM and 3D localization. We demonstrate 3D lo-
calization on ground truth bounding boxes, as well as tracked
bounding boxes computed using [7] and [3]. Our system has
been extensively tested on real-world driving scenarios.

The joint framework for 3D localization presented in
Section 4 uses several cues to achieve high accuracy. First, it
adaptively estimates the ground plane at every frame, instead



Method
Ground truth tracks Tracked bounding boxes [7]

Near Obj Far Obj Near Obj Far Obj
Z(%) X(m) Size(%) Z(%) X(m) Size(%) Z(%) X(m) Size(%) Z(%) X(m) Size(%)

CalibGround 10.2 0.53 14.8 25.3 0.79 12.3 13.9 0.58 16.1 26.9 0.75 12.0
AdaptiveGround 9.0 0.38 14.8 9.8 0.35 12.3 13.3 0.50 16.1 10.2 0.33 12.0

Ground+Opt 6.4 0.26 9.3 8.9 0.35 13.3 9.5 0.33 13.5 9.4 0.34 13.6
Ground+Opt+Det 6.1 0.25 9.1 8.6 0.33 12.1 9.4 0.32 12.4 9.5 0.33 12.5

Ground+Opt+Det+PnP 5.9 0.24 8.1 8.5 0.34 11.8 9.4 0.30 10.9 11.2 0.37 14.2
Ground+Opt+Det+Align 5.5 0.24 7.3 8.3 0.33 12.0 8.3 0.28 8.0 10.4 0.36 13.9

Table 1. Comparison of 3D object localization errors for various cues used in our joint optimization framework, with bounding boxes from
ground truth as well as the tracking output of [7]. The benefits of each of adaptive ground plane, object bounding boxes, detection scores and
3D points are clearly visible, as is the performance benefit from our dense tracking.

of relying on a fixed one. Second, it estimates and tracks
3D bounding boxes that are consistent with 2D tracks. Next,
it uses raw detection scores to allow the 3D localization to
recover from possibly suboptimal choices made by the 2D
tracker. Finally, it incorporates SFM cues in the form of
epipolar-guided dense feature tracks.

To demonstrate the effectiveness of each of the above
contributions, we show the object localization accuracy with
different methods in Table 1 using 2D bounding boxes from
ground truth, as well as the tracking output of [7]. For each
table, the left column lists different methods as various cues
are added in the localization framework. The most important
evaluation metric for our autonomous driving application
is the percentage error in depth. We also list the horizontal
localization accuracy in meters to give an idea of absolute
errors and the percentage size error.

We differentiate between near and far objects in evaluat-
ing the results (although our localization method does not
make any such distinction). This is to show the effectiveness
of different cues at various distance ranges. For instance,
we expect SFM cues to be more effective in the near range,
while we expect the ground plane estimation to have a sig-
nificant impact on far objects. We consider objects up to 15
meters away to be near.

CalibGround denotes the baseline method where lo-
calization is performed by directly back-projecting the bot-
tom of the tracked 2D bounding box to 3D using (1), with
a fixed ground plane. The calibration ground plane is
(n>, h)> = (0,− cos θ, sin θ, 1.7)>, with θ = −0.03 for
the KITTI dataset. Note that the localization errors are very
high – clearly this is not suitable for autonomous driving.

AdaptiveGround uses the same back-projection of
(1) to estimate the location of the 3D bounding box, how-
ever, the ground plane used is adaptively estimated at every
frame, replicating the method of [17]. It is observed that the
localization accuracy is especially improved for far objects,
since small errors in ground plane orientation can have a
large impact on 3D error over longer distances. A good
ground plane also has a role in the stability of the joint opti-
mization framework, since the object size, ground plane and
the object distance are highly correlated entities.

Figure 5. Benefit of SFM cues for 3D object localization. The green
curve plotted against the right axis shows distance of an object as
it approaches the camera. On the left axis, the blue curve shows
object depth error when only object bounding box cues are used for
localization, while the red curve incorporates SFM cues. SFM cues
have a significant impact on localization accuracy in the near field.

In Ground+Opt, besides using the adaptive ground
plane, we also estimate 3D bounding boxes that best fit the
tracked 2D bounding boxes. Priors are also enabled for 3D
trajectory smoothness and size constancy. Note that while
[17] uses the same ground plane for all objects, in our case,
each object is allowed to optimize its ground plane, which
enhances accuracy by accounting for local variations. We
observe that the injection of further 3D cues causes the errors
to decrease, especially for near objects.

Next, we add object detection cues in the joint optimiza-
tion framework to incorporate raw detection scores. The
results are shown in the row labeled Ground+Opt+Det.
It is clear that the error decreases further, since the system
can now search for 2D detection bounding boxes that have
high scores and are more consistent with 3D geometry.

