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Abstract

Recently, a variety of real-world applications have trig-

gered huge demand for techniques that can extract textual

information from natural scenes. Therefore, scene text de-

tection and recognition have become active research top-

ics in computer vision. In this work, we investigate the

problem of scene text detection from an alternative perspec-

tive and propose a novel algorithm for it. Different from

traditional methods, which mainly make use of the prop-

erties of single characters or strokes, the proposed algo-

rithm exploits the symmetry property of character groups

and allows for direct extraction of text lines from natural

images. The experiments on the latest ICDAR benchmarks

demonstrate that the proposed algorithm achieves state-of-

the-art performance. Moreover, compared to conventional

approaches, the proposed algorithm shows stronger adapt-

ability to texts in challenging scenarios.

1. Introduction

The mass popularization of smart phones and rapid de-

velopment of the Internet have brought forth tremendous

new products and services, which have triggered huge de-

mand for practical vision techniques. Scene text detection

and recognition, affording a way to directly access and uti-

lize the textual information in natural scenes, are obviously

among the most pressing techniques. Consequently, text lo-

calization and recognition in natural scenes have attracted

much attention from the computer vision community and

document analysis community.

Though extensively studied in the past decade [5, 7, 25,

35, 41, 27, 3, 42, 12], detecting and reading texts in natural

scenes are still difficult tasks. The major challenges stem

from three aspects [43]: (1) Diversity of scene text: Texts

in uncontrolled environments may exhibit entirely differ-

ent fonts, colors, scales and orientations; (2) Complexity of

background: The backgrounds in natural scenes can be very

complex. Elements like signs, fences, bricks and grasses are

virtually undistinguishable from true text, and thus are eas-
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Figure 1. Though the sizes of the characters within the yellow rect-

angles are small, human can easily discover and localize such text

lines.

ily to cause confusions and errors; (3) