
Learning graph structure for multi-label image classification
via clique generation

Mingkui Tan1, Qinfeng Shi1∗, Anton van den Hengel1,3∗, Chunhua Shen1,3∗, Junbin Gao2,
Fuyuan Hu1, Zhen Zhang1

1 University of Adelaide 2 Charles Sturt University 3 Australian Centre for Robotic Vision
e-mail: {mingkui.tan,javen.shi}@adelaide.edu.au

Abstract

Exploiting label dependency for multi-label image clas-
sification can significantly improve classification perfor-
mance. Probabilistic Graphical Models are one of the pri-
mary methods for representing such dependencies. The
structure of graphical models, however, is either deter-
mined heuristically or learned from very limited informa-
tion. Moreover, neither of these approaches scales well to
large or complex graphs. We propose a principled way to
learn the structure of a graphical model by considering in-
put features and labels, together with loss functions. We for-
mulate this problem into a max-margin framework initially,
and then transform it into a convex programming problem.
Finally, we propose a highly scalable procedure that ac-
tivates a set of cliques iteratively. Our approach exhibits
both strong theoretical properties and a significant perfor-
mance improvement over state-of-the-art methods on both
synthetic and real-world data sets.

1. Introduction

Multi-label image classification is the problem of pre-
dicting a binary label vector, each element of which indi-
cates the presence or absence of a certain object category in
an image [1, 3]. Exploiting label dependency can signifi-
cantly boost classification performance. For example, if an
instance of the ship category is present in an image, it is very
likely that the water category is also present. To capture la-
bel dependencies, it is common practice to use Probabilistic
Graphical Models (PGMs) [17], a standard workhorse for
modelling dependencies among random variables.

The dependencies in PGMs are often encoded in a graph
structure. However, how to correctly and efficiently esti-
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(a) Graph by ChowLiu Tree [5]
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(b) Graph by proposed method

(c) Sample images of “plane” in PASCAL2007 database

Figure 1. Comparison of graphs learned from PASCAL2007. Un-
like the graph in Figure (1(a)), the graph learned by proposed
method has identified categories not connected with other nodes,
e.g., “plane”. In fact, from Figure (1(c)), the presence of a “plane”
in an image is often independent of other objects (except “sky”,
which is not a labeled class).

mate such a graph is still a challenging problem. People
often use heuristics, such as manually specified graph struc-
tures based on domain knowledge, or simple rules like the
ChowLiu Tree [5, 2] which uses mutual information be-
tween labels but ignores features or visual contents of im-
ages completely.

We propose to learn the graph structure and parameter-
s by considering both features and labels. In this way, the
learned graph structure and parameters will fit the data bet-
ter. An important concern for graph structure learning is
that, while it is essential to find those relevant dependencies,
it is also important to identify the independent labels and
irrelevant dependencies. In Figure 1, we show the graph
constructed using ChowLiu Trees [5] (Figure 1(a)) and that
learned by our method (Figure 1(b)). Their main difference
is that, unlike the ChowLiu Tree graph wherein all the labels
are connected, some labels in our graph are isolated which
makes learning and inference faster and simpler.



2. Related Work

For multi-label learning, one may train a binary classifier
for each label independently, which is known as the binary
relevance (BR) method. This approach is used even in cas-
es where labels are, in fact, dependent [1, 6, 39]. To boost
performance, many methods have been proposed to exploit
the label dependency, including problem transformation (P-
T) methods [37, 12, 38], output coding methods [16, 32, 44,
43], PGM-based methods [13, 11, 15, 31, 22, 28], amongst
others.

PT methods manually construct auxiliary labels, or data,
to capture the label dependency, so that existing classifi-
cation methods can be applied, such as the label powerset
method [37], ranking methods [12], and ensemble method-
s [38]. However, their ability to identify dependencies is
limited when the number of labels becomes large.

Some output coding methods attempt to select codes
which preserve, or even exploit, dependencies between la-
bels [16, 32, 26, 32, 27]. For a multi-label problem with
many labels, the label vectors are often highly sparse. By
exploiting this, Hsu et al. [16] propose to compress the la-
bels using a random matrix. After learning regressors on
compressed labels, the sparse labels are recovered by com-
pressive sensing techniques. However, this method may not
work well for non-sparse labels. In [32], a principal label
space transformation (PLST) method is proposed to capture
label correlations by projecting them onto a lower dimen-
sional space via PCA. This coding scheme does not con-
sider the features, and thus may not be discriminative. To
address this, a maximum margin output coding (MMOC) is
proposed in [44], which considers both labels and features.