In Ground+Opt+Det+PnP, we incorporate SFM cues
in the joint optimization framework, but with a PnP based
pose estimation. A full optical flow must be used now instead
of an epipolar-guided one, since feature tracks are precursors
to PnP. The remaining validation mechanisms are the same as
the description in Section 5. However, due to the challenging



Seq. No. 0004 0047 0056
TotalObj. ID 1 2 3 6 0 4 9 12 0

No. Frames 91 251 284 169 170 96 94 637 293

Z (%)
[3] 14.4 17.6 12.9 12.3 16.2 18.1 13.8 11.6 13.9 13.8

[17] 4.1 6.8 5.3 7.3 9.6 11.4 7.1 10.5 5.5 7.9
Ours 6.0 5.6 4.9 5.9 5.9 12.5 7.0 8.2 6.0 6.8

Table 2. Our 3D object localization can improve the per-
formance of existing scene understanding frameworks
such as [3]. This is due to our joint optimization that
makes judicious use of an adaptive ground plane, 3D
points, object bounding boxes and detection scores. Note
that [17] uses a global optimization, while we use a win-
dowed one and yet perform better in most instances.

size and texture of the objects under consideration, PnP is
limited by outliers from unstable tracking. A PnP based
object pose estimation based on sparse SIFT feature matches
causes breakdowns due to highly inaccurate poses stemming
from too few matches. We note that the improvement from
adding PnP based SFM cues is quite limited.

Finally, in Ground+Opt+Det+Align, we use dense
tracking based on epipolar-guided optical flow, along with
the intensity alignment based pose estimation to replace
the PnP. It is seen that errors decrease for the ground truth
bounding boxes in Table 1, but even more so for the actual
detection bounding boxes. This clearly demonstrates that
SFM cues can help 3D object localization to account for
unstable detection and tracking inputs. Intuitively, SFM
cues are expected to be more helpful for close objects, for
which better quality 3D points can be estimated, while de-
tection cues are more reliable in the far field. Our results are
consistent with this intuition.

To further illustrate the relative benefits obtained from
SFM cues, Figure 5 shows a sample output of the system
from a few frames in the KITTI dataset. The green curve
corresponds to distance of an object as it approaches the
camera (right axis). The left axis shows the error in depth
estimate for the methods Ground+Opt (blue curve) and
Ground+Opt+Det+Align (red curve). The latter in-
cludes SFM cues, while the former does not. It can be
seen that SFM cues are inactive when the object is further,
but keep the error rate low when the object is near. On the
other hand, ignoring SFM cues and relying only on object
bounding boxes impacts performance in the near field.

Finally, we show the improvement in 3D localization that
our use of SFM and detection cues affords for other scene
understanding frameworks. We use the tracking output pro-
vided by [3] on a few KITTI sequences, along with its raw
detection output based on [5]. The localization error is com-
pared to the method of [17] that only uses an adaptive ground
plane and detection bounding boxes, as well as our method
that additionally incorporates 3D points and detection scores.
Note that [17] performs a global optimization over all the
frames, while we use only a windowed optimization. It is
evident from Table 2 that our use of SFM and detection cues
can also benefit other scene understanding frameworks.

An example output from our system is shown in Figure 6.
Note the accuracy relative to ground truth from laser scanner.

Figure 6. Output of our localization system. The bottom left panel
shows the monocular SFM camera trajectory. The top panel shows
input 2D bounding boxes in red, horizon from estimated ground
plane and the estimated 3D bounding boxes in green with distances
in magenta. The bottom right panel shows the top view of the
ground truth object localization from laser scanner in red, compared
to our 3D object localization in blue.

7. Discussion and Future Work

We have presented a novel framework for 3D object lo-
calization, designed for autonomous driving applications. It
recognizes and exploits the complementary strengths of SFM
cues (3D points and ground plane) and object cues (bounding
boxes and detection scores), to achieve good localization ac-
curacy in both near and far fields. Our system is fast and can
be considered an extension of traditional bundle adjustment
with object cues. The generality of our framework means
it can be used to readily improve the performance of most
3D scene understanding systems that rely on object tracking.
Our system uses object detection as input and a challenge
for future work is to obtain this input in real-time.

Our work does have a few limitations. We assume objects
are rigid bodies for computing SFM cues, which is not true
for some categories such as pedestrians. Unlike some recent
works [23], we do not explicitly model occlusions. Since fast
operation is essential in our application, a possible solution
is to use detection and tracking frameworks that are more
robust to occlusions. Our future work also explores the use
of our 3D object localization in autonomous driving applica-
tions that involve comprehensive scene understanding.
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