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Abstract

In this paper we target at generating generic action pro-
posals in unconstrained videos. Each action proposal cor-
responds to a temporal series of spatial bounding boxes,
i.e., a spatio-temporal video tube, which has a good poten-
tial to locate one human action. Assuming each action is
performed by a human with meaningful motion, both ap-
pearance and motion cues are utilized to measure the ac-
tionness of the video tubes. After picking those spatiotem-
poral paths of high actionness scores, our action proposal
generation is formulated as a maximum set coverage prob-
lem, where greedy search is performed to select a set of
action proposals that can maximize the overall actionness
score. Compared with existing action proposal approaches,
our action proposals do not rely on video segmentation and
can be generated in nearly real-time. Experimental results
on two challenging datasets, MSRII and UCF 101, validate
the superior performance of our action proposals as well as
competitive results on action detection and search.

1. Introduction
Motivated by fast object detection and recognition us-

ing object proposals [8, 31, 33], we present an approach to

efficiently propose action candidates of generic type in un-

constrained videos. Each proposed action candidate corre-

sponds to a temporal series of spatial bounding boxes, i.e., a

spatio-temporal video tube, which locates the potential ac-

tion in the video. For many video analytics tasks, e.g., ac-

tion detection [21, 17, 25] and action search [26], we argue

that a quick generation of action proposals is of great impor-

tance, because sophisticated action recognition can focus

on the action proposals rather than the whole video to save

computational cost and improve the performance, similar to

the benefits of using object proposals for object detection

and recognition.

Despite the success of object proposals, generating ac-

tion proposals in videos is however a more challenging

problem due to two reasons. First, different from object-
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Figure 1. An illustration of action proposals. The red paths in the

upper figure represent three detected action proposals, where each

action proposal corresponds to a series of bounding boxes in the

video space. The green and blue paths, which have large spatial-

temporal overlap with the red paths, should be removed for the

path diversity.

ness measure that relies on visual appearance only, action

proposals need to take both appearance and motion cues

into consideration. For example, actions should be cou-

pled with human with meaningful motion. However, due to

the diversity and variations of human actions, it is difficult

to learn the actionness measure that can well differentiate

human actions from the background clutters and other dy-

namic motions, which are quite common in unconstrained

videos. Second, the candidate number of action proposals

can be much larger than that of the object proposals. Given

a video of size M ×N ×T , even with the fixed size bound-

ing box, the candidate number of action proposals can be

as large as O(MNTkT ) [30], where k is the number of

spatial neighbors a bounding box will consider to link in

the next frame, which controls the smoothness of the action

proposal tube. As the spatial extent of the action can vary

across frames, if we consider a flexible bounding box size,

it becomes an even much larger size of O(M2N2TkT ). As
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a result, it is computationally infeasible to explore the full

candidate set to pick action proposals.

To address the above two challenges when generating

action proposals, we first perform human and motion de-

tection to generate candidate bounding boxes that may cov-

er the human action in each frame. After picking up the

bounding boxes of high “actionness” scores, we utilize the

max sub-path search algorithm to locate the top-N maxi-

mal spatio-temporal paths based on “actionness” score. Due

to the spatio-temporal redundancy in the video, many high

quality paths may largely overlap with each other as the ex-

ample shown in Fig. 1. The red paths illustrate three de-

tected action proposals. But the green paths and blue path

which significantly overlap with path 1 are redundant paths

and should be removed. To pick the action proposals, we

further formulate it as a maximum set coverage problem

where each candidate path corresponds to a set, with each

bounding box as an element. Such a maximum set coverage

problem is NP-hard, but a greedy search algorithm [14] can

achieve an approximation ratio of 1− 1
e .

To evaluate the performance of our action proposals, we

test two benchmark datasets, MSR II [4] and UCF 101 [5].

We notice that a small number of action proposals, e.g.,

2000 proposals for all the 54 video clips in MSRII dataset,

can already provide promising recall rate. Also, based on

our action proposals, we can obtain competitive action de-

tection and action search results in MSRII dataset compared

with existing results. Moreover, the result on UCF 101

dataset validates that our action proposal can well track the

actions in unconstrained videos. Last but not the least, com-

pared with existing action proposal approaches, our action

proposals do not rely on video segmentation and can be gen-

erated in nearly real-time on a normal desktop PC.

2. Related Work
Object proposals [8, 16, 31] have been actively studied

recently. By generating a set of potential object bounding

boxes with efficient computational speed and high recal-

l, it can be utilized to replace the time-consuming sliding

window approach for object detection so that sophisticated

image feature and model can be evaluated [33]. A recent

review of object proposal can be found from [32].

Compared with object proposals, action proposal is not

sufficiently exploited in the video space, where action local-

ization is a much more computational intensive step com-

pared with object detection in the image case. Traditional-

ly, action localization is handled by a sliding window based

approach. For example, in [11], a weakly supervised model

based on multiple instance learning is proposed to slide the

spatial-temporal subvolumes for action detection. Spatio-

temporal branch-and-bound algorithm is employed in [4] to

reduce the computational cost. Other sliding-window based

action detection approaches include [12, 22, 23]. Despite

their successes, one limitation with those sliding-window

based approach is that the detected action is usually cap-

tured by a video sub-volume, thus cannot handle the mov-

ing actions. Besides from sub-volume detection, spatial-

temporal action tubes can be detected via structured out-

put regression [13] but with a computationally intensive op-

timization. Although a linear complexity search algorith-

m has been proposed in [30], it only searches for the best

video tube with bounding box size fixed. In [35], a near-

optimal algorithm with linear complexity is presented for

object tracking. In addition, Hough voting based approach

can be applied for action localization with reasonable per-

formance as in [40, 36].

Although there are a few possible solutions for action lo-

calization, the extremely large search space leads to inten-

sive computational cost. Action proposal would be a good

alternative to significantly reduce the search space. In [27],

action proposals are generated by hierarchically merging

super-voxels. Similarly, segmentation based proposal are

generated in [20, 3]. However, these action proposal ap-

proaches highly rely on relatively accurate video segmenta-

tion [37, 38], which itself is a challenging problem. More-

over, it is difficult to efficiently and accurately segment the

human action from the clutter video sequences. In [34],

“actionness” is measured based on lattice conditional ordi-

nal random fields. However, it does not address the action

localization problem. In this paper, we present to formu-

late the action proposal based on the set coverage problem.

In [41], maximum weight independent set is presented to

solve the data association in multiple object tracking. Sim-

ilar idea is applied to object segmentation in [39, 42].

Our work is also relevant to previous work [9, 10] that

utilize human detector for human tracking and action lo-

calization. For example, [9] combines features of object,

scene, and action for action recognition while [10] presents

a deformable part model for human pose representation and

action detection. A united framework based Hough forest is

presented for human detection, tracking, and action recog-

nition in [15]. Different from these human detection and

tracking based algorithms, our focus is to generate generic

action proposals which focus on the localization of potential

actions by integrating the human and motion cues.

3. Action Proposals

Given a video sequence, our goal is to generate a number

of action proposals P = {p(1), p(2), · · · , p(K)}, where each

action proposal p(i) = {b(i)ts , b
(i)
ts+1, · · · , b(i)te } corresponds

to a path from the ts-th frame to te-th frame. Each element

bt in the path refers to a bounding box [x, y,m, n], where

(x, y) is the center, m is the width, and n is the height of

the bounding box. As a smooth spatio-temporal path that

may follow the actor, each action proposal should satisfy



the following two requirements:

O(b
(i)
t , b

(i)
t+1) ≥ δo, ∀b(i)t ∈ p(i) (1)

||C(b
(i)
t )− C(b

(i)
t+1)|| ≤ δc, ∀b(i)t ∈ p(i). (2)

The first constraint in Eq. 1 requires the action propos-

al to be a smooth path, i.e., the intersection-over-union

(IOU) of two consecutive bounding boxes O(b
(i)
t , b

(i)
t+1) =

∩(b
(i)
t ,b

(i)
t+1)

∪(b
(i)
t ,b

(i)
t+1)

is large enough. The second constraint in E-

q. 2 is to require the action proposal to correspond to a path

of consistent appearance, thus it is more likely to track the

same actor. In our implementation, C(b) represents the col-

or histogram of the bounding box b and δc is a threshold.

Each bounding box bt will be associated with a discrim-

inative actionness score w(bt), which will be explained in

Section 3.4. The actionness score of a path is the summa-

tion of the actionness scores from all of its bounding boxes.

It is worth noting as the actionness score can be either neg-

ative or positive. Thus it is not necessary a longer path will

have a higher actionness score. To find a good set of ac-

tion proposals P, we prefer them to maximize the coverage

of actionnness scores in the video space max
P⊂S

∑
bt∈∪p(i)

w(bt),

where S is a collection of proposal candidates that satisfy

the constraints in Eq. 1 and Eq. 2. In the next subsection, we

will formulate it as a maximum set coverage problem [14]

where each path p(i) can be considered as a set with the

bounding box b(i) as its element.

3.1. Problem Formulation

Formally, we want to find the path set P which maxi-

mizes the following set coverage problem:

max
P⊂S

∑

bt∈∪p(i)

w(bt) (3)

s.t. |P| ≤ K, (4)

O(p(i), p(j)) ≤ δp, ∀p(i), p(j) ∈ P, i �= j. (5)

The first constraint (Eq. 4) is to set the maximum number

of action proposals as K while the second constraint (Eq. 5)

is to avoid generating redundant action proposals that are

highly overlapped. The overlap of two paths is defined as

O(pi, pj) =

∑
max(t

(i)
s ,t

(j)
s )≤t≤min(t

(i)
e ,t

(j)
e )

∩(b(i)t , b
(j)
t )

∑
max(t

(i)
s ,t

(j)
s )≤t≤min(t

(i)
e ,t

(j)
e )

∪(b(i)t , b
(j)
t )

,

(6)

where δp is a threshold.

3.2. Top-N Path Candidate Search

To solve the maximum set coverage problem in Eq. 3, we

need to obtain the proposal candidate set S first. However,

the search space for S in Eq. 3 is extremely large and in-

creases exponentially along with the video duration. Thus,

it is impossible to enumerate all the paths to obtain S .

To address the computational issue, we present a max

sub-path based candidate search algorithm [30] to collect

the top-N path candidates as S which satisfy the constraints

in Eq. 1 and Eq. 2. One solution is to apply the max sub-

path search algorithm [30] N times with a non-maximum

suppression each time to avoid those similar paths. In this

paper, we propose a novel Top-N max path search algorith-

m which can locate the top-N max paths, in one round of

search. There are two steps: forward search to locate the

end of path and back-trace to recover the whole path.

The idea is to maintain a pool of the best N paths, denot-

ing as S = {(fk, b(k)), k = 1, 2, · · ·N}, where fk is the

actionness score of the k-th best path so far and b(k) records

the end position of the corresponding path. Meantime, we

keep the best score so far for each bounding box f(bit) dur-

ing a forward search process:

f(bit) = max
bjt−1

{f(bjt−1) + w(bit), 0}, (7)

where bjt−1 and bjt should satisfy Eq. 1 and Eq. 2. If the ac-

cumulated score for the current bounding box f(bit) is larger

than the N -th path score in the path pool f(bit) > fN , then

the N -th path will be replaced by the new path with score

f(bit) and ending at the position bit (in the implementation,

the bounding box at the previous frame bjt−1 which leads to

bit should be saved as well). To facilitate the replacement,

a min-heap structure can be utilized to maintain the best N
paths based on the path scores. After the forward search, a

back-tracing step can be performed to locate the whole path

pk for each candidate in the pool. More specifically, for

each path p, we can trace from the end of the path te back

to the start of the path ts by finding the corresponding b∗t for

each frame ts ≤ t ≤ te which satisfies:

f(b∗) =
∑

ts≤t≤te

w(b∗t ). (8)

3.3. Greedy Search

Based on the path candidates S , now we can solve the

problem in Eq. 3 to obtain the action proposals. According

to [14], the maximum set coverage problem is NP-hard but

a greedy algorithm can achieve an approximation ratio of

1− 1
e . Following [14], a greedy-based solution is presented

to address the optimization problem in Eq. 3.

Initially, we add the path candidate p1 with the largest

actionness score f1 to the action proposal set P. Suppose

k − 1 action proposals have already been found: P =
{p(1), p(2), · · · , p(k−1)}. To search the k-th action propos-

al, we enumerate the rest paths from the path candidates and



Algorithm 1 Action Proposal

Input: bounding box score w(bit),
Output: action candidates P = {p(1), p(2), · · · , p(K)}

1: fk = 0, b(k) = ∅, k = 1, 2, · · ·N
2: for t = 1 → T do
3: for i = 1 → N t

b do
4: f(bit) = maxbjt−1

{f(bjt−1) + w(bit), 0} as Eq. 7

5: if f(bit) > fN then
6: fN = f(bit), b(N) = bit
7: end if
8: end for
9: end for

10: back trace to obtain pi, i = 1, · · · , N
11: k = 1, P = ∅
12: repeat
13: argmaxi

∑
b∈pi

⋃
p(1)

⋃···⋃ p(k−1)

w(b)

14: if pi satisfies Eq. 5 with p(j), j = 1, · · · , k−1 then
15: p(k) = pi, P = {p(1), p(2), · · · , p(k)}
16: k = k + 1
17: end if
18: until k > K

select the one pi which can maximize

argmax
i

∑

b∈pi

⋃
p(1)

⋃···⋃ p(k−1)

w(b). (9)

This objective function can successfully suppress the green

paths in Fig. 1 but cannot eliminate the blue path which also

largely overlaps with the selected path in P. To reduce the

redundancy among the action proposals, the newly added

path should also satisfy the constraint in Eq. 5.

An illustration of the proposed algorithm can be found in

Algorithm 1. The input is the score w(bit) for each bound-

ing box in the video, where bit refers to the i-th bounding

box in the t-th frame. The total number of bounding box

in t-th frame is N t
b . The first 9 lines illustrate the forward

search process and a min-heap data structure is maintained

to save the best N scores. Each time when the actionness

score of the new bounding box is larger than the N -th best

score, i.e., f(bit) > fN , the path with N -th best score is re-

placed with the new path ending at bit. At the 10-th line, a

back tracing step as in Eq. 8 is performed to locate the full

paths for the best N scores. Finally, at the line from 11-18,

the greedy-based search is performed to obtain the best K
action proposals which satisfy the constraints in Eq. 3.

Another good property of our algorithm is that it can be

applied for online processing. For example, as our algo-

rithm naturally generates the action proposals in an online

manner, our proposals can be further used for online ap-

plications like online action detection in video surveillance

environment.

3.4. Actionness Score of Bounding Box

In this section we explain how to obtain the score of the

bounding box w(b) in the path. As the computational cost

is an important concern for action proposals, we propose an

efficient approach to compute the bounding box actionness

score based on appearance and motion information. Other

more advanced actionness measures like [34] can be em-

ployed in our framework as well but with more intensive

computational cost.

We define the actionness of a bounding box b based on

two parts: human detection score H(b) and motion score

M(b):

w(b) = H(b) + λM(b), (10)

where λ is a parameter which balances the human detection

score and motion score. Normally, an action should be per-

formed by a human being and therefore human score is crit-

ical for the action proposal. Efficient human detector, e.g.

[28, 29, 19] can be applied to obtain the human score H(b),
where H(b) > 0 means the bounding box is classified as a

positive human region.

However, human detection score alone is not sufficient to

determine an action instance since the human actor should

perform meaningful motion to make it an action. Thus, be-

sides the human score, we propose to add motion score that

accounts for the motion pattern of generic actions.

Dense trajectory features [1] are extracted and map to

each detected bounding box. For each trajectory, we can

determine its motion based on the variation of the trajec-

tory position. If the trajectory does not make any move-

ment, it will be removed. One direct motion score is by

counting the number of moving trajectories in the bound-

ing box, which indicate high motion energy. On the other

hand, compared with random motion, human action should

have specific motion pattern. Thus, we propose to learn

the motion score by matching the dense trajectory with a

set of training actions. Suppose we have a set of posi-

tive actions P = {dP1
, dP2

, · · · , dPN
} (can contain ac-

tions from multiple categories) and a set of negative actions

N = {dN1
, dN2

, · · · , dNN
} (optional), the matching score

for each local interest point di can be computed as:

s(di) = D(di,N )−D(di,P), (11)

where D(di,N ) is the average distance of di and the top-10

nearest points in N based on the descriptors of the trajecto-

ry. Similarly, D(di,P) is the average distance of di against

the top-10 nearest points in the positive action sequence set

P . The semantic score for the action candidate is defined

as:

M(b) =

∑
di∈b s(di)

A(b)
, (12)

where A(b) is the area of the bounding box b.



3.5. Real-time Implementation

Fast computational speed is a necessary requirement for

the action proposal algorithms. In this subsection, we will

provide the implementation details on how to speed up the

algorithm. Let us begin with the cost from human detection.

Fast human detection, e.g., [28, 29, 6, 19], is first utilized to

obtain the human score for each bounding box and a non-

maximum suppression is applied to eliminate the bounding

boxes which are highly overlapped. Based on the remaining

bounding boxes, a threshold (e.g., fixed at 0) is set to filter

those detections below the threshold. This can significant-

ly reduce the number of bounding boxes for each frame.

As the human detector is applied on each frame individu-

ally, the temporal consistence may be ignored. To enable

the smoothness of the human action, the detections on t-th
frame will be mapped to the following frames with a de-

cayed human score, until it reaches 0. For the motion score

M(b), instead of performing local interest point matching

for all the dense trajectories, the motion score defined in

Section 3.4 is computed only within those bounding box-

es detected in each frame. This can significantly simplify

the model structure for efficient action proposal. Then the

top-N path candidate search discussed in Section 3.2 is ap-

plied. In order to avoid highly similar paths in the candidate

set S , when the score of a new path candidate is larger than

the N -th path (Line 5 in Algorithm 1), an efficient linear

comparison based on the last bounding box bite−1 is evalu-

ated to replace the highly overlapped path. Then a greedy

search algorithm discussed in Section 3.3 will be performed

to spatial-temporally locate the actions proposals.

On a workstation with Intel Xeon E5-2609 CPU and 64

GB memory, the computational time of generation of 2000
action proposals can be less than 20 seconds from the 30-

min MSRII dataset, excluding the computing human detec-

tion and motion scores. With fast human detector [28, 29],

the human score H(b) can be efficiently computed at 30 fps.

For the motion score M(b), the cost for dense trajectory ex-

tracting as well as the trajectory matching can be operated

at 15 fps.

4. Applications
The generated action proposals can be applied to two

important applications on human action understanding: ac-

tion detection and action search. Since the action proposals

have already been spatio-temporally localized in the video

sequences, it avoids the time-consuming sliding-window e-

valuation in the video space as in [4, 7].

4.1. Action Detection

For action detection on specific action category, a set of

labeled training videos are required to train the supervised

model. Dense trajectory features are extracted from each

video sequence and the descriptors (e.g., HoG, HoF, trajec-

tory, MBH) are utilized for each local point [1]. Fisher vec-

tor representation [18] is applied for these local descriptors

respectively. Then a linear SVM is trained on the concate-

nated fisher vector representation. During the testing stage,

for each action proposal in pi ∈ P, dense trajectory feature

will be encoded with fisher vector and the action recogni-

tion response is computed based on the trained linear SVM.

Power normalization and L2 normalization are employed

for fisher vector as in [2].

4.2. Action Search

Different from action detection, action search [26] tries

to locate the action instances in large-scale video database

which are similar to a query action. During the offline stage,

action proposal algorithm is applied to the video database

and a set of action proposals can be located. For each action

proposal, dense trajectory feature as well as the descriptors

are extracted and bag-of-visual-word (BoW) is applied to

cluster the local trajectories. We denote fi as the feature

representation (normalized histogram of BoW) for the ac-

tion instance pi. During the online search stage, a query

video Vq is provided and BoW action representation based

on dense trajectory is extracted as fq . The similarity be-

tween the query video fq and database action proposal fi
can be evaluated based on histogram intersection:

s(fq, fi) =
∑

k

min(f(k)q , f(k)i ), (13)

where f(k) refers to the kth dimension of f. As the action

proposal algorithm is performed offline, our algorithm can

significantly reduce the online cost of action search com-

pared with [26].

5. Experiments

To evaluate the performance of our action proposals and

its application on action detection and search, MSRII [4]

and UCF 101 [5] datasets are employed.

5.1. Experimental Results on MSRII

For MSRII dataset [4], there are 54 long video sequences

where each video consists of several actions performed by

different people in a crowded environment. The videos

contain three categories of actions: handwaving, handclap-

ping and boxing. Following the same experimental setting

in [4], cross-dataset evaluation is employed, where KTH

dataset [24] is used for training while the testing step is per-

formed on the MSRII dataset.
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Figure 2. Recall for action proposal in MSRII dataset.
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Figure 3. Evaluation of the relationship between the recall and

overlap ratio θ.

Method H+M H M R @ 2K R @ 1M

Recall 0.862 0.773 0.360 0.000 0.015
AP 0.450 0.409 0.150 0.008 0.061

Table 1. Evaluation of the recall (IOU with θ = 0.1) and aver-

age precision (AP) on MSRII dataset. In total 2000 proposals are

generated for our algorithm.

We first evaluate the performance of our action proposals

based on the recall. We consider a hit of ground-truth ac-

tion G if the intersection-over-union (IOU) O(p∗,G) > θ,

where the overlap function O is defined in Eq. 6 and p∗

is one action proposal, and θ is the overlap threshold. To

collect the training set for the motion score discussed in

Section 3.4, video clips with the categories of handwav-

ing, handclapping and boxing from KTH dataset are com-

bined as the positive videos P while walking clips are used

as negative videos N . Fig. 2 illustrates the recall of 203

ground-truth human actions from MSRII dataset with dif-

ferent overlap ratio θ. In the legend of Fig. 2, “H” is the

human score, “M” is the motion score and “R” is the ran-

dom generation algorithm. We can find that our discovered

small set of action proposals can cover most of the ground-

truth actions. In addition, Fig. 3 shows the relationship be-

tween the recall and overlap ratio of our proposed algorithm

(“H+M”).

Also, based on the 2000 action proposals generated for

all the videos (except for random approach), we can rank

them based on actionness score in Eq. 8. Average precision

is used to evaluate our actionness score by using the 203 ac-

tions in MSRII as the positive actions. Following [4], for the

computation of the precision we consider a true detection if

:
Volume(p∗∩G)

Volume(p∗) > 1
8 , where G is the annotated ground truth

subvolume, and p∗ is one detected action candidate. On the

other side, for the computation of the recall we consider a

hit if:
Volume(p∗∩G)

Volume(G) > 1
8 . Notice that the recall calcula-

tion for average precision is different from the one used for

Fig. 2 and Fig. 3. Table 1 shows that our action proposal al-

gorithm can successfully reduce the number of action can-

didates and provide an effective ranking of the candidates

based on our score function. According to our evaluation

results in Table 1, the recall and AP of random sampling

(average over 5 rounds) are significantly lower than that of

our action proposal algorithm.

Action detection on MSRII dataset

Based on the discovered 2000 action proposals, action de-

tection is evaluated according to average precision. Fol-

lowing the cross-dataset detection setting [4], our algorith-

m based on the action proposals achieves state-of-the-art

performance as shown in Table 2. As far as we know,

this is the best action detection result on MSRII dataset.

Although [11] reports action detection results for MSRI-

I dataset, the setting is quite different. The sequences in

MSRII dataset are split into two sets (one for training and

the other for testing) for [11] while we perform the stan-

dard cross-dataset evaluation (training on the KTH dataset

but testing on the MSRII sequences).

Method Handwaving Handclapping Boxing mAP

Ours 0.699 0.466 0.674 0.613
Tubelet [27] 0.858 0.314 0.460 0.543
NBMIM [4] 0.649 0.431 0.580 0.553

CAD [7] 0.367 0.132 0.175 0.225
SDPM [21] 0.447 0.239 0.389 0.358

DynamicPoselets [43] 0.809 0.502 0.417 0.576

Table 2. Cross-dataset action detection results on MSRII dataset

based on average precision.

Fig. 4 compares precision-recall curves for the three cat-

egories of actions. Our algorithm significantly outperform-

s Cross Action Detection (CAD) [7] and Spatio-temporal

Deformable Part Models (SDPM) [21] on all the three ac-

tions. Compared with spatio-temporal branch-and-bound

search (NBMIM) [4], the better performance of our algo-

rithm is mainly due to the high recall of our action proposal-

s. For example, our algorithm can successfully locate 95%
of handclapping actions while NBMIM [4] can only find

57% of handclapping actions. Moreover, compared with

these sub-volume based action detection methods [4, 21, 7],

our approach is capable to handle the moving actions. In

Section 5.2, the challenging UCF 101 dataset will be test-

ed to show that our approach is also useful to localize the

moving actions.
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Figure 4. Precision-recall curve for action detection on MSRII dataset.

Figure 5. Illustrative examples for the discovered action proposals (with red bounding boxes) on UCF 101 dataset. The ground-truth

action is marked by green bounding box. The IOU between the red action proposal with the green ground-truth action for each row is

0.55, (0.37, 0.44), 0.39, 0.38, 0.80.

Action search on MSRII dataset

Based on the discussion in Section 4.2, action search is e-

valuated on the MSRII dataset. Following the same evalua-

tion setup in [26], the video sequences from MSRII dataset

are used as database while the query video is from KTH

dataset. Table 3 provides the action retrieval results based

on average precision. Our algorithm provides superior per-

formance compared with state-of-the-art action search al-

gorithm [26] as well as action detection algorithm [7]. The

poor perform for the boxing action is mainly due to the in-

discriminative of the motion pattern from the boxing action

(e.g., similar to walking action).

Method Handwaving Handclapping Boxing average

Ours 0.601 0.373 0.274 0.416
CAD [7] 0.367 0.132 0.175 0.225
RF [26] 0.492 0.312 0.302 0.369

Table 3. Action search on MSRII dataset based on mAP.

5.2. Experimental Results on UCF 101

method
θ = 0.1 θ = 0.05

S1 S2 S3 S1 S2 S3

H+M@10K 0.545 0.572 0.564 0.834 0.824 0.828
R@10K 0.001 0.000 0.001 0.105 0.090 0.108
R@100K 0.002 0.002 0.001 0.381 0.383 0.382
R@500K 0.011 0.006 0.014 0.597 0.579 0.581

Table 4. Evaluation of the recall on UCF101 dataset. “H+M” is

our algorithm with both human and motion scores. “R” is the ran-

dom algorithm. θ is the intersection-over-union ratio defined in

Section 5.1.

UCF 101 [5] is a challenging dataset with unconstrained

environments. For action localization task, there are 3207

video clips with 24 categories of human actions which have

bounding box annotations. We follow the three splits de-

fined in [5] to evaluate our algorithm. For the motion score

in Section 3.4, the positive data are from the temporal win-

dows based on the ground-truth in the training split while



Figure 6. Action proposals (marked with blue rectangle) on two videos from UCF 101 dataset. The action proposal with maximum

actionness path score f(b∗) is marked with red rectangle and the ground-truth action is marked by green bounding box.
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Figure 7. Our action detection results for UCF101 dataset based on average precision.

the negative data are sampled from the video data which

does not overlap with the ground-truth.

Table 4 summarizes the recall of our action proposal al-

gorithm. In the first column, “H+M” is our algorithm with

both human and motion scores. “R” is the random algorith-

m. We can see that, based on 10K action proposals for all

the video sequences, our action proposal algorithm is signif-

icantly better than random sampling (average over 5 round-

s), especially when the intersection-over-union threshold

θ = 0.1. The results on the three splits (S1, S2, and S3)

are consistent.

In Fig. 5, a few action proposals are illustrated with red

rectangles. We can see that even with serious pose and s-

cale changes, our action proposal is still able to recover

the path of human action. In addition, Fig. 6 provides all

the proposed action candidates with a blue rectangle for t-

wo videos. The red rectangle describes the action proposal

with the maximum actionness score f(b∗) in Eq. 8. It can

be found that the proposed action candidates usually cover

the potential positions with human actions.

Method H+M@10K R@10K

AP 0.428 0.086

Table 5. Action detection results on UCF 101 dataset based on

mean average precision.

Action detection on UCF 101 dataset

Based on the discovered action proposals, action detection

is further performed by recognizing the specific action cate-

gory. To be consistent, we follow the same evaluation mea-

sure (average precision) in Section 5.1. Table 5 lists the

results of our action detection algorithm based on split 1.

Our algorithm significantly outperforms the baseline with

random sampling. In Fig. 7, we list our results of action

detection on the 24 categories of human actions based on

average precision.

6. Conclusions

We present a novel method to generate action propos-

als in unconstrained videos, which can effectively capture

spatial-temporal video tube of high potential to include a

human action with specific motion pattern. The problem

is formulated by a maximum set coverage problem and a

greedy-based solution is presented which can efficiently lo-

cate the action candidates. Action detection and search can

then be applied on the discovered action proposals. As

a data-drive approach, our action proposal algorithm can

work well with the moving cameras, and can also track

the action despite the dynamic and cluttered background-

s. Promising results have been obtained on two challenging

datasets. In the future work, we will try to evaluate our ac-

tion proposal on more challenging and diverse datasets like

TRECVID.
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