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Abstract

We propose a robust algorithm to generate video seg-
ment proposals. The proposals generated by our method
can start from any frame in the video and are robust to
complete occlusions. Our method does not assume spe-
cific motion models and even has a limited capability to
generalize across videos. We build on our previous least
squares tracking framework, where image segment propos-
als are generated and tracked using learned appearance
models. The innovation in our new method lies in the use
of two efficient moves, the merge move and free addition,
to efficiently start segments from any frame and track them
through complete occlusions, without much additional com-
putation. Segment size interpolation is used for effectively
detecting occlusions. We propose a new metric for evalu-
ating video segment proposals on the challenging VSB-100
benchmark and present state-of-the-art results. Preliminary
results are also shown for the potential use of our frame-
work to track segments across different videos.

1. Introduction
Following the successes of image segmentation and

segment-based object recognition, there has been increasing
interest in video segmentation. Video offers an excellent op-
portunity for utilizing motion and appearance cues to poten-
tially reduce the ambiguity in image segmentation. Progress
in video segmentation could enable new approaches to
building non-rigid 3D object models from video, under-
standing dynamic scenes, analyzing robot-object interac-
tions, and other high-level vision tasks.

The increasing interest in video segmentation has also
led to a diverse set of problem definitions and different
assumptions based on these definitions. Video segmenta-
tion has been defined by different researchers as separat-
ing foreground from background [4, 28, 37, 45], identifying
moving objects [12, 29, 34], creating segmentation propos-
als [3, 28, 31, 45], computing hierarchical sets of coarse-to-
fine video segments [19, 24, 36, 42], or generating motion
segmentations [24, 35]. Each of these definitions has its

Figure 1: Complete occlusion happens frequently in video,
but no existing solution addresses the problem efficiently.

own merits and applications. However, inherent ambigui-
ties exist, particularly in the definition of what is an object
in video. One could identify a man wearing a suit and belt as
a consistently moving object and segment him using motion
segmentation. Alternatively, his belt and suit could each in-
dependently be an object of interest. There are also some
objects that do not move but are still of interest in a video,
e.g., a person leaning against a wall. A further complication
is occlusion: a person can enter the scene, be occluded by
others for a significant amount of time, and then re-appear
in the middle of the scene without changing his or her iden-
tity (see Figure 1). In the face of this complexity, should
video segmentation methods maintain persistent identities,
and how can they do so?

In order to handle the diverse video segmentation needs
of different applications, we argue that a stage for creating
video segment proposals is necessary, where a pool of over-
lapping volumetric segments is generated, including seg-
ments that satisfy requirements for different applications.
There have been some previous frameworks for creating
video segmentation proposals, e.g., [3,28,31,45]. However,
they all have different restrictions, such as objects have to be
moving independently [28], or segments have to start from
the first frame [31]. Importantly, none of them handles the
complete occlusion problem where a segment is fully oc-
cluded and then re-enters the scene. The restrictive assump-
tions of these previous methods make them unsuitable for a
broad spectrum of applications.

In this paper, we introduce a new method which targets
the limitations of existing approaches. We propose an ap-



proach that generates a pool of video segment proposals
starting from any frame, identifies both moving and still
objects as well as parts of an object, handles both partial
and complete occlusions, and is free of any specific motion
model (e.g., linear, smooth, etc.). It is our belief that such
a proposal method can provide the necessary preprocessing
for many subsequent algorithms.

Our approach trains long-term holistic appearance mod-
els on image segment proposals based on least squares, sim-
ilar to [31]. Thousands of appearance models are efficiently
trained on a pool of image segments, and tracked segments
are gradually filtered in subsequent frames using appear-
ance and motion constraints. There are two major differ-
ences: One is lifting the restrictive assumption as in [31]
that all segments must start from the first frame. This is im-
plemented via a series of forward and backtracking moves
within the algorithm, without greatly increasing the time
and space complexities. The second difference is that we
handle complete occlusion, by an occlusion detection rou-
tine that automatically detects the onset of complete occlu-
sions, maintains persistent identities of the occluded seg-
ments, and detects them when they re-enter the scene.

Both enhancements are implemented using efficient
moves on the least squares regression. We store the suffi-
cient statistics of the least squares model and propose two
moves: a merge move that merges two models without
significant time complexity, and a free addition move that
tracks occluded segments and improves their appearance
models without any additional operation. These moves are
the main technical contributions of the paper.

The algorithm is tested on the challenging VSB-100
dataset which is currently the only large-scale video seg-
mentation dataset that includes complete occlusions. How-
ever, the original evaluation metric is not suitable for eval-
uating proposals that can potentially overlap each other.
Therefore we propose a new metric based on overlap and
evaluate our approach along with others on the dataset and
illustrate our state-of-the-art performance.

In addition, because our approach maintains persistent,
long-term appearance models of video segment proposals,
it can locate the same object when it appears in other videos.
Preliminary video retrieval results are shown for such cross-
video generalization. We believe this creates a path to po-
tential novel applications such as video search.

2. Related Work
Video segmentation has seen quite some interest in re-

cent years. However the problem definitions have been
diverse. Many approaches focus on separating one fore-
ground object from the background, using semi-supervised
or unsupervised methods [4, 18, 28, 37, 38, 41, 45]. [2] is a
multi-label semi-supervised approach, [28, 32, 37] are po-
tentially multi-label, albeit they mainly aim to find a single

moving object.
Among unsupervised multiple segmentation methods

that generate an exhaustive list of video segments, agglom-
erative or spectral clustering on superpixels/supervoxels has
been popular [10, 15, 19, 22, 24, 27, 36, 40, 43]. Some ap-
proaches utilize tracked feature points [5,6,14,29,34]. Ap-
proaches that track a pool of image segment proposals are
most related to our approach [3, 31], however, these algo-
rithms are unable to handle complete occlusions, and some
have restrictions on where segment tracks may start.

Holistic image segment proposals [1, 8, 23, 26, 39] have
been very popular in recent years as a preprocessing step
for many successful object recognition systems on seman-
tic segmentation and object detection problems (e.g., [7,
17, 20]). Holistic segment proposals can often cover entire
objects in the image with excellent accuracy, hence shape
and other global appearance features can be extracted from
them, leading to better recognition accuracy. Currently,
most state-of-the-art semantic segmentation systems utilize
segment proposals in some stage.

Occlusion handling has been a major focus in the track-
ing literature for a long time [21, 44, 46] but research
on occlusion handling for video segmentation is limited.
There are works that handle occlusion in video segmenta-
tion under some assumptions, either only segmenting hu-
mans [13, 25] or utilizing multi-view cameras [33]. How-
ever, we do not know of any work that handles complete
occlusions for generic video object segmentation.

3. The Least Squares Tracker and Moves
Our system is built on the flexible least squares tracker

utilized in our previous work [31], which adopts the follow-
ing regularized least squares formulation:

min
W
‖XW −V‖2F + λ‖W‖2F, (1)

where the goal is to recover the d × t weight matrix W,
given n × d input matrix X and n × t output matrix V.
n is the number of examples, d the dimensionality and
t the number of distinct targets. ‖W‖F is a Frobenius
norm regularization used for convenience, but in princi-
ple any convex norm regularizer can be used. Designate
H = X>X =

∑n
i=1 xix

>
i and C = X>V =

∑n
i=1 x

>
i vi,

where xi and vi are columns of X and V, respectively. The
solution of the least squares is given by the linear system:

(H + λI)W = C. (2)

The pair (H,C) is the sufficient statistics of the model. We
denote L = (H,C) as a least squares object (LSO). Note
each column in C corresponds to a distinct target (with the
output a column in V).

The least squares tracker is an online tracker since on-
line addition updates can be made on the least squares ob-
ject which adds examples and retains optimality. Suppose



Lt−1 = (Ht−1,Ct−1) is the LSO from frame 1 to t − 1,
one can always perform:

Ht = Ht−1 + X>t Xt, Ct = Ct−1 + X>t Vt (3)

to add examples described by (Xt,Vt) to the regression
problem. In addition, in order to remove targets, one only
needs to remove the corresponding column in Ct.

In [31], the least squares tracker has been used to track
a pool of segment proposals. The main idea is to use the
spatial overlap between segments as regression targets, and
use appearance features in X to learn regression models W
that serve as appearance models for each track: the overlap
of every segment to the track can be predicted as regres-
sion outputs using W. Such an overlap prediction regime
has been used in many successful semantic segmentation
systems starting from our work in [30]. The algorithm pro-
ceeds via the following steps:

1. A pool of segment proposals At is generated for each
frame t.

2. Appearance features Xt are extracted for all segments
and a spatial overlap matrix Vt is computed, contain-
ing overlaps between all pairs of segments within a sin-
gle frame.

3. A least squares objectL1 is built from frame 1 by using
X1 as input and V1 as output. The regression weight
matrix W1 is obtained by solving the least squares
problem (1), as the appearance model for all targets.

4. In frame 2, V̂2 = X2W1 is computed as the predicted
overlaps for all targets.

5. Each segment in frame 2 is assigned to the target that
has the highest predicted overlap to it (arg maxA2 V̂2)
and satisfies simple motion constraints (not moving too
far from the previous segment). New tracks are started
on segments that are unassigned, with a new LSO L2.
Those targets that do not match any segment are no
longer tracked subsequently.

6. Update L1 using (3) with X2, V2 (with columns in
V2 rearranged to reflect the matching). The output of
each target is the overlap between every segment and
the segment assigned to the target in frame 2.

7. Repeat steps 3–6 in subsequent frames till the end of
the video. Stop starting new tracks from frame 6 be-
cause of memory/speed issues and only track previ-
ously generated tracks till the end of the sequence.

In this tracking framework, more than 1, 000 initial seg-
ments can be generated for each frame. The appearance
models of all targets are built simultaneously using the ef-
ficient least squares framework. When the tracking contin-
ues, the greedy matching step removes many tracks that do
not match well with any segment in terms of appearance.

Therefore, after tracking for an extended period, the num-
ber of targets is reduced significantly but meaningful ob-
jects remain tracked. The approach is also robust to drifting,
since segments from all previous frames are jointly utilized
as training examples. As a consequence, the model is not
overly biased to the appearance in the most recent frame.

However, our previous method [31] only identifies seg-
ments that start in the first few frames due to speed/memory
issues, and the framework also does not handle complete
occlusions: targets that are not matched to any segment are
considered lost and never recovered. We believe that the
framework has not been utilized to its full potential and pro-
pose to handle these two problems by innovative manipula-
tions of the least square objects.

Mainly, two new moves on the least squares objects are
proposed. The first is a merge move, which merges two
adjacent LSOs differing by one frame. Suppose L1 =
(H1,C1) contains all the training examples in L2 =
(H2,C2) plus segments At and features Xt. Then L2 is
tested on segments At, in order to locate the matching seg-
ment to each target. After computing overlaps Vt between
all segments At and the segments matching each target,
L∗1 = (H1,

[
C1 C2 + XtVt

]
) becomes the merged re-

sult. Note this is only a O(ndt2) operation where t2 is the
number of targets in L2. No time-consuming operation on
H is required.

The other new move is called a free addition. Inter-
estingly, when updating from Lt−1 to Lt, if Vt is all ze-
ros, then Ct = Ct−1 and only Ht−1 needs to be up-
dated. Suppose Ct−1 =

[
Cv

t−1 C0
t−1

]
where C0

t−1 are
targets that have all zero outputs in frame t, then Lt =
(Ht,

[
Cv

t C0
t−1

]
). Now if Lt−1 is updated to Lt in-place,

then targets with zero outputs do not need to be updated.
Since Ht is already updated for other targets, new train-
ing examples can be added to zero-output targets without
any computation. Free additions can last for many frames
without a single operation. This is important for occlusion
handling, since completely occluded tracks have an overlap
of 0 with any segment in the new frame, and can always be
updated with free additions while they remain occluded.

The utilization of these efficient updates in the subse-
quent sections is the main technical contribution of this pa-
per. Merging is important in backtracking and free additions
help significantly for occlusion handling.

4. Tracking Segments from Every Frame
The original framework for least squares tracking re-

quires the models for all targets to be trained on the same set
of training examples, and could thus start tracks only in the
first few frames. A straightforward approach to addressing
this deficiency would be to maintain a least squares object
starting from frame 1, and for targets originating in frame
k > 1, simply designate all segments in frames 1 to k−1 as



having an overlap of 0. However, this simple idea could fail
because it incorrectly assumes that the start of each track
corresponds to the first observation of the given target. Con-
sequently, for a track starting in frame k, the system would
incorrectly add all segments from prior frames as negative
examples for the target, even though these could include
earlier views of the target. Corrupting the training set in
this manner will negatively impact the predictive power of
the model.

In this paper, we propose a scheme combining forward
tracking and backtracking to solve this problem. To prevent
each LSO from having too many tracks, we run each LSO
for at least k frames in order to prune out spurious tracks,
and then backtrack to merge k LSOs into one, in order to
reduce the number of LSOs. Namely, an LSO is initialized
in every frame and tracked until 2k frames, then LSOs 1 to
k will be merged to the first LSO (Fig. 2) while LSOs k+ 1
to 2k remain until frame 3k, and are then merged to the LSO
from frame k + 1. In the end, the system will have an LSO
every k frames. And after tracking for some length, some
LSOs will end up having no targets and be removed from
the system. Thus, the system still maintains good efficiency
while being able to capture segments that start in any frame.

LSO 1

LSO 2

LSO k

...

...Frame 1 Frame 2 Frame k ...Frame k+1 Frame k+2 Frame 2k Frame 2k+1

LSO 
k+1

LSO 
k+2

...

LSO 
2k

LSO 
2k+1

Figure 2: Merging LSOs. One LSO is initiated in each
frame. At frame 2k, the LSOs from frames 1 to k are all
merged into the LSO from frame 1. This ensures that every
LSO can last at least k frames before merging.

The full algorithm is shown in Algorithm 1. Such a
scheme avoids the drawbacks of the original least squares
tracking approach. Least squares tracking is often fragile
in the beginning and tends to either pick spurious tracks or
miss some tracks in the first few frames. However, after
running for several frames, there are fewer tracks due to the
greedy assignment step 5, and the tracker tracks more mean-
ingful targets. At that time, backtracking those meaningful
targets can both extend the length of the tracks and reduce
the number of LSOs, which simultaneously improves qual-
ity while maintaining efficiency.

Algorithm 1 The tracking algorithm that combines forward
tracking and backtracking.
input Segments A1, . . . ,AT for frames 1 to T ; appearance

features X1, . . . ,XT on all segments; overlap matrices
V1, . . . ,VT .
for n = 0 to T step k do

for i = n+ 1 to n+ k do
Test all the nonempty LSOs from L1 to Li−1 on Xi,
V̂i =

[
XiW1 . . . XiWi−1

]
.

Find the matching segment of each target by
arg maxAi

V̂i.
Remove the LSOsLt that do not have any remaining
targets.
Update L1, . . . , Li−1 by Xi and the columns from
Vi that corresponds to the matching segments.
Initialize LSO Li = (X>i X

,
iX
>
i V

u
i ) from frame i,

where Vu
i are columns from Vi that corresponding

to segments not matched with any track.
end for
if n > 0 then

for j = n to n− k step −1 do
Merge Lj to Lj−1, remove Lj .

end for
end if

end for

5. Occlusion Handling
The least squares tracking framework does not have any

dependency on temporal measurements such as optical flow.
Therefore, the trained model for each track can naturally be
tested at any frame, or even in another video. The main
problem is that maintaining every disappeared track pro-
posal from every frame would be expensive in terms of
memory. Therefore, we propose an occlusion detection rou-
tine for identifying potential occlusions, and then utilize
free additions for efficiently tracking occluded targets.

Our occlusion handling algorithm involves three steps:

1. Detect potential occlusions.
2. Track occluded and normal segments simultaneously.

Occluded targets are tracked using free additions.
3. If some occluded targets re-emerge, connect the re-

emerged segments to the corresponding track before
the occlusion and continue to track those segments as
normal tracks.

In step 2, occluded tracks are simply updated with free
additions, which means that their corresponding columns
in V are kept intact while the LSO is updated, until their
track re-appears. All segments from the occluded frames
are then automatically added as negative examples. There
are two major aspects requiring discussion: the detection of
occlusion and the detection of re-entry of occluded tracks.



Figure 3: Illustration of our occlusion handling framework. (Top) Track 1 remains unoccluded throughout the video and is
consistently tracked. (Bottom) Track 2 is occluded in frames 46–80. Our system tracks it consistently in frames 1–45, then
predicts that it is occluded in frame 46 and marks it as occluded. For every frame after 46, we test whether it reappeared.
In frame 81, a segment scores above the detection threshold, so our framework deems that the target has reappeared and
continues to track it thereafter. The C matrix is updated normally in frames 1–45. In frames 46–81, during occlusion, it is
updated efficiently with free additions.

5.1. Occlusion Detection

A basic idea in occlusion detection is to model the size
of each segment over time, and to predict when the size will
reach 0. We assume occlusion happens gradually over the
course of several frames and thus the segment size should
reduce smoothly. We also require the length of the track
to be larger than 2k frames since, as discussed above, short
tracks are more likely to be spurious. For each sufficiently
long track, we construct a linear model of segment size over
the last 10 frames to predict the segment’s size in the next
frame. If the ratio of a segment’s predicted size to its av-
erage size (computed over the last 10 frames) falls below a
threshold, then that segment is considered to be occluded.
Note that this model correctly treats targets that leave the
camera field-of-view as occlusions to account for the pos-
sibility of their reappearance at a later time. The threshold
is set to a fairly strict one, since the original framework can
already successfully handle partial occlusion.

5.2. Rediscovery of Occluded Tracks

With the free additions, the newly learned regression
weight matrix Wt contains the learned model for both nor-
mal tracks and occluded tracks. For each segment pro-
posal St+1,i in the next frame, xt+1,iWt gives the predicted
overlap between the segment proposal and the tracks. For
occluded tracks, the overlap is between the segment pro-
posal and the track before the occlusion happens. Then
if the overlap prediction is higher than a threshold, we as-
sume that the occluded target has reappeared and mark the
track as normal to resume the tracking process. Because our
framework maintains the appearance of the occluded tracks
before the occlusion happens, no matter how long the occlu-
sion lasts, we can rediscover the occluded track correctly as
long as the appearance of the object does not change signif-

icantly when it reappears.

6. Full Video and Cross-Video Testing
As discussed in Section 4, we only perform backtracking

after k frames to merge LSOs. However, when a track has
been tracked for a sufficiently long time, the evidence that
it corresponds to a meaningful target is stronger. The ap-
pearance models for such tracks are reliable because they
include many training examples and can thus be applied
throughout the video to recover from tracking failures. Ap-
plying such a post-processing step means that the system
is no longer online and requires sufficient memory to store
all of the features in all the frames. However, when this
is computationally feasible, the post-processing can further
improve the performance of the proposed proposed algo-
rithm, as seen in the experiments below.

For each frame in which a long track is missing, we test
its corresponding appearance model against all of the seg-
ment proposals in that frame and select the segment with
the highest prediction score as the match. If the score of the
match is too low, we determine that the track is occluded in
this frame and designate no match. In this way, long tracks
are propagated throughout the entire video. Post-processing
using a conditional random field or composite statistical in-
ference [31] could be used to further improve performance.

We conduct a preliminary experiment to examine
whether the learned appearance model is sufficiently good
for recognizing the same target in other videos. Segments
are extracted from a testing video and the appearance mod-
els of well-defined objects are tested on these segments.
As in the post-processing, the best match with score over
a threshold is designated the target object segment in the
testing video. Experiment result in the next section shows
that this simple approach performs well with objects that
have similar appearances with the original video.



Figure 4: A basic example of our evaluation metric. Here, three of the four annotators treat the two river banks as two
separate ground truth objects while one annotator believes that both banks should be treated as a whole object. The pairwise
overlap between the three annotators are above the threshold, so they form two 3-cliques, producing two ground truth objects.
Because nobody agrees with the fourth annotator, his annotation forms a 1-clique, which is discarded by our evaluation metric.

7. Experiments
We use the challenging VSB-100 dataset from [16]

which contains 60 testing video sequences with pixel-level
ground truth annotations every 20 frames. Each such frame
contains annotations provided independently by four anno-
tators. Compared to other datasets, this dataset has some
videos that are extremely difficult due to severe occlusion
and similar colors shared by many ground truth objects.

7.1. Evaluation Metric

We note that to make the original evaluation metrics on
VSB-100 [16] well-defined, segmentations that are evalu-
ated must have zero overlap with each other. This metric
is hence unsuitable to evaluate segment proposals that can
overlap each other. In order to explain this, we reproduce
a simplified version of the formula for volume precision-
recall from [16]. We assume only one human annotator in
one frame to avoid further complications:

P =

∑
s∈S maxg∈G |s ∩ g| −maxg∈G |g|

|S| −maxg∈G |g|

R =

∑
g∈G maxs∈S |s ∩ g| − 1

|G| − ΓG
(4)

where |S| represents the total area covered by all the seg-
ments in |S| and ΓG is the number of segments in the ground
truth. Assume that every pixel in the image is labeled as
some segment in the ground truth, and that the maximal seg-
ment size in the ground truth is 20% of the full image size
N . Now suppose we have a bag of single pixel segments,
plus one segment that covers the whole frame; then, for each
single-pixel segment, |s ∩ g| = 1 because each single pixel
is within some ground truth. This generates a precision
P = N+0.2N−0.2N

2N−0.2N = 55% and recallR = N−ΓG
N−ΓG

= 100%.
Thus, such a trivial segmentation would attain an unreason-
ably high F-score of 0.71! This counter-intuitive result oc-
curs mainly because we supply conflicting segments to the
metric, which is not allowed in the original paper. Since we

cannot avoid conflicting segments in figure-ground propos-
als, we need to design a new metric.

Our metric is primarily based on average IoU overlaps,
by treating each human-annotated segment as an object, but
taking into consideration the agreement of multiple human
annotators as well as temporal consistency. By temporal
consistency, we mean that we do not want to evaluate on
segments that only have ground truth in a single frame –
such segments should be evaluated in image segmentation
rather than video. Note that the ground truth is available in
VSB-100 only once every 20 frames, thus we evaluate on
volumes that are present in at least two ground truth frames.
This ensures that most of the time the objects are present
in the video for at least 0.6 seconds and not artifacts due to
flickering and human error. These frames do not need to be
adjacent, since we allow objects to disappear and re-emerge.

For the multiple annotator issue, the basic principle is
to assume that an object is confirmed if there is agreement
among at least two annotators. However, since human an-
notators rarely mark perfectly aligned segments, our proto-
col must correctly capture annotator agreement. We pro-
pose a novel definition of agreement as the maximal clique
in a similarity graph G = (S,E), built for each sequence.
For each segment volume by each human annotator, a node
Si ∈ S is created. We denote as Sit the ground truth anno-
tation in frame t for Si, and as Mi the annotator that creates
Si. Suppose there are Ns segment volumes from all anno-
tators, we form an Ns × Ns overlap matrix V , where the
overlap is computed across all annotated frames:

Vij =

{
1
T

∑T
t=1 V(Sit, Sjt), if Mi 6= Mj

0, if Mi = Mj

(5)

where V(S, T ) = |S∩T |
|S∪T | is the conventional IoU overlap.

This overlap matrix measures the similarity between two
segment volumes. If the overlap between two nodes is
larger than a threshold (70% in our setting), then we create
an edge between these two nodes. Finally, we find the max-



A = 2 A = 3 A = 4 L = 2 L = 3 L = 4 L = 5 L = 6 L = 7

Backtrack & Occlusion 40.03 44.09 52.53 26.32 54.58 47.86 48.10 40.11 46.63
+Post-processing 46.23 50.79 58.26 26.32 55.14 50.93 54.95 45.67 53.79
Li et al. [31] 36.36 40.32 46.67 24.37 49.85 39.45 45.68 31.10 43.23
Grundmann et al. [19] 41.03 47.14 42.82 25.42 50.91 51.22 45.05 39.86 42.26
Galasso et al. [15] 38.5 40.86 47.48 31.15 52.72 52.56 42.40 37.97 42.21

Number of GT Objects 193 94 190 10 22 34 66 77 268

Table 1: Detailed score breakdowns. A = X represents the ground truth objects that X annotators agree with each other, L = X
indicates ground truth objects that last X ground truth frames. The last row is the number of ground truth objects that belong
to each category. Our algorithm is significantly better in the consistent objects, and in objects that appear in more frames.

imal clique of the graph and eliminate size-1 cliques. Now,
our ground truth becomes the cliques. Let Ci

j represent the
jth segment sequence in ith clique and Ci

jt represent frame
t in this segment sequence. Given a segment proposal Skt,
our evaluation metric is

Scorei = max
k

1

T

T∑
t=1

max
j

V(Skt, C
i
jt). (6)

Since we treat each clique as one object, we define the
overlap between the clique and a segment proposal as the
maximum overlap between the segment proposal and each
ground truth segment inside the clique. Therefore, any hu-
man annotator would score 100% if their annotation be-
longs to the clique. For each clique (ground truth), we
find the candidate segment with the largest overlap with this
clique that is common in the evaluation of segment propos-
als. Our overall metric for one algorithm and one video
sequence is thus:

So =
1

N

N∑
i=1

Scorei,where N = number of cliques, (7)

where the average is computed over the entire dataset. We
also report the sequence score Sv , where we first average
among all the ground truth objects within a sequence, then
average this sequence score over the entire dataset.

7.2. Experiment Setup and Results

The framework in [31] used the segmentation proposal
algorithm in [9]. In our experiments, we use our RIGOR
segmentation proposal algorithm [23], because it produces
proposals quickly while maintaining good quality. For fea-
tures, we use Random Fourier transformation of bag-of-
words on ColorSIFT, producing a 3000-dimensional fea-
ture vector for each segment proposal. The ratio thresh-
old for detecting occlusion is set to 0.2. The threshold for
re-discovering occluded track is set to 0.3. Regularization
term λ for Eq. (1) is set to 100. All parameters are fixed
across all testing videos. We conducted the experiments on

Sv So # Segs

Backtrack & Occlusion 50.12 45.81 324
+Post-processing 56.13 51.92 324
Original Li et al. [31] 44.81 41.25 46
Grundmann et al. [19] 45.28 42.94 737
Galasso et al. [15] 45.32 42.54 2850

RIGOR upp. bnd [23] 69.63 65.89 1420/frame

Table 2: VSB-100 results for different algorithms. Sv de-
notes the score averaged per video, So denotes the score
averaged per object, see Sec. 7.1 for details of the metrics.

a Intel Xeon W3550 (4 cores, 3.06GHz) machine. We com-
pare our result to two state-of-art coarse-to-fine hierarchical
video segmentation algorithms [19] and [15]. Both algo-
rithms produce a hierarchy of segments ranging from a few
pixels to the entire image. For fairness, we compute the
maximum score over all the segments from all hierarchies
as the score of the algorithm for each video. We report both
the average score per video Sv and the average score per
ground truth object So (introduced in Sec. 7.1) for each al-
gorithm, and the average number of segments generated by
each algorithm. We also compare our method against our
previous work [31], but note that it suffers from not track-
ing segments that start later in the video. Finally, we include
the score obtained by choosing the best RIGOR proposals
as a theoretical upper bound for our algorithm.

Table 2 summarizes the results. Our proposed algorithm
with backtracking and occlusion handling improves signifi-
cantly over previous approaches. Post-processing improves
the results even further. In addition, the number of segments
is much smaller than with hierarchical segmentation meth-
ods.

We also report the breakdown of the score in the amount
of annotator agreement and the length of the ground truth
track. Table 1 shows that targets on which more annota-
tors agree also tend to be easier for algorithms to capture,
because the object is more likely to have a distinct appear-
ance. Also, for all algorithms, segments that appear in more
than 3 frames (spanning at least 40 frames) are significantly



Figure 5: PR Curves of example categories of the cross-video object retrieval. The X-axis represents the number of retrieved
videos, M . For objects that do not vary significantly across the video, our simple algorithm is able to predict labels with
relatively high prediction and recall.

Table 3: Average per frame running time

Method Time (s)

RIGOR Object Proposal 5.08
Feature Generation 27.52
Occlusion Handling 0.7
LSO Training 18.13
LSO Testing 0.6
Merge LSO (every k frames) 5.67

easier to track than ones that appear briefly. But our algo-
rithm excels on long tracks that appear more than 5 frames
(spanning at least 80 frames), showing the power of the pro-
posed model in tracking through appearance changes and
occlusion.

The time complexity required to process each LSO is
O(nd2 + d3) (same as [31]). Multiplying by the number
of LSOs, which is upper bounded by T/k + k, the overall
complexity per frame is O(Tnd2/k + Td3/k). The com-
plexity of the occlusion handling framework is dominated
by other terms. In reality, most LSOs are empty after, e.g.,
50 frames, and no longer tracked. We report our per frame
running time averaged by all sequences below in Table 3.
Note that faster features with fewer dimensions would speed
the framework significantly.

7.3. Cross-video Segmentation

We present some preliminary results on cross-video ob-
ject retrieval by testing a tracked video segment in other
videos. We use the dataset from [41] which contains 10
types of objects such as airplane and bear. Each object is
present in several different videos and the objects have dif-
ferent shapes and colors in each of these videos. There are
101 videos in total. For each video, a pool of candidate
tracks are provided by the segmentation algorithm, and we
pick the track that best matches the ground truth. Then the
appearance model of this track is tested on all other videos

of all object types. The testing score is computed as:

Crossi,j =
1

Nj

Nj∑
t=1

max(Xt
jWi), (8)

where Crossi,j is the score of testing on video j with video
i as training, Nj the number of frame in video j, Wi the
appearance model (weight vector) of the best track in train-
ing video i, and Xt

j the feature matrix of segments in frame
t of testing video j. For each training video, we then sort
the scores descendingly and generate a list of M retrieved
videos. With varying M , we report the average precision
and recall for each object. We report our results with Col-
orSIFT feature as well as convolutional neural network fea-
tures extracted from the two fully connected layers in [11].

Results are shown on 3 training categories: Ferrari, fig-
ure skating and airplane. Fig. 5 shows that the perfor-
mance with ColorSIFT is relatively good on Ferrari, be-
cause the cars are consistent in appearance. The CNN
features perform better on Airplane because videos in the
airplane category include airplanes with different colors
and shapes; CNN features generalize better across differ-
ent shapes. However, neither of the two features dominate
in all object categories and ColorSIFT dominates the preci-
sion when color is generalizable across videos. From our
preliminary experiments, we believe that we need to design
better features or a more sophisticated system to track a spe-
cific object in one video and generalize it across videos.

8. Conclusion
This paper proposes a video segment proposal approach

with complete occlusion handling. This approach general-
izes our previous least squares tracking framework by in-
troducing efficient moves. Forward tracking and backtrack-
ing schemes are used to track segments starting from ev-
ery frame and through complete occlusions. Results on the
challenging VSB-100 dataset demonstrate the state-of-the-
art performance of our approach. Preliminary results on
cross-video generalization are also reported.
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