For PGM-based methods, a ChowLiu Tree is widely
used to construct a tree structure based on the mutual in-
formation of labels [2]. A maximum spanning tree is con-
structed using label co-occurrence [22]. In [43], a directed
acyclic graph is adopted to capture the joint probability of
labels. A chain structure is used in [7]. A random graph en-
semble method is studied in [31], which constructs a graph
from several random graphs. However, these graph con-
structions are often separated from the parameter learning
process. Learning the graph structure along with the pa-
rameters has been considered in [28, 8], but these methods
are not scalable. Wu et al. exploit a tree structure to cap-
ture the label relations [39], but this method is very time
consuming. More recently, a new graph sparsity model is
proposed in [4], but it is not really a graphical model, and
can not capture general label dependencies.

A closely related method is [28], which learns graphs in
the fashion of Conditional Random Fields (CRFs) [21] (or
log-linear models) using a group `1-regularisation. Howev-
er, this method is not scalable and does not allow the flexi-
bility of choosing task-related loss functions.

3. Multi-label and Structured Learning
Throughout the paper we denote the transpose of a vec-

tor/matrix by the superscript > and the zero vector as 0. In
addition, ‖v‖p denotes the `p-norm of a vector v. For a
function f(x), the gradient and subgradient of f(x) at x
are denoted by∇f(x) and ∂f(x), respectively.

Given a labeled data set {(xi,yi)}ni=1, where xi ∈ X

and yi ∈ Y = {0, 1}K , multi-label learning seeks to learn a
hypothesis h : X → Y that maps an input x ∈ X to outputs
y ∈ Y. One approach to this problem is by solving the
following decoding problem:

h(x) = arg max
y∈Y

F (y,x,w) = arg max
y∈Y

w>Ψ(y,x), (1)

where Ψ : X×Y→ Rm is a feature mapping that combines
the inputs and outputs, and w denotes the model parameters
to be determined.

Let G = {V,C} denote a graph, where V = {1, ..., p}
denotes the set of all nodes (i.e. labels), and C ⊂ V × V

denotes a set of cliques (fully connected subgraphs) of order
higher than 1, i.e., C

⋂
V = ∅. If we restrict each clique to

contain only two nodes, then C recovers the conventional
edge set E ⊂ V×V. Note that using C (instead of E) allows
our approach to handle higher order potential functions in
undirected or factor PGMs.

Based on graph G, as commonly used F (y,x,w) is de-
composed by potential functions:

F (y,x,w) =
∑
k∈V

u>k Ψ(yk,x) +
∑
c∈C

v>c Ψc(y
c,x), (2)

where w concatenates all uk’s and vc’s, and the global fea-
ture Ψ(y,x) concatenates all node features Ψ(yk,x) and
clique features Ψc(y

c,x). Once a graph is constructed, the
model parameters can be learned by Conditional Random
Fields (CRFs) [21] or Structured Support Vector Machines
(SSVMs) [36]. In SSVMs, to measure the distance between
the prediction h(xi) and true outputs yi, a loss function
∆ : Y × Y → R+ is used, for example, the Hamming loss:
4(y,yi) =

∑K
k=1 1[yk 6= yki ] [36].

4. Learning with Unknown Graph
In our setting, the graph G is unknown, and we propose to

learn it and model parameters jointly from the data. Learn-
ing G can be seen as selecting relevant cliques from all pos-
sible cliques, which underpins our representation.

4.1. Representation

Though there might be many potential cliques in C, only
a few of them are relevant to the output in the sense that, a
label (e.g. an object) is often related to only a small number
of other objects. If all labels are exclusive to others, the
problem is reduced to a multi-class problem.



To find the relevant cliques, we introduce a binary vector
η ∈ {0, 1}q , where q = |C|, and define

Ψc(y
c,x; ηc) = ηcΨc(y

c,x),∀c ∈ C.

Here, a clique c is chosen if ηc = 1; otherwise it will be
dropped. For convenience, we define a new feature map-
ping associated with η as ΨC(y,x;η) = [ηcΨc(y

c,x)]c∈C,
and the feature mapping difference as ΦC

yi,y(xi;η) =
ΨC(yi,xi;η)−ΨC(y,xi;η). Since we keep all the nodes,
we define ΨV(y,x) = [Ψ(yk,x)]k∈V, and ΦV

yi,y(xi) =
ΨV(yi,xi)−ΨV(y,xi).

We prefer to select the least number of cliques that would
fit the data well, thus we introduce an `0-norm constraint
||η||0 ≤ r, where r denotes the least number of cliques
we intend to select. Here, r may represent our basic prior
knowledge about the graph. For example, setting r = 1
means that there might be one relevant clique. Nevertheless,
as will be shown, our later proposed optimization scheme
guarantees to find more cliques (if relevant) even when we
set r = 1. But if the number of relevant cliques is very
large, a larger r may dramatically improve computational
efficiency.

Let Λ = {η|η ∈ {0, 1}q, ||η||0 ≤ r} be the domain
of η, u be the model parameters w.r.t. the node cliques
V, and v be the model parameters w.r.t. C. Based on the
SSVM framework [36], we propose to learn a sparse graph
(together with the model parameter w) by solving the fol-
lowing optimization problem:

min
η∈Λ

min
w=[u;v]

λ

2
||w||2 +

1

n

n∑
i=1

ξi, (3)

s.t. u> ΦV
yi,y(xi) + v> ΦC

yi,y(xi;η) ≥ ∆(y,yi)− ξi,
ξi ≥ 0 ∀i,∀y ∈ Y\yi,

where u = [uk]k∈V, v = [vc]c∈C and w = [u; v]. This
problem is non-convex. However, it is reduced to a standard
SSVM problem of l = n|Y| potential constraints by fixing
η [36, 20]. Introducing non-negative dual variablesα ∈ Rl,
the Lagrange dual of the SSVM problem with fixed η can
be written as

max
α∈A

− 1

2λ
||u(α)||2 − 1

2λ
||v(α,η)||2 + b>α, (4)

where b = [∆(y,yi)]i∈[n],y 6=yi , u(α) :=∑n
i=1

∑
y 6=yi

αiy ΦV
yi,y(xi), and

v(α,η) :=

n∑
i=1

∑
y 6=yi

αiy ΦC
yi,y(xi;η).

Let A := {α ∈ Rl|α ≥ 0,
∑

y 6=yi
αiy ≤ 1

n} be the domain
of α, and

g(α,η) := − 1

2λ
||u(α)||2 − 1

2λ
||v(α,η)||2 + b>α.

We then transform problem (3) into a minimax problem:

min
η∈Λ

max
α∈Ω

g(α,η), (5)

This problem is still an integer programming problem. Ac-
cording to the minimax inequality [30], we have

min
η∈Λ

max
α∈A

g(α,η) ≥ max
α∈A

min
η∈Λ

g(α,η).

Therefore, the latter problem is a convex lower bound to
(5). In fact, by introducing an additional variable θ ∈ R,
we can further transform it into a standard convex program-
ming problem:

max
θ∈R,α∈A

θ, (6)

s.t. θ ≤ g(α,η), ∀η ∈ Λ.

Therefore, problem (6) is a convex relaxation to (5) as well
as the original problem (3). Recall that each feasible η ∈ Λ
corresponds to a quadratic constraint. Then, problem (6)
has exponentially many constraints as there are

(
q
r

)
ele-

ments in Λ, making it hard to address directly.

4.2. Clique Generation

Though there are exponentially many constraints in (6),
most of them should be inactive at the optimum solution,
due to the assumption that the graph G is sparse. Motivated
by this, and the cutting plane approach, we propose Algo-
rithm 1 to address this problem.

Algorithm 1 Clique Generation.
1: Initialize Λ0 = ∅ and Ct = ∅. For i = 1, ..., n: Com-

pute y∗i = arg maxy ∆(y,yi); Let W0
i = {y∗i }; Set

α0
iy∗ = K, where K is the number of labels. Set t = 1.

2: Find η̂ by solving (7). Let Λt = Λt−1

⋃
{η̂} and Γt =

{c}η̂c=1.
3: Solve subproblem (8) to update αt and Wt

i.
4: Let t = t+ 1 and repeat from Step 2 until convergence.

Algorithm 1 iteratively activates a number of cliques (al-
so known as the most-violated constraint) until some condi-
tions are achieved. Specifically, at the tth iteration, we find
a most-violated constraint (which corresponds to a particu-
lar choice of η) by solving

η̂ = arg min
η

g(αt−1,η), (7)

where αt−1 is assumed known. At the initialization stage,
e.g. t = 1, we need the knowledge ofα0 and W0

i to address
η̂ = arg minη g(αt−1,η). Since we have not learnt any
parameters yet (namely w = 0), the active label y∗i can be



easily obtained by solving y∗i = arg maxy ∆(y,yi). By
initializing W0

i = {y∗i }, we can just initialize α0
iy∗ = K,

where K denote the number of labels.
In general, αt−1 can be very high-dimensional (namely,

n|Y|), but it is always sparse. This property is quite useful
for solving (7). In fact, as problem (7) is only related to
nonzero αiy’s, we define a Working Set of αiy as:

Wi = {y∗|αiy > 0,y∗ ∈ Y}.

Once η̂ is determined, we add into an active constraint
set Λt (Λ0 = ∅), and subsequently solve a subproblem w.r.t.
constraints defined in Λt:

max
θ∈R,α∈A

θ, (8)

s.t. θ ≤ g(α,η), ∀η ∈ Λt.

Since there are only |Λt| constraints, the complexity of
problem (8) is considerably reduced. After solving this
problem, we obtain αt, and update Wt

i accordingly.

Theorem 1. [35, 33] Assume that both problems (7) and
(8) can be addressed per iteration, then CGM stops after a
finite number of iterations with a global solution of (6).

In the subsequent sections we discuss the optimization
of (7), and of (8).

4.3. Finding the Most Violated Constraint

To identify the most-violated constraint, we need to
solve problem η̂ = arg minη g(αt−1,η). It is easy
to verify that this problem is equivalent to η̂ =
arg maxη ||v(α,η)||22. Note that ηc ∈ {0, 1}, and v(α,η)
can be written as v(α,η) = [ηcvc(α)]c∈C, where

vc(α) =

n∑
i=1

∑
y∈Wi

αiy ΦC
yi,y(xi;η).

Then, problem (7) can be addressed by solving the follow-
ing problem:

max
η

∑
c∈C

ηc||vc(α)||22, s.t.
∑
c∈C

ηc ≤ r, ηc ∈ {0, 1}. (9)

This problem is an integer programming problem, but its
optimal solution can be easily obtained. Let sc = ||vc(α)||22
be the score of a clique c. We can first find r cliques with
the largest score (e.g. sc), and then set the corresponding ηj
to 1 and the rest to 0. We can easily verify that such a η is
an optimal solution of (9).

In practice, we do not have to maintain η̂ explicitly. In
fact, since the nonzero entries in η̂ essentially index r new
cliques, we only need to record these cliques into a set Γt.
For convenience, we record all the selected cliques of t iter-
ations into a set Ct, which is updated by Ct = Ct−1 ∪ Γt.

Lastly, since each η̂ activates at most r active cliques,
hereafter we call Algorithm 1 the Clique Generating Ma-
chine (CGM).

4.4. Optimization on (8)

Solving problem (8) w.r.t. α directly can be very expen-
sive when the number of instances (namely n) is large. In
the following, we propose to solve it through a Stochastic
Proximal Dual Coordinate Ascent (SPDCA) method. Let
ωk = [vc]c∈Γk be the model parameters w.r.t. cliques in
Γk, where k = 1, ..., t.

Proposition 1. Let Ut = V ∪ Ct, w = [u;ω>1 ; ...;ωt] and
ΦUt

yi,y(xi) = [ ΦV
yi,y(xi); ΦCt

yi,y(xi;η)]. Problem (8) is a
conic dual form of the following `22,1-regularized problem:

min
v

λ

2
||u||2 +

λ

2
(

t∑
k=1

‖ωk‖)2 +
1

n

n∑
i=1

ξi, (10)

s.t. w> ΦUt

yi,y(xi) ≥ ∆(y,yi)− ξi, ∀i,∀y ∈ Y\yi.

Problem (10) is a kind of group lasso problem [24]. The
non-smooth `22,1-norm regularizer λ

2 (
∑t
k=1 ‖ωk‖)2 would

encourage sparsity among ωk’s [34, 40]. If a clique is in-
deed irrelevant to the output, it will possibly be dropped out
due to the `22,1-norm regularization.

Solving (10) is non-trivial due to the non-smooth objec-
tive function. Motivated by [29], we propose solve it by a
proximal primal-dual ascent method. To achieve this, we
introduce an additional smooth regularizer σ

2 ‖ω‖
2 to the

objective of (10), and minimize the following objective in-
stead:

f(w) =
λ

2
‖u‖2 +

σ

2
‖ω‖2 +

λ

2
(

t∑
k=1

‖ωk‖)2 +
1

n

n∑
i=1

ξi, (11)

where ξi = max∀y∈Y\yi

(
∆(y,yi)−w> ΦUt

yi,y(xi)
)
, ∀i.

Proposition 2. Let w∗ be an ε
2 -accurate minimizer of (11).

With a sufficiently small σ, w∗ is also an ε-accurate solution
of (10).

Let Ω(w) := 1
2‖u‖

2 + σ
2λ‖ω‖

2 + 1
2 (
∑t
k=1 ‖ωk‖)2,

where w = [u;ω]. Let Li(w> ΦUt

yi,y(xi)) := ξi. Then,
the problem can be transformed into the following problem

min
w

λΩ(w) +
1

n

n∑
i=1

Li(w
> ΦUt

yi,y(xi)). (12)

Now, Ω(w) is 1-strongly convex and Li(w
> ΦUt

yi,y(xi))
is γ-Lipschitz for some γ [29]. Let Ω∗(z) =
arg maxw w>z − Ω(w) be the conjugate of Ω(w),1 and
L∗i be the conjugate of Li. The conjugate dual of problem
(12) can be written as

max
α

D(α), s.t.
∑
y 6=yi

αiy ≤ 1,∀i ∈ [n],

1The computation of Ω∗(z) is put in the supplementary file.



whereD(α) = −λΩ∗
(

1
λn

∑n
i=1

∑
y 6=yi

αiyw> ΦUt

yi,y(xi)
)
−

1
n

∑n
i=1 L

∗
i (−αiy), αiy = [αiy]y 6=yi and L∗i (αiy) =∑

y 6=yi
4(y,yi)αiy.

The basic idea of SPDCA is to increase the conjugate
dual objective of (12) w.r.t. a single variable as much as
possible. Specifically, for a randomly chosen instance i, we
find an active label y∗ by solving

y∗ = arg max
y 6=yi

∆(y,yi)−w> ΦUt

yi,y(xi). (13)

Given y,2 we need to update w and dual component αiy by
computing δiy to maximize the following dual objective:3

−λΩ∗
(

w(h−1) +
1

λn
δiy ΦUt

yi,y(xi)

)
− 1

n
L∗i (−(αiy + δiy)).

Let a = || ΦUt

yi,y(xi)||2 and d = wh−1> ΦUt

yi,y(xi). It is
equivalent to compute δiy to maximize a proximal objective

max
δiy

(4(y,yi)− d) δiy −
a2

2λn
δ2
iy.

Regarding this problem, we have a closed-form solution
δiy = λn(4(y,yi)−d)

a2 . To deal with the issue when
|| ΦUt

yi,y(xi)||2 = 0, we update δiy = λn(4(y,yi)−d)
θ(a2+ν) , where

θ ≥ 1 and ν > 0. The detailed algorithm is shown in Algo-
rithm 2.

Algorithm 2 Stochastic Proximal Dual Coordinate Ascent.
Given parameter λ, ν, θ > 1 and ε. Initialize w =
[u;ω1; ...,ωt−1; 0] (For warm start).
For h = 1, ...,H .

Let fh = 0.
For z = 1, ..., n.

Randomly pick i ∈ {1, ..., n}.
Find y = arg maxy 6=yi ∆(y,yi)−w> ΦUt

yi,y(xi).

Compute ξi = ∆(y∗,yi)−w> ΦUt

yi,y(xi).
Update δiy = ξi

θ( 1
λn ||Ψ(xi,y)||22+ν)

.

Let zi = wi−1 + δiy ΦUt

yi,y(xi), and fh := fh + ξi.
Update wi = Ω∗(zi).

end
Let fh := fh/n+ λΩ(w).
If (h > 2 and fh > fh−1), let θ := 2θ.
If (h ≥ 5 and |fh−fh−5|

fh−5
≤ ε), quit and return δiy.

end

Theorem 2. It is sufficient for Algorithm (2) to obtain an
expected ε-duality gap after O(R

2

λε ) iterations, where R is
an upper bound on || ΦUt

yi,y(xi)||2.

2For convenience, we drop the superscript ∗ from y∗.
3The computation of Ω∗(z) can be found in supplementary file.

Algorithm 2 performs in a stochastic manner, and does
not explicitly maintain αiy which is required in our active
clique section. Note that if w∗ is an ε-accurate solution,
then α is an ε-accurate solution. For any active y of the last
epoch, its initial value is 0. Then the update rule for αiy
becomes αiy := δiy. Therefore, we directly choose δiy of
the last epoch as αiy .

4.5. Joint Feature Mapping Selection

The joint feature mapping Ψ(y,x) plays an essential
role. Let ψ(x) denote the basic input feature. Follow-
ing [31], we consider the joint feature mapping below

Ψ(y,x) = Υ(y)⊗ψ(x),

where ⊗ denotes the tensor product, and Υ(y) =
[Υc(y

c)]c∈C∪V consisting of labeling indicators Υc(y
c) =

[1{yc=uc}]uc∈Yc . In this way, one can easily capture the de-
pendency between labels without the need for prior align-
ment of input and output features [31]. Other joint feature
mappings can be applied here too.

4.6. Efficient Inference on Sparse Graphs

In both training and prediction, we need to predict y∗ by
solving a standard MAP inference problem:

y∗ = arg max
y 6=yi

τ∆(y,yi)−w> ΦU
yi,y(xi), (14)

where U = V ∪ C denote the clique set, and τ = 0 is for
prediction and τ = 1 for training. Note that our learnt graph
may have loops. In this paper, we adopt the Max-Product
Linear Programming [14] to complete the inference. This
method is guaranteed to converge, and has optimal certifi-
cate when the gap between the dual and primal vanishes,
regardless of loops. In our setting, it finds an exact solution
in most cases since the graph is sparse [45].

5. Experiments
We evaluate the proposed Clique Generating Machine

(CGM) on one synthetic data set and three multi-label im-
age annotation data sets, namely the nature Scene data set 4,
PASCAL VOC 2007 data set (denoted by PASCAL07),5

and PASCAL VOC 2012 data set (denoted by PASCAL12
[9]. The Scene data set contains 2407 images with 6 labels,
and each image is represented by 297 features. The PAS-
CAL07 data set contains 9963 images with 20 labels. Here,
we adopt two kinds of features to represent PASCAL2007,
i.e., the dense SIFT features (denoted by PASCAL2007-
DSIFT) of 3000 dimensions, and deep CNN (convolutional
neural network) features [19]. For PASCAL VOC 2012,

4http://mulan.sourceforge.net/datasets-mlc.html.
5http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2007/.



Table 2. Hamming loss on toy testing data set.
Method CGM NO-Edge FULL-Edge CL-TREE HLLM-L1 [28] LSG21 [4] BR [23] PLST [32] MMOC [44] LEAD [43] PLEM [22]

HammingLoss 0.011 0.053 0.028 0.044 0.024 0.059 0.054 0.055 0.064 0.0484 0.064

we use CNN features only. In our experiment, we extrac-
t CNN features via Caffe tool box,6 which represent each
image by 4096 features. The statistics of these data sets are
summarized in Table 1.

Table 1. Data sets summary
Data set #instances #features #labels
Scene 2407 297 6

PASCAL07-DSift 9963 3000 20
PASCAL07-CNN 9963 4096 20
PASCAL12-CNN 11540 4096 20

5.1. Baseline Methods and Performance Measures

We compare CGM with following baselines: BR (Binary
Relevance) [23]; LEAD (Multi-label learning by exploiting
label dependency) [43]; PLST (Principal label space trans-
formation) [32]; MMOC(Maximum margin output cod-
ing) [44]; PLEM (Probabilistic enhancement model) [22].
HLLM-L1 (Hierarchical log linear model with overlapping
group `1-regularization) [28]; SSVM-CT (Structured SVM
with ChowLiu Tree). BR is considered as a basic baseline;
while PLEM, HLLM-L1, SSVM-CT and MMOC are con-
sidered as state-of-the-arts. We adopt LIBlinear SVM to
build binary classifiers for BR [10], which is the same as in
[4]. We implement PLEM ourselves; while the sources of
other methods are publicly available.

We adopt four widely used performance criteria as the
comparison metrics, i.e., Hamming Loss, Macro-F1, Micro-
F1, Micro-Recall [44, 4, 22]. All the measures are comput-
ed through the codes provided in [44]. The mean average
precisions (mAP) is classical metric for measuring the per-
formance of rankings [42]. However, in our methods and
PLEM [22], the labels are directly predicted by solving the
MAP inference problem in (14) (each predicted label is ei-
ther 0 or 1), and the ranking information is not available.
Therefore, we do not adopt mAP measure. On each data
set, we compare all the methods by 5-cross validation. The
mean and deviation of each criterion are recorded.

All the experiments are conducted in Matlab on a PC in-
stalled a 64-bit operating system with an Intel(R) Core(TM)
i7-4770 CPU (3.40GHz with single-thread mode) and 8GB
memory.

5.2. Experimental Results on Synthetic Data Set

We first conduct a synthetic experiment to demonstrate
the performance of the proposed method. We generate a
synthetic data set of 10 labels (e.g., V = {1, ..., 10}) and

6http://caffe.berkeleyvision.org/.

a basic input feature vector ψ(x) ∈ R10, where each di-
mension is sampled from a Gaussian distribution N(0, 1).
We make 4 edges Ĉ = {{1, 2}, {1, 3}, {1, 4}, {1, 5}} as
the ground-truth relevant edges. We then sample 2000 in-
stances for training and 1000 instances for testing. For
each node (i.e. a label here), we generate a Gaussian ran-
dom weight vector u ∈ R5. Since yi ∈ {0, 1}, each edge
has 4 possible states, namely 00, 01, 10, and 11 [28]. For
each states, we generate a Gaussian random vector v ∈ R5

as the ground-truth edge parameters. After generating the
ground-truth parameter denoted as w (constructed from u
and v), we generate the ground-truth labels ŷ by solving
ŷ = arg maxy∈Y w>Ψ(y,x). We set λ = 0.0001 and
B = 2 for CGM.

In the synthetic experiments we investigate: 1) whether
the CGM can successfully find the ground-truth edges, and
2) whether these edges are helpful to improve the predic-
tion performance. To do so, we adopt the following base-
lines for comparison: SSVM with all edges (denoted by
FULL-Edge), SSVM without any edges (denoted by NO-
Edge), and SSVM with ChowLiu Tree based graphs (de-
noted by CL-TREE). Note that above SSVMs based meth-
ods have the same primal objective function with ours (once
the graph is given), thus we can plot their primal objective
values versus number of epochs in Figure 2.
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Figure 2. Primal objective values versus # epochs

From Figure 2, CGM achieves the fastest convergence
speed and the lowest objective value. In our experimen-
t, it successfully finds the ground-truth edges; while the
ChowLiu Tree cannot identify any of the ground-truth
edges. In fact, SSVM without edges and SSVM with
ChowLiu Tree graphs cannot decrease the objective signif-
icantly after 100 epochs. SSVM with all edges converges
fast at the beginning epochs, but it become very slow after
150 epochs.

Note that the labels of this synthetic data set is very
dense. Therefore, the Hamming loss is a sufficient criterion



for comparison. We reported the Hamming loss on testing
data set in Table 2. From this table, CGM indeed achieves
the lowest testing Hamming loss compared to other meth-
ods. HLLM-L1, which imposes sparsity on edges, shows
better results than other methods except CGM. However, it
has much higher memory requirements than CGM, thus it
is not scalable to large-scale problems.

5.3. Experimental Results on Real-world Data Sets

In the experiment on real-world data sets, we first report
the mean and deviation of the four criteria obtained by var-
ious methods. The results are reported in Table 3. From
Table 3, we draw the following conclusions.

• On all data sets, CGM shows better or comparable per-
formance. In particular, CGM shows the best perfor-
mance on PASCAL07 and PASCAL2012 using CNN
features in terms of all four measures. Moreover, it al-
so achieves the best results on all data sets in terms of
Hamming loss and Macro-F1.
• From Table 3, CGM shows significant improvements

over BR in terms all performance measures. This
demonstrates that, exploiting the label dependency in-
deed improves the classification performance.
• CGM shows significantly better performance than

SSVM-CT in terms of most measures, which demon-
strates the effectiveness of CGM. In Figure 1 of the
Introduction section, we have compared the graphs
obtained by ChowLiu Tree and CGM, and the graph
obtained by CGM is more reasonable.
• CGM shows better performance than PLEM [22], a

method relies on a graph learned on labels only, and
the features are not adopted to adjust the graph. Simi-
larly, the LEAD method is based on a pre-learned DAG
graph. Therefore, its performance is also limited.
• The HLLM-L1 method, which enforces sparsity on

edges, shows comparable performance to CGM on
Scene data set. But its results on PASCAL07 and
PASCAL2012 data sets are absent due to the out-of-
memory issue.
• The PLST method shows relatively worse performance

than others, but it is very efficient on large-scale prob-
lems of many labels. The MMOC method show su-
perior results over BR and PLST, but the training of
output codes is time consuming.

We further show the performance variation of CGM ver-
sus the number of edge cliques on Scene and PASCAL07-
CNN data sets. The results are shown in Figures 3 and 4.
We draw the following conclusions. Firstly, on the two da-
ta sets, adding the relevant label dependencies improves the
performance measures, such as Hamming loss and F1 mea-
sures. However, adding too many label dependencies does
not necessarily improve the performance. For example, on
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Scene data, the performance of CGM does not show sig-
nificant improvement when there are more than 10 edges.
On PASCAL07 data, the performance of CGM in terms of
Hamming loss indeed degrades when there are more than
12 edges. In other words, adding too many edges (cliques)
(especially irrelevant edges (cliques)) may even degrade the
prediction performance.

5.4. Further Comparison

In Table 4, we compare our results on Scene and PAS-
CAL07 with four additional latest methods including LS-
G21 [4], MLF [18], MLLS [41], and MLRF [18] using the
published results in [4]. On Scene data set, we use the same
features. However, the PASCAL07 data used in [4] are rep-
resented by GIST features [25]. Therefore, the comparison
on PASCAL07 might not be as indicative as we would ex-
pect. In fact, during the preparation of this paper, we have
attempted to conduct experiments with the compared meth-
ods on PASCAL07 with GIST features, but the experimen-
tal results do not match the published results. This might
be produced by data pre-processing, which, however, is un-
clear to us. Maybe due to the same reason, though we used
the LSG21’s source codes, we did not manage to reproduce
their published results. Nevertheless, CGM outperforms
comparison methods on Scene data in terms of F1 measures.
On PASCAL07, CGM with CNN features achieves signifi-
cantly better results than others. Interestingly, this compari-
son also demonstrates the superiority of CNN local features
on multi-label image classification tasks.



