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Abstract

Alignment of semantically meaningful visual patterns, such
as object classes, is an important pre-processing step for
a number of applications such as object detection and im-
age categorization. Considering the expensive manpower
spent on the annotation for supervised alignment methods,
unsupervised alignment techniques are more favorable es-
pecially for large-scale problems. Fine adjustment can be
effectively and efficiently achieved with image congealing
methods, but they require moderately good initialization
which is largely invalid in practice. Alignment of visual
class examples with large view point changes remains as an
open problem. Feature-based methods can solve the prob-
lem to some degree, but require manual selection of a good
seed image and omit the fact that examples of a semantic
class can be visually very different (e.g., Harley-Davidsons
and Scooters in “motorbikes”). In this work, we overcome
the aforementioned drawbacks by defining visual similarity
under the generalized assignment problem which is solved
by fast approximation and non-linear optimization. From
pair-wise image similarities we construct an image graph
which is used to step-wise align, “morph”, an image to an-
other by graph traveling. We automatically find a suitable
seed by novel centrality measure which identifies “similar-
ity hubs” in the graph. The proposed approach in the unsu-
pervised manner outperforms the state-of-the-art methods
with classes from the popular benchmark datasets.

1. Introduction
Visual alignment of an image ensemble is to find the corre-
sponding control points between them. This is an important
pre-processing step for a number of high-level computer vi-
sion applications such as object detection and categoriza-
tion [1, 11, 15, 23, 37]. In those applications, it can be
made difficult due to the large pose variation of class exam-
ples in the images. The alignment remains hot yet challeng-
ing topic especially in large-scale visual recognition prob-
lems to i) avoid the manpower spent on annotating the con-
trol points or object landmarks in supervised object align-

Figure 1. The workflow of our visual alignment approach.

ment [46], ii) the lack of moderately good initial alignments
needed for image congealing algorithms [16], and iii) the
manual seed selection in the feature-based alignment [26].

The recent “big visual data” databases, such as Ima-
geNet [38] and COCO [27], have made it possible to train
effective class detectors with minimal annotation, only class
labels, and avoid over-fitting despite the huge number of
model parameters [24]. It is still unclear whether this is
due to a few quantized poses of classes, but certain un-
desirable properties indicate that the problem is not com-
pletely solved [40]. Prior to the large datasets and deep
neural networks, the part-based methods requiring addi-
tional annotation of bounding boxes achieved state-of-the-
art [10, 11, 25]. Bounding boxes have their own draw-
backs which the best part-based methods partly overcome



by hacks, such as bounding box clustering [11], to iden-
tify discrete sub-classes or poses (e.g., vertical/horizontal
guitar). The hacks work well with limited poses, but fail
with objects of similar spatial dimensions and suffer from
unbalanced data between sub-classes. It is clear that even
stronger annotation, such as explicit object poses [45] or
landmarks [1, 23] improve detection. The downside is that
more extensive manual annotation is needed.

An alternative solution to manual annotation is unsu-
pervised visual alignment of object class images. Accu-
rate alignment can be effectively and efficiently achieved
with the recent image congealing methods [29, 16, 43, 9,
17]. These, however, require moderately good initialisa-
tion which is largely invalid in practice. An alternative ap-
proach is the recent feature-based alignment [26], but never-
theless, the main shortcoming of the feature-based approach
is the need to manually select and search a good seed image,
which is still dependent on the efforts dedicated by humans.
Moreover, the both methods may fail in the case of visual
sub-classes under the same semantic label, such as scooters,
sport bikes and Harley-Davidsons in “motorbikes”.

In this work, we adopt the feature-based approach, but to
overcome the aforementioned drawbacks devise pair-wise
visual similarity as an assignment problem which is solved
by fast approximation and non-linear optimization. From
pair-wise similarities we construct an image graph which
is used to step-wise align, “morph”, an image to another
by graph traveling (see Figure 1). Our method also auto-
matically finds a suitable seed by novel centrality measure
which identifies “similarity hubs” in the graph. The pro-
posed approach in the unsupervised manner outperforms
the state-of-the-art methods with classes from the popular
benchmark datasets. Source codes and data for our experi-
ments will be made publicly available1.

2. Related Work

Our interest is on semantic level visual alignment and thus
we omit works related to alignment of different view points
of the same scene (stitching) [4] and methods for specific
classes, such as faces [7, 34, 19]. Special cases are also
cross-domain matching [39], non-rigid registration [5] and
temporary alignment [21].

Graph-Based Representation – Graph-based representa-
tion has been employed in various works of visual object
matching [20, 44, 36, 30] utilizing graph structures to rep-
resent a set of images. However, a graph is usually used
only to represent spatial configuration of features between
two images [20], or connections omit the spatial constella-
tion (Bag-of-Words) [44] or the purpose is to match specific
objects classes [36, 30]. To the authors’ best knowledge, our

1https://bitbucket.org/kamarain/imgalign_code/

work is the first to model pairwise similarity as the gener-
alized assignment problem and represent “group similarity”
in a full-connected similarity graph.

Image Congealing – The semantic level alignment gained
momentum after the seminal work of Learned-Miller [29].
Its extensions [16, 43, 9, 17] provide effective and effi-
cient fine alignment after moderately good initial alignment.
Congealing methods stack images to perform gradual trans-
formations to optimize stack similarity. Replacing pixels
with local features (e.g., SIFT [28]) provides better robust-
ness to imaging distortions [16, 17]. An approach not re-
quiring initial alignment is based on spatial verification of
local features [35] and was proposed in [26]. The prob-
lem in this feature-based congealing is the manual selection
of a good seed which may require testing all images and
the slow RANSAC based spatial verification. Our approach
uses features, but defines the similarity under a generalized
assignment framework. The seed selection is solved by our
novel centrality measure and the similarity graph.

3. Feature-Based Similarity

In this and the next section we use the term “cost” de-
spite the fact that the term used in the titles is “similar-
ity”. This discrepancy is done purposely since many re-
lated works build upon matching costs and, for example,
Euclidean distance provides an intuitive measure how well
features or their coordinates match. However, after building
the optimization framework we switch to similarity in Sec-
tion 4.2 where we propose our fast approximation algorithm
for feature-based image similarity.

Our feature-based similarity (cost) is motivated by the
part-based representations successfully adopted in visual
class detection [12, 25, 11]. The quality of feature-based
alignment of two images Ia and Ib is measured in two ways:
how similar feature points are to their corresponding feature
points, and how much the spatial arrangement of the feature
points is changed. The matching function can be divided to
the feature match and feature geometric distortion costs

C(Ia, Ib) = λ1Cmatch(Ia, Ib) + λ2Cdist.(Ia, Ib) , (1)

where λ1 and λ2 are the trade-off parameters between the
two terms. Equivalents of (1) have been used in object
matching [3], searching sketches from images [2] and non-
rigid matching of image sequences [41]. The work [2] and
[41] solve the problem with the assumption of small geo-
metric distortions and [3] requires manually segmented ex-
emplars of stored classes.

Our feature-based image representation consists of N
feature descriptors Fi=1...N (e.g., SIFT [28]) and their spa-
tial coordinates xi=1...N . The cost of matching two images

https://bitbucket.org/kamarain/imgalign_code/


in (1) can be written as

C(Ia, Ib) = λ1Cmatch(F
(a), F (b))+λ2Cdist.(x

(a),x(b)) .
(2)

The form in (2) separates feature matching and geometric
distortion, but is misleading since the two are dependent.
The cost function implicitly assumes the matching variables
known: the assignments ANa×Nb

and the geometric trans-
formation T . The assignment matrix elements aij define
which feature F (a)

i of Ia correspond to which feature F (b)
j

of Ib. The transformation T , such as a 3× 3 linear homog-
raphy matrix, transforms points from the space of Ib to the
space of Ia. A provides evidence of feature visual appear-
ance match and T of geometric distortion, therefore a more
accurate definition of the cost is

C(Ia, Ib) := C(Ia, Ib;T ,A) =

C
({
F (a),x(a)

}
,
{
F (b),x(b)

}
;T ,A

)
=

λ1Cmatch

(
F (a),AF (b)

)
+ λ2Cdist.

(
X(a),AT (X(b))

) ,

(3)

where the feature matching cost term depends of the feature
descriptors and the assignment A, and the geometric dis-
tortion cost term depends on the assignment and the trans-
formation T (·). The assignment can be achieved by matrix
multiplication and a practical example of the transforma-
tion is a T 3×3 homography matrix where the transformation
T (·) includes the mappings between the non-homogeneous
and homogeneous coordinates.

4. Similarity Algorithm
4.1. Problem Formulation

The similarity cost in (3) can be used to find the pairwise
similarity value of the images Ia and Ib for a given geomet-
ric transformation T and assignments in A. The practical
problem, however, is

C(Ia, Ib;T ,A) = min
T ,A

C(Ia, Ib) .

By defining the transformation T as a problem parameter
we can write the minimization problem as

minimize
∑
i

∑
j

cijaij

subject to
∑
j

aij ≤ 1 i = 1, . . . , Na∑
i

aij ≤ 1 j = 1, . . . , Nb

aij ∈ {0, 1}

, (4)

where the assignment costs cij = C(i, j) can be com-
puted given the transformation T and the descriptors F (a)

and F (b). The most straightforward solution is to adopt the
Na ×Nb descriptor and location distances

DF (i, j) = ||F ai −F bj ||, DX(i, j) = ||xai −T (xbj)|| (5)

and combine them as

C = λ1D
F + λ2D

X .

The form in (4) has the global optimum at the trivial so-
lution aij = 0 ∀i, j. To avoid the trivial solution one needs
to enforce all features (of Ia) to be mapped to some feature
which is achieved by changing the inequality to equality:

⇒
∑
j

aij = 1 i = 1, . . . , Na . (6)

To allow features without correspondences, outliers, one
also needs to introduce Na “dummy assignments” F ε that
represent the outliers, i.e. the corresponding feature of Fa is
not assigned to any of the features in Fb but to the dummy
outlier with a fixed cost ε:

F bj = F ε and cij = ε

for i = 1, . . . , Na, j = Nb + 1, . . . , Nb +Na
. (7)

With the above extensions (4) reduces to the assignment
problem for which O(N3) solvers such as the Hungarian
method exist [33].

As an alternative solution, we can avoid the dummy as-
signments and estimation of their costs in (6) and (7) by
changing the minimization of the similarity cost C to the
maximization of the similarity S and rewrite (4) as

maximize
∑
i

∑
j

sijaij

subject to
∑
j

aij ≤ 1 i = 1, . . . , Na∑
i

aij ≤ 1 j = 1, . . . , Nb

aij ∈ {0, 1}

. (8)

The form in (8) avoids the dummy variables and yields
to the feature assignment that provides the largest similar-
ity value (under the transformation T ). The maximization
problem is known as the generalized assignment problem,
which is NP-hard and even APX-hard to approximate [6].
Next we introduce our fast approximation of the maximiza-
tion problem with the computational complexity of O(N).

4.2. Approximation

We can map the distances (costs) (5) in [0,∞] to similar-
ity values in [0, 1] by the exponential function

S(i, j) = eC(i,j) = eλ1D
F (i,j)eλ2D

X (i,j) = SF (i, j)SX(i, j) .



Algorithm 1 Generalized assignment approx. solution
1: Compute the feature distance matrix DF

Na×Nb
(e.g.,

SIFT[28]).
2: On each row of DF set the K smallest to 1 and 0 otherwise.
3: SX = 0.
4: for i = 1 : Na (features of Ia) do
5: Compute the distance from x

(a)
i to T (x

(b)
j ) for j =

1, . . . ,K non-zero entries of DF and if DX(i, j) ≤ τX
then set SX(i, j) = 1 and break.

