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Abstract

Traditional data-driven classifier learning approaches
become limited when the training data is inadequate either
in quantity or quality. To address this issue, in this paper we
propose to combine hidden information and data to enhance
classifier learning. Hidden information represents informa-
tion that is only available during training but not available
during testing. It often exists in many applications yet has
not been thoroughly exploited, and existing methods to uti-
lize hidden information are still limited. To this end, we
propose two general approaches to exploit different types of
hidden information to improve different classifiers. We also
extend the proposed methods to deal with incomplete hid-
den information. Experimental results on different applica-
tions demonstrate the effectiveness of the proposed methods
for exploiting hidden information and their superior perfor-
mance to existing methods.

1. Introduction
A wide variety of computer vision problems can be for-

mulated as a classification problem. Over the past decades,
classifier learning methods have been mostly data-driven.
The classifier is learned purely from a set of training in-
stances (x1, y1), · · · , (xn, yn). Despite the substantial suc-
cesses they have achieved for solving classification prob-
lems, data-driven approaches become very brittle and prone
to overfitting when the training data is inadequate in either
quantity or quality, which is unfortunately often the case in
many real-world applications.

A natural solution to alleviate the limitations of data-
driven approaches is incorporating additional prior informa-
tion. In particular, there often exists a type of information
which is available during training but not available during
testing. It can be qualities, properties and context of the
training instances, and can be found in a wide variety of
applications. For example, in object recognition, besides
the image features and object labels, during training, the
learner may also have access to object attributes which de-
scribe high-level properties of the objects in each image. In
human action recognition, besides the RGB video features
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Figure 1: Examples of hidden information in different applica-
tions. X stands for primary measurement, H stands for hidden
information.

and human action labels, the learner may also obtain depth
information and human joint positions about each human
action instance. Both object attributes and joint positions
could be obtained offline for training data yet are very ex-
pensive to obtain for all the testing instances. The question
is if we can effectively exploit such information that is avail-
able only during training to help improve the classification
performance. In this paper we denote such information as
hidden information and study how to combine hidden infor-
mation and data to learn a better classifier. We call the new
learning problem learning with hidden information.

With hidden information, we expect that a better clas-
sifier can be learned during training. The idea of learning
with hidden information is also appealing because of its re-
semblance to human learning. A student may get various
learning aids such as computer softwares in school. Yet they
have to solve problems on their own without these learning
aids latter on. These learning aids help improve students’
learning.

However, learning with hidden information is challeng-
ing since hidden information is not available during testing
and cannot be combined together with input features to pre-
dict the class label. Therefore hidden information has to be
automatically and effectively encoded into the structure or
parameters of the classifier during training. In this paper we
focus on using hidden information to obtain better estimate
of classifier parameters.
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Learning with hidden information was originally pro-
posed by Vapnik et al. [1]. Since then, it has been further
explored by other researchers, who may refer hidden infor-
mation as privileged information or side information. How-
ever, research in this area remains limited. First, existing
approaches are all designed to exploit certain type of hid-
den information for certain type of classifiers. Second, they
are generally based on strong and even unrealistic assump-
tions. Third, existing methods typically assume hidden in-
formation is complete for each training sample. However,
for many real world applications, hidden information may
only be available for a fraction of training data. Finally, ex-
isting methods typically treat each piece of hidden informa-
tion independent of each other, ignoring their relationships.

To address these limitations, in this paper we system-
atically tackle the problem of learning with hidden infor-
mation with two general approaches. First, besides hidden
information represented as additional features, in this work
we also study hidden information that is represented as ad-
ditional targets or labels. Second, while most of the existing
methods are specifically designed for SVM, the proposed
methods are general and can be applied to different clas-
sifiers with different loss functions without strong assump-
tions. Finally, we also extend the proposed methods to deal
with incomplete hidden information.

The remainder of this paper is organized as follows. A
literature review is given in Section 2. After that we for-
mally define the problem in Section 3 and introduce the
proposed methods in Section 4. Experimental results are
shown in Section 5 and the paper is concluded in Section 6.

2. Related Work
Hidden information, also referred to as privileged infor-

mation [1] or side information [2], has been exploited to
enhance different learning tasks such as classifier learning
[1, 3, 2, 4, 5], feature learning [6], clustering [7], and met-
ric learning [8]. Here we mainly review related work on
classifier learning.