Table 3. Performance comparison via 5-fold cross validations

Measure Methods
Data sets

Scene PASCAL07-DSift PASCAL07-CNN PASCAL12-CNN

Hamming Loss

BR [23] 0.110±0.003 0.081±0.001 0.052±0.001 0.052±0.001
LEAD [43] 0.100±0.002 0.071±0.001 0.045±0.001 0.046±0.001
PLST [32] 0.118±0.003 0.091±0.001 0.054±0.001 0.060±0.001

MMOC [44] 0.098±0.009 0.076±0.001 0.045±0.001 0.047±0.001
PLEM [22] 0.099±0.003 0.080±0.001 0.049±0.003 0.046±0.001

HLLM-L1 [28] 0.104±0.002 – – –
SSVM-CT 0.100±0.002 0.068±0.001 0.041±0.001 0.043±0.001

CGM 0.094±0.003 0.065±0.001 0.038±0.001 0.040±0.001

Macro-F1

BR [23] 0.678±0.009 0.279±0.004 0.623±0.006 0.424±0.014
LEAD [43] 0.679±0.009 0.0.170±0.003 0.595±0.009 0.555±0.009
PLST [32] 0.608±0.006 0.080±0.002 0.502±0.008 0.160±0.003

MMOC [44] 0.696±0.020 0.184±0.005 0.577±0.003 0.629±0.005
PLEM [22] 0.693±0.006 0.276±0.003 0.630±0.003 0.605±0.007

HLLM-L1 [28] 0.687±0.005 – – –
SSVM-CT 0.610±0.009 0.214±0.008 0.634±0.005 0.629±0.004

CGM 0.708±0.010 0.348±0.008 0.648±0.002 0.623±0.005

Micro-F1

BR [23] 0.676±0.010 0.384±0.003 0.657±0.004 0.389±0.013
LEAD [43] 0.682±0.010 0.315±0.004 0.659±0.006 0.619±0.011
PLST [32] 0.608±0.007 0.285±0.005 0.617±0.009 0.436±0.006

MMOC [44] 0.719±0.017 0.364±0.004 0.682±0.002 0.666±0.003
PLEM [22] 0.691±0.010 0.378±0.003 0.673±0.003 0.639±0.008

HLLM-L1 [28] 0.698±0.014 – – –
SSVM-CT 0.682±0.010 0.384±0.005 0.701±0.006 0.672±0.007

CGM 0.703±0.010 0.434±0.005 0.712±0.002 0.681±0.007

Recall

BR [23] 0.706±0.008 0.438±0.007 0.669±0.010 0.267+0.009
LEAD [43] 0.785±0.008 0.407±0.004 0.791±0.012 0.780±0.006
PLST [32] 0.740±0.013 0.334±0.003 0.693±0.023 0.069±0.006

MMOC [44] 0.745±0.017 0.558±0.003 0.825±0.007 0.702±0.013
PLEM [22] 0.773±0.007 0.438±0.004 0.688±0.009 0.666±0.005

HLLM-L1 [28] 0.789±0.010 – – –
SSVM-CT 0.785±0.008 0.478±0.005 0.810±0.008 0.742±0.001

CGM 0.790±0.010 0.426±0.012 0.853±0.001 0.819±0.015
1 The results of HLLM-L1 [28] on PASCAL data sets are absent due to out-of-memory issue.

Table 4. Performance comparison on Scene and PASCAL07

Measure Methods
Data sets

Scene PASCAL07

Macro-F1

LSG21 [4] 0.675 0.407
MLF [18] 0.684 0.332

MLLS [41] 0.472 0.322
MLRF [18] 0.682 0.326

CGM 0.708 0.648(CNN)

Micro-F1

LSG21 [4] 0.682 0.307
MLF [18] 0.690 0.221

MLLS [41] 0.472 0.215
MLRF [18] 0.686 0.214

CGM 0.703 0.712(CNN)

Precision

LSG21 [4] 0.706 0.309
MLF [18] 0.687 0.221

MLLS [41] 0.473 0.215
MLRF [18] 0.705 0.22

CGM 0.640 0.604(CNN)

6. Conclusion

A clique generating machine (CGM) has been proposed
to learn graph structures for multi-label image classifica-
tion. We propose a convex programming model (which
has exponentially many constraints) to learn sparse graph
structures. To solve this model, a cutting plane algorith-
m is applied, which iteratively activates a group of cliques.
An efficient stochastic proximal dual coordinate method has
also been proposed to solve the non-smooth subproblem-
s. Experimental results on a synthetic problem demonstrate
that CGM indeed can identify the ground-truth cliques from
structured labels. On three multi-label image data sets, the

proposed CGM has shown much improved results com-
pared to existing methods in terms of several performance
measures.

The source code and relevant data sets are available at
http://www.tanmingkui.com/cgm.html.
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