6: end for
7: return the number of non-zero terms in SX

In the exponential form λ1 and λ2 define the similarity de-
cay from the exact match. λ2 can be defined in the spatial
domain with intuitive interpretation, but defining λ1 in the
feature space is difficult as, for example, structure of the
SIFT feature space is unclear.

From the computational point of view it is wasteful to
compute similarity values in the cases where either SF or
SX or both are close to zero. To sparsify the similarity ma-
trix we replace the exponential function with the Heaviside
step function H(·) (i.e. unit step function, a discontinuous
function whose value is zero for negative argument and one
for positive argument) as

S(i, j) = H(DF (i, j)− τF )H(DX(i, j)− τX) (9)

where τF and τX are Heaviside thresholds which define the
points where similarities go from 1 to 0. The form in (9)
provides substantial speedup for the two reason:

1. the first term does not depend on the transformation T
but is constant and can be computed in advance and

2. only the SX entries for which the SF entries are non-
zero need to be computed.

To avoid measurements in the complex feature space we re-
place the feature distances in SF with their rank-order dis-
tances, i.e. SF entries are 1 for the τF = K best feature
matches in Ib. With this setting the similarity matrix S(i, j)
is sparse binary of KNa non-zero entries. To speedup the
computation even further we may cascade the computation
with a fixed spatial threshold τX and stop after the first point
below the threshold has been found. With these settings the
minimum number of computations needed is Na and the
maximum KNa that sets the final computational complex-
ity of our approximate assignment solution to O(N). In the
experiments, the values K = 5 and τX = 0.02 were found
good, where τX is made resolution independent by dividing
the distance with the image diagonal. The full solver can
be written with a few lines of pseudo-code shown in Algo-
rithm 1.

By setting the type of the transformation T to 2D similar-
ity, we have the four degrees of freedom: translation (x,y),
rotation φ, and scaling (s). This is only a four dimensional
search space in which we can efficiently utilize the well-

known Nelder-Mead nonlinear optimization technique [31].
The combination of the Nelder-Mead optimization on top of
the fast approximation of the generalized assignment prob-
lem provides fast computation of the pair-wise image simi-
larity S(Ia, Ib).

5. Similarity Graph

Using the previously defined method to compute pair-wise
image similarities of N images we can construct a full N ×
N image similarity matrix

G(i, j) = S(Ii, Ij)

that is a weighted adjacency matrix of a full connected
graphG. A graph describing the visual similarities between
examples from the Caltech-101 motorbikes class are shown
in Figure 2. Similarities computed using the approxima-

Figure 2. A motorbikes similarity graph constructed from the pair-
wise similarities S(Ii, Ij) (strongest 10% links plotted).

tion algorithm are not symmetric since the rank-order based
maximization of S(Ii, Ij) is bounded by the feature car-
dinality of Ii. At this stage we do not exploit asymmetry
properties but enforce the weighted adjacency matrix sym-
metric:

G(i, j) = max (G(i, j),G(j, i)) .

For the symmetric G most graph algorithms, such as the
minimum spanning tree (MST) become available , but again
we found the rank-order statistics based representation more
effective in our experiments:

G(i, j) =
N

rank (G(i, j), sort ascend(G(:, j)))
.



Value 1 denotes strong (short graph distance) and value N
low similarity (long graph distance). With the above sim-
ilarity value transformation the weighted adjacency matrix
G represents a full-connected undirected graph.

5.1. Similarity “Hubs”

By the definition of structural centrality of graphs the graph
G contains nodes, images, that often appear on the short-
est paths between two random images Ii and Ij [13, 14].
By automatically identifying these “alignment hubs” we
can select good candidates to which other images are accu-
rately aligned. Such hubs correspond to manually selected
“seeds” in [26].

Inspired by the random walk closeness centrality [32] we
define a centrality measure based on the first and second
order similarity statistics of each image node:

µi =
1

N

∑
j

G(i, j), σi =
1

N − 1

√∑
j

(G(i, j)− µi)2 .

To identify nodes with exceptional similarity to other nodes,
the single node statistics are compared to the average statis-
tics over all nodes

µ =
1

N

∑
i

µi, σ =
1

N − 1

√∑
j

(µi − µ)2 .

We select a set of central hubs H using the statistical test of
one-sided normal distribution: (1× stdev corresponding to
the 16% best values):

H = {Ii} for which µi > µ+ σ .

To select a single image I ′ from H to which the rest are
aligned we switch to the second order statistics by taking
the node with the smallest similarity variance

I ′ = argmin
Ii∈H

σi .

5.2. Step-Wise Alignment to the Central Hubs

All images can be aligned to a single space which is the
most central hub image I ′ identified by the centrality com-
putation proposed in Sec. 5.1. The possible alignment
strategies exploiting the graph G structure are the follow-
ing:
• Direct alignment [26],
• The minimum spanning tree (MST) path (e.g. the

Prim’s algorithm [8]), or
• The shortest graph path (e.g. the Djikstra’s algo-

rithm [8]) .
In our experiments the first option of the direct alignment
provides poor results especially in the cases where input im-
ages contain examples from visually different sub-classes.

In these cases the two other strategies that utilize graph trav-
eling are more effective and allow “morphing” between vi-
sually dissimilar images, e.g., from a “scooter” to “Harley-
Davidson”. The results are demonstrated in the experi-
ments.

6. Experiments
In our experiments we used the same datasets (r-Caltech-
101 and Labeled Faces in the Wild) and performance
measures from the most recent alignment and congealing
works [26, 17] for which the authors provide code to run
their methods with the aforementioned benchmarks. In ad-
dition, we selected and annotated landmarks to challenging
classes from the ImageNet dataset. In principle, evaluations
are based on manually annotated landmarks which ideally
map to the same locations and the alignment error is zero.
However, for more than 3 landmarks exact mapping is not
anymore guaranteed and in that case our “ideal result” rep-
resents the best possible alignment by the annotated land-
marks themselves. In all experiments our descriptors are
detected using the dense SIFT in the VLFeat toolbox [42].

6.1. Comparison with the State-Of-The-Arts

In our first experiment, the benchmark in [26] was run using
the provided data and landmarks. The benchmark is partic-
ularly suitable for the feature-based alignment method [26]
and unsuitable for the congealing method by Huang et
al. [17] (randomized Caltech-101 has been introduced by
the same authors [22]). In Figure 3 are the results for the
ideal alignment (with manual landmarks), the two state-of-
the-art methods, and our method. The x-axis is the aver-
age mean squared error of all landmarks after the alignment
and the y-axis represents the number of images (max. 50)
for which the specific alignment accuracy was achieved. In
general, ≤ 0.05 is excellent, ≤ 0.10 is good and ≤ 0.15 is
satisfactory in the terms of the image diagonal normalized
distance measure used in the face detection literature. It is
noteworthy, that for all cases our unsupervised method is su-
perior to the feature-based method where the optimal seed
image was manually selected. The congealing fails com-
pletely as the images are artificially misaligned with large
translation, rotation and scale changes.

6.2. Computational Burden

In this experiment we replaced the RANSAC spatial match-
ing algorithm of Lankinen et al. [26] with our fast as-
signment algorithm and the Nelder-Mead optimization
(Sec. 4.2) and compared the accuracy and computing times.
The results for the same four classes as in the previous ex-
periment are collected to Table 1. Note that in the table we
have fixed the operation point (x-axis) to 0.10 representing
good alignment accuracy and report the proportion of im-
ages for which the accuracy was achieved. Our method is
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Figure 3. Our method vs. state-of-the-art for the benchmark in [26] (r-Caltech-101 Faces, motorbikes, stop sign and cars).

Table 1. The proportions of correctly aligned images (accuracy
threshold 0.10) and the computation times for the feature-based
alignment (FB) in [26] with the original RANSAC matching and
with our fast assignment solver in Sec. 4.2.

FB [26] acc. 86% 76% 98% 74%
comp. time (s) 170 61 163 96

FB with Alg. 1 86% 76% 100% 80%
comp. time (s) 83 27 60 45

consistently 2-3 times faster and produces the same or bet-
ter accuracy. The results validate that our theoretical frame-
work for similarity optimization is more effective and effi-
cient than the heuristic RANSAC matching in [26].

6.3. Stepwise Alignment

For evaluation of the two stepwise strategies, the Dijkstra
shortest path algorithm and Prim’s minimum spanning tree
(MST) algorithm (Sec. 5.2), we compared them for Caltech-
101 and ImageNet classes. Interestingly, the results were
often rather complementary; images misaligned with Dijk-
stra were correctly aligned with MST and vice versa. In ad-
dition, it was found that with minor geometric variance Di-
jkstra was better (faces in Figure 4), but with significant ge-
ometric variation MST produced better alignment (starfish).
In general, Dijkstra is preferred due to more reliable results.

In addition to the stepwise strategies, the direct align-
ment can be used as well. That, however, completely failed
in the presence of many sub-classes, is very sensitive to the
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Figure 4. Comparison of the MST and Dijkstra algorithms for the
stepwise alignment of Caltech faces and starfish images (left: av-
erage image of MST, right: Dijkstra).

hub selection and even in good conditions was on average
inferior to the MST and Dijkstra stepwise alignments. That
is demonstrated in Figure 5 for the two ImageNet classes.
Note that Meerkats contain 3D pose changes which make
also the ideal result clearly worse as compared to the previ-
ous examples from the Caltech datasets.

6.4. Face Verification

In addition to the alignment experiments we run the face
verification experiments from [17] with the Labeled Faces
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Figure 5. Direct vs. stepwise (Dijkstra) alignment of ImageNet
classes airplanes and meerkat (left: direct, right: stepwise).

Table 2. The Labeled Faces in the Wild face verification bench-
mark [17] with aligned images.

Alignment Avg. Accuracy

Original images 57.1%
Congealing [17] 64.2%
Direct (Ours) 53.6%
Dijkstra’s (Ours) 71.4%

in the Wild database (LFW) [18]. Since the large number of
face images makes the dataset very “dense” over geomet-
ric transformations, we made the benchmark more difficult
by randomly sampling a 150 identities sub-set at time, per-
forming training and testing on the sub-set, and averaged the
results. The face bounding box of the automatically idenfi-
tied hub image is transformed to other face images using the
best hub features and after that we run the matching algo-
rithm from [17] using their code (details can be found from
the original article). The results for unaligned, congealed
and our stepwise aligned images are in Table 2 where our
method with Dijkstra step-wise alignment is the best.

7. Conclusions

In this work, we have investigated the problem of unsuper-
vised image alignment and, in particular, aligning images of
object class examples. The previous approaches of congeal-
ing and feature-based matching suffered from manual seed
selection, lack of good initial alignment and visually distant
sub-classes. We defined a pairwise image similarity mea-
sure that combines both local part similarity and geomet-
ric distortion (Sec. 3) and the actual similarity value can be

found by searching the maximum of the similarity function.
The search was cast as a combination of the generalized
assignment problem and non-linear optimization (Sec. 4.1)
for which we proposed an effective and efficient approx-
imation in Sec. 4.2. To solve the sub-class and seed se-
lection problems we constructed a full-connected similarity
graph where the seed was identified as a “similarity hub”
(Sec. 5.1) where all image can be “morphed” using align-
ment jumps over the graph nodes (Sec. 5.2). In the exper-
iments, our method outperformed the state-of-the-art semi-
supervised (manual seed selection) feature-based method
and state-of-the-art unsupervised image congealing.
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