All existing work assume hidden information comes as
additional features and is used to improve specific classi-
fiers. The earliest approach is SVM+ proposed in [1]. It
is based on very strong assumption that the slack variable
(or upper bound of the loss function [9]) can be modeled
as an unknown “correcting function” of hidden informa-
tion. In other words, the upper bound of the loss for each
training sample can be inferred from the corresponding hid-
den information through a function. The correcting func-
tion is learned simultaneously with the primary classifier
and hence SVM+ is computationally more expensive than
SVM. SVM+ has also been generalized to L1 regularized
SVM+ [10], multi-class SVM+ [11], and multi-task multi-
class SVM+ [12]. Besides, [13] showed that SVM+ can
be formulated as a special case of instance weighted SVM.

[14] studied the connection between SVM+ and multi-task
learning. [9] investigated the generalization bound for a
simplified version of SVM+ (i.e. SVM+ without any reg-
ularization terms). Although SVM+ and its variants have
achieved success in some applications, the assumption that
hidden information is functionally related to the slacks is
too strong and hard to verify. Besides, the methods are all
specifically developed for SVM and cannot generalize to
other type of classifiers.

Besides SVM+, Sharmanska and Lampert proposed mar-
gin transfer SVM1 and rank transfer SVM [3]. The basic
idea is that the levels of difficulty for classifying the class
label with the original feature and hidden information are
the same. However, the assumption of equivalent classifica-
tion margin may not hold.

Another method for learning with hidden information is
AdaBoost+ proposed in [2]. Hidden information is treated
as a set of side features and used to construct weak classi-
fiers. Specifically, they first learn a set of weak classifiers
from both the original features and side features. If a side
feature is selected as the input to a weak classifier, then they
learn a mapping function from the original feature to the
side feature to predict that side feature during testing. How-
ever, learning this mapping function from original feature
to the selected side feature could be more challenging than
learning the original classifier. Moreover, the poorly pre-
dicted side features could adversely affect the subsequent
classification.

In summary, existing methods are designed to exploits
hidden information for specific type of classifiers and are
generally based on strong assumptions that are hard to ver-
ify and may not even hold in practice. Besides, most of the
existing approaches only focus on classifier learning with
complete hidden information.

3. Problem Definition

We begin by presenting the mathematical definition of
the standard learning problem and learning with hidden in-
formation. In this paper we assume binary supervised clas-
sification but the problem and proposed framework is not
limited to binary case.

A standard classification problem is defined as fol-
lows: given n training instances {(xi, yi)|xi ∈ X , yi ∈
{−1, 1}, i = 1, · · · , n} generated independently from an
unknown distribution P (x, y) where x is input feature, and
y is output label, learn a classifier f(x,w) to predict the la-
bel y from the input feature x. w is the parameter of the
classifier.

A typical solution to the standard classification prob-
lem is empirical risk minimization shown in Equation 1
which learns a classifier by minimizing the empirical risk

1Without loss of generality, here we only discuss margin transfer.
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∑n
i=1 `(yi, xi, w) and a regularization term over the param-

eters Ω(w) (e.g. `2 norm). λ is the regularization parameter
and `(yi, xi, w) is the loss function. In this paper, this is the
baseline approach we want to beat by incorporating hidden
information.

w∗ = arg min

n∑
i=1

`(yi, xi, w) + λΩ(w) (1)

Learning with hidden information (LHI) is formulated
as follows: given n triplets {(xi, hi, yi)|xi ∈ X , hi ∈
H, yi ∈ {−1, 1}, i = 1, · · · , n} generated independently
from an unknown distribution P (x, h, y) where x is input
feature, h is hidden information and y is output label, learn
a classifier f(x,w) to predict the label y from the input fea-
ture x. The goal is that by incorporating hidden informa-
tion, we can get a better classifier, i.e., better parameter w.
Throughout this paper we denote x as primary feature, y as
primary target and f(x) as primary classifier.

4. Approaches
Since hidden information is not available during testing,

in order for it to influence the classification performance,
hidden information has to be properly translated and en-
coded into the classifier parameters. In other words, the goal
is to exploit hidden information to get a better estimate of
the classifier parameter. Our basic idea is to encode hidden
information as regularization terms to constrain and refine
parameter estimation during training. Hidden information
comes in different forms. Depending on its form, hidden in-
formation needs to be incorporated in different ways which
we will discuss in the following two sections.

4.1. Hidden information as secondary features

First of all, hidden information h can be represented as
an additional set of features for the target variable y in many
applications. For example in computer vision, besides the
images there are often corresponding text descriptions for
the object. These text descriptions can be represented as a
set of features and used as hidden information. We denote
such hidden information as secondary features.

The primary and secondary features can be treated as
features from two different views, and hence one would
naturally think about using multi-view method to lever-
age hidden information in this case. Multi-view learning
tackles the problem where features from multiple sources
(or views) are available during both training and testing
[15, 16, 17]. During training, it models each view with one
classifier and jointly learns all classifiers by assuming all
single-view classifiers produce similar outputs. This is gen-
erally achieved with a regularization term that penalizes the
differences of different classifiers. During testing, it makes
predictions by averaging the classification results from all
different views. If we discard classifiers for other views and

only keep the primary classifier for testing, it seems that
multi-view learning method can be used for learning with
secondary features.

However multi-view method may not be necessarily ef-
fective due to the following reasons. First, multi-view learn-
ing expects better performance by fusing different views.
Hence it usually requires all views to be available dur-
ing testing. However, learning with hidden information is
asymmetric. Its goal is to improve the performance of the
primary classifier with the help of the secondary features.
Second, the assumption that different single view classifiers
produce similar performances may not necessarily hold for
the problem of learning with hidden information. In fact,
hidden information is usually more discriminative than the
primary features in many practical applications. For in-
stance, text descriptions are usually better than the raw im-
age pixels to classify the objects.

To address these issues we propose a regularization
method for learning with secondary hidden features. Our
method is motivated by the assumption that secondary fea-
ture is more informative for classification than the primary
feature. While seemingly strong, this assumption holds for
many applications (e.g attributes are more discriminative
than image features). In addition, it can be generally satis-
fied if we combine x and h together as secondary features.
Mathematically, the assumption means that if we have a
primary classifier f(x,w) to classify y from x, and a sec-
ondary classifier f(h, w̃) to classify y from h, then the loss
for classifying y with x should be higher than the loss for
classifying y with h. It can can be encoded as a set of ε-
insensitive loss inequality constraints shown below. Here ε
is used to account for uncertainties.

`(yi, xi, w) ≥ `(yi, hi, w̃)− εi, εi ≥ 0, ∀1 ≤ i ≤ n

We propose a regularization method call loss inequal-
ity regularization (LIR) to leverage the ε-insensitive loss
inequality constraints. The basic idea is to penalize the vi-
olation of these constraints, and the objective function is
shown in Equation 2, where [·]+ = max(0, ·).

n∑
i=1

`(yi, xi,w) + η

n∑
i=1

`(yi, hi, w̃) + λΩ(w) + λ̃Ω(w̃)

+ γ

n∑
i=1

[`(yi, hi, w̃)− `(yi, xi, w)]+ (2)

The first two terms in the objective function are the em-
pirical losses for the primary and secondary classifier. The
next two are standard parameter based regularization terms
such as `2 regularization. The last one is the proposed ε-
insensitive loss inequality regularization term which penal-
izes the total violation of the loss inequality constraints for
the training instances. The parameters λ, λ̃ and γ allow dif-
ferent degrees of trade off between empirical loss and reg-
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ularization. The loss inequality regularization term serves
as a bridge to relate the primary and secondary classifiers,
and the parameter η determines which one will play a more
important role to influence the other.

With the proposed objective function, a primary classi-
fier with lower training loss than the secondary classifier
will be penalized. Intuitively, the secondary classifier pro-
vides a reference for the learner to decide if the primary
classifier overfits. With the ε-insensitive loss inequality reg-
ularization term, the primary hypothesis space is reduced
and hence it is reasonable to expect better test performance.

Advantages of loss inequality regularization. First of
all, loss inequality regularization (LIR) is more general.
Margin transfer [3] relates the primary and secondary clas-
sifier through the margin and SVM+ relates the primary
and secondary features through the slack variable. There-
fore they are both limited to SVM classifiers. By contrast,
LIR relates the two classifiers through the loss function and
hence it is generally applied to different type of classifiers.
Second, our assumption holds for many applications and
can be generally satisfied if we combine primary and sec-
ondary features together as secondary features. This, un-
fortunately, is not the case for the existing methods. Mar-
gin transfer assumes that samples that are hard or easy
(as called in their paper) to classify with secondary feature
are also hard or easy to classify with the primary feature.
This may not hold in practice. Consider the example of
face recognition where low resolution image is the primary
feature and high resolution image is the secondary feature.
Even though it is easy to recognize face from high resolu-
tion image, it could still be very hard to recognize face from
low resolution image. Besides, SVM+ assumes that hidden
information is related to the margin through a correcting
function, which is also strong and difficult to hold.

4.2. Hidden information as secondary targets

Besides secondary features, hidden information can also
be represented as secondary targets or secondary labels. By
this, we mean we can use the primary features to predict
the hidden information just like using primary features to
predict the original class label. For instance in image based
object recognition, the object attributes can be treated as
another set of labels. In this section we study how to exploit
the secondary labels to improve classifier learning.

A straightforward method to exploit the secondary labels
is to use them as the middle level representation. Specifi-
cally, instead of classifying the output y from x directly, one
can first classify the secondary targets h from x and then use
the predicted h (or together with x) to classify y. However,
poor prediction of the secondary targets could confound the
classification performance of the primary target. Besides,
learning a large number of secondary target classifiers in-
crease the computational cost.

Another straightforward method to exploit secondary
targets is multi-task learning method. Instead of learning
each task individually, multi-task learning utilizes the task
relationships to learn all tasks simultaneously such that in-
formation can be shared across different tasks and hence im-
prove their performances. The task relationships are gener-
ally characterized as model parameter relationships, which
can be manually specified [18] or automatically learned
from data [19, 20, 21]. If we treat each task as classifying
one target (either primary target y or secondary target hj)
with x, we can directly apply multi-task learning approach
to simultaneously learn all these tasks during training. Once
all the classifiers are learned, we only keep the primary clas-
sifier during testing.

However, multi-task learning is not necessarily effec-
tive and efficient in our case, either. First of all, we are
only interested in boosting the performance of the primary
classification task instead of improving all the tasks. Sec-
ond, multi-task learning significantly increases the compu-
tational cost since it requires learning more parameters of
secondary classifiers. Finally, it is also very difficult to
specify task parameter relationships.

To overcome these limitations we proposed another reg-
ularization method called relationship preserving regular-
ization. We explicitly exploit relationships among the pri-
mary and secondary labels and our motivation is that we
want predicted target labels by the learnt primary classi-
fier to preserve their relationships with the secondary labels.
Specifically, if y has a strong dependence with a secondary
target hj , then the predicted label of the primary classifier
ŷ should also have a strong dependence with hj . On the
contrary, if y has a very weak dependence with hj , then ŷ
should also have a very weak dependence with hj . For ex-
ample, if an object is closely related to an attribute, then the
predicted object to be closely related to this attribute (and
vice-versa).

Mathematically, denote R(y, [h1, · · · , hk]) as a certain
mathematical measure of the relationships between the pri-
mary label y and secondary labels h1, · · · , hk, we propose
the following relationship preserving constraint, where ŷ is
the predicted label of y.

|R(y, [h1, · · · , hk])−R(ŷ, [h1, · · · , hk])| < ε (3)

The relationship can be quantified with different math-
ematical measures. Here we measure it with pair-wise co-
variances σ(y, hj) between y and hj , and we decompose
the relationship preserving constraint into a set of pair-wise
constraints as follows:

|σ(y, hj)− σ(ŷ, hj)| < ε, 1 ≤ j ≤ k (4)

The covariance between y and hj is defined in Equa-
tion 5. Since the underlying distribution is unknown, we
estimate the covariance with the training data with Equa-
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tion 6, where ȳ and h̄j stand for the sample means. The
covariance can be further written in the matrix form, where
Y = (y1, · · · , yn)′, andHj = (hj1, · · · , hjn)′. M = I− 1

nE
is the matrix used to center the data. I is the identity matrix
and E is a matrix of which all components are 1’s.

σ(y, hj) = E[(y − E(y))(hj − E(hj))] (5)

σ̂(y, hj) = (MY )′(MHj)/(n− 1) (6)

The proposed relationship preserving constraints are
then encoded into a regularization term to regularize the
learning of the primary classifier and the objective func-
tion as shown in Equation 7. The first term is the empiri-
cal training loss of the target classifier, the second term is a
standard parameter based regularization such as ‖w‖22, and
the last term is the proposed regularization term to penal-
ize the violation of the relationship-preserving constraints.
Specifically, Ŷ , Y , and Hj are three vectors consisting of
the predicted target labels, the ground truth target labels,
and the jth ground truth secondary labels for the training in-
stances. (MŶ )′MHj measures the covariance between the
predicted target label and the jth ground truth secondary
label. (MY )′MHj measures the covariance between the
ground truth target label and the jth ground truth secondary
label. Since ŷ is not a continuous function of the model pa-
rameter w, we approximate ŷ with f(x,w) during learning.

n∑
i=1

`(yi,xi, w) + λΩ(w)+

γ

2

k∑
j=1

[
(MŶ )′MHj − (MY )′MHj

]2
(7)

Advantages of relationship preserving regularization.
First, similar to loss inequality regularization, relationship
preserving regularization (RPR) is also generally applied
to different type of classifiers. Second, RPR exploits ex-
plicit label relationships instead of implicit parameter rela-
tionships in multi-task learning, which is difficult to obtain.
Third, RPR does not increase complexity of the learning
problem since it does not require learning any secondary
classifier.

Depending on the role of hidden information, we can ei-
ther apply loss inequality regularization (LIR), relationship
preserving regularization, or combine both regularization
terms to capture hidden information for classifier learning.

Learning with Incomplete Hidden Information The
proposed methods can also be extended to deal with the
case of incomplete hidden information. In other words, hid-
den information is only available for a subset of the train-
ing instances. This can be achieved by imposing either loss
inequality regularization or relationship preserving regular-
ization only on the training instances of which hidden infor-
mation is available.

5. Experiments
We evaluate the proposed methods for different com-

puter vision applications. The goal is to evaluate if the pro-
posed methods can effectively exploit hidden information
for classifier learning and compare their performances with
related methods. We denote the proposed loss inequality
regularization as LIR and the proposed relationship pre-
serving regularization method as RPR. We compare them
with the related methods SVM+ [1], and Rank Transfer
RSVM+ [3]. Besides, we also compare the proposed meth-
ods with methods which can be straightforwardly applied to
encode hidden information, including a general multi-view
method MV [17], a multi-view method SVM2K [16] specif-
ically designed for SVM, multi-task learning method MTL
[22], and the method MLR that uses hidden information
as middle level representation. For all methods, we perform
five fold cross validation approach to tune the regularization
parameters.

We use conjugate gradient descent for both LIR and
RPR. The number of calculations to compute the objective
value and gradient at each iteration is O(n(d1 + d2)) for
LIR, and O(nd1) for RPR, where d1 and d2 are dimensions
of original features and hidden information, and n is the
number of training data. In practice it takes less than 0.1
second for the proposed methods to finish training in both
our experiments with unoptimized matlab implementation.

5.1. Facial expression recognition with facial action
units as hidden information

In this first experiment, we compare all the methods to
use digital face images to recognize facial expression, in-
cluding anger, contempt, disgust, fear, happiness, sadness
and surprise. A typical approach is to collect appearance
or geometric features from the face images and then train a
classifier to classify the expressions. However, besides the
raw image measurements, we may usually obtain the facial
action units which represent the local facial muscle actions
such as “raise eye brow”, “raise cheek”, and “pull lip cor-
ner”. These facial muscle actions contain very discrimina-
tive information about the facial expressions. They can be
annotated for the training images yet are usually expensive
to obtain for testing images. In this experiment, we apply
different methods to exploit facial action units as hidden in-
formation for facial expression recognition. An example of
facial image and the corresponding facial action units are
shown in Figure 1.

Data set and features. The experiment is performed on
extended Cohn-Kanade dataset (CK+) dataset [23] which
contains 327 video sequences performed by 210 subjects.
We perform facial expression recognition on the peak
frames of each video sequence. The primary features x we
use in this case are the displacement of 68 facial landmarks
of each face image, and the hidden information h is the hu-
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Table 1: Results for facial expression recognition (* means pri-
mary and secondary features combined as secondary features).
The values included in the parenthesis are the p-values of the one-
tailed student-t test of the method against the baseline. Highlighted
in gray background represents statistical significance against the
baseline that do not use hidden information.

Method # train subject: 168 # train subject: 105

Baseline without hidden information

RLS 85.19±1.37 81.95±0.69

Hidden information as secondary targets

MTL 86.61±1.19 (0.0700) 82.86±0.71 (0.0413)
MLR 85.33±0.77 (0.4630) 82.11±0.64 (0.4273)
RPR 87.57±1.27 (0.0023) 84.75±0.77 (0.1E-7)

Hidden information as secondary features

MV 86.68±1.24 (0.0684) 82.04±0.83 (0.2778)
MV* 86.95 ±1.35 (0.0385) 82.34 ±0.67 (0.0576)
LIR 87.24±1.16 (0.0043) 84.32±0.73 (0.4E-5)
LIR* 87.46±1.32 (0.0075) 84.52±0.72 (0.2E-5)

Combining RPR and LIR together

RPR+LIR 88.56±1.19 (0.2E-4) 84.81±0.73 (0.6E-6)
RPR+LIR* 88.60±1.26 (0.7E-4) 84.83±0.72 (0.9E-7)

Related methods

SVM 86.67±1.46 82.85±0.69
SVM2K[16] 86.65±1.24 (0.4243) 82.91±0.66 (0.3822)
SVM+ 86.95±1.13 (0.3504) 83.40±0.73 (0.2854)

man annotated 17 binary facial action units.
Implementation details. In order to classify 7 expres-

sions, we train a total of 21 binary classifiers for each pair of
expressions. The final prediction is made by comparing the
predictions from all the binary classifiers. The performance
is measured by the average recognition accuracy of all the
7 expressions. We test the performance of the methods us-
ing different training data size, and we repeat the procedure
of train/test split for 20 times to get statistics of the perfor-
mance. Specifically, each time we randomly select images
from either 105 or 168 subjects as training data, and images
of the remaining subjects as testing data. We use linear clas-
sifier and square loss for all the methods in this experiment.

Results. The detailed results are shown in Table 1. RLS
is the baseline empirical risk minimization method using
square loss. Facial action units can be treated as either fea-
tures or labels. Therefore we can apply both proposed reg-
ularization methods to exploit them. Below we analyze and
compare different methods depending on how we utilize fa-
cial action units. Specifically, we analyze both the empirical
significance of each method, and the statistical significance
by performing one tailed student-t test using a significance
level of 0.05.

Secondary targets. We first compare three methods dis-
cussed in Section 4.2 that encode hidden information as sec-
ondary targets. They are MTL (multi-task method), MLR
(hidden information as middle level representation), and

RPR (relationship preserving regularization). First of all,
we can see that all methods improve the baseline by uti-
lizing facial action units as hidden information. In partic-
ular, RPR outperforms the baseline by 2.4% (2.8%) when
the training subject number is 168 (105). Student t-test
shows that RPR significantly outperforms the baseline in
both cases. However, Student t-test shows that both MTL
and MLR do not significantly better than the baseline. All
these results demonstrate that RPR can successfully exploits
facial action units as hidden information to improve facial
expression recognition.

Secondary features. We also compare the two methods
discussed in Section 4.1 which treats hidden information as
secondary features. They are MV(multi-view method) and
LIR (loss-inequality regularization). We can directly use
facial action units as secondary features. We can also com-
bine the primary feature and facial action units together as
secondary features. We use ∗ to indicate methods that use
combined features as hidden information. We test the per-
formances of both methods in both cases. We can see that in
both cases, facial action units, used as hidden information,
can successfully boost the performance of the baseline. In
particular, the proposed method LIR outperforms the base-
line by more than 2% in all cases. We also perform student
t-test to evaluate the statistical significance of the methods
against the baseline. Results show that with hidden infor-
mation, the performance improvement by LIR and LIR*
over the baseline method is statistically significant, while
MV and MV* are not.

Combined regularization. Facial action units can be
used as either features or targets. Hence we can combine the
two regularization terms together to exploit them. We can
see that by combining both regularization terms together,
we can further marginally improve the performance.

Comparison with SVM+. We also compare proposed
methods with the related approach SVM+ [1]. We can see
that SVM+ outperforms its counter part SVM in both cases
yet the improvement is not statistically significant. On the
contrary, all the proposed methods achieve statistically sig-
nificant results by incorporating hidden information. Stu-
dent t test was also performed to compare RPR+LIR* and
SVM+. The results show that when training data size is
small (105 training subjects), the improvement over SVM+
is statistically significant (p-value is 0.0492). When training
data size gets larger (168 training subjects), the improve-
ment over SVM+ gets smaller (p-value is 0.0978).

Performance with different training data size. We
tested the performance of different methods with different
training data size. We can see that when the training data
size is smaller, the proposed methods tend to achieve more
improvements with hidden information. This indicates that
hidden information is more useful when the training data
size is smaller.
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Figure 2: Results of different methods with incomplete hidden in-
formation for facial expression recognition. Y axis: average accu-
racy. X axis: percentage of hidden information for training data.

Incomplete hidden information. The proposed meth-
ods can also be extended for the case where hidden infor-
mation is only available for a subset of the training data.
Without loss of generality, we test LIR, RPR and LIR+RPR
with incomplete data. Specifically, we randomly select data
from 105 subjects as training data and the rest as testing
data. For each selected training data, we sample different
number of facial action units as hidden information to train
the proposed methods. This procedure is repeated for 20
times. The average results and standard errors are shown
in Figure 2. We can see that the performance of methods
increase as we increase the percentage of available hidden
information.

5.2. Object classification with attribute scores as
hidden information

The human annotated attributes describe the high-level
semantic properties about the objects in the image. In our
second experiment we test the methods for object classifi-
cation where the object attributes are used as hidden infor-
mation.

Following the same experimental setting in [3], we
perform 45 pair-wise classifications among a total of 10
classes, namely, chimpanzee, giant panda, leopard, per-
sian cat, pig, hippopotamus, humpback whale, raccoon, rat
and seal from the Animals with Attributes (AwA) dataset
[24]. For each binary classification problem, we use 50 im-
ages for training and another 200 images for testing. This
procedure is repeated for 20 times. The average precision
(AP), which corresponds to the area under the precision-
recall curve, is used as the measure of performance. Re-
sults of SVM, SVM+, RSVM+ are directly collected from
[3]. Regularization parameters of the proposed method are
tuned using five fold cross-validation.

The L1 normalized 2000 dimensional SURF descriptors
[25] extracted from the raw images are used as the primary
feature x. The estimated scores of a total of 85 binary at-
tributes for each image are used as the hidden information
h. Since we are only given the estimated scores of attributes

instead of ground truth attributes, we only use LIR in this
experiment. For fair comparison with the results reported
[3], we use linear classifier and hinge loss for LIR.

Results. The detailed results are shown in Table 2, where
the results of SVM, SVM+ and RSVM+ are directly col-
lected from [3]. First of all, the best result of each task
is highlighted in boldface, which in total is 4 for SVM, 2
for SVM+, 13 for RSVM+ and 27 for LIR with hinge loss.
We can see that the proposed method achieves the best per-
formance in most number of tasks. Second, we also per-
form student t-test to analyze the statistical significance of
the methods that utilize hidden information against SVM.
Results show that LIR achieves statistically significant im-
provement in 19 cases, RSVM+ achieves statistically sig-
nificant improvement in 5 cases, and SVM+ achieves statis-
tically significant improvement in 0 case. All these results
demonstrate that the proposed method improves the related
methods RSVM+ and SVM+ in encoding hidden informa-
tion for classifier learning. A graphical comparison of dif-
ferent methods over the baseline SVM is shown in Figure
3.

6. Conclusion

In this paper we proposed two regularization methods
to incorporate hidden information, which is only available
during training but not available during testing, to learn
a better classifier. Specifically, loss inequality regulariza-
tion approach is used to exploit hidden information as sec-
ondary features, and relationship preserving regularization
approach is used to exploit hidden information as secondary
targets. They can be used individually or simultaneously
to capture hidden information. Compared to the existing
methods, the proposed approaches are general (applicable
to different types of hidden information and classifiers),
without strong assumptions. The proposed methods are
evaluated on different applications. Experimental results
demonstrate the effectiveness of the proposed method for
exploiting hidden information, as well as its superior per-
formance to the related methods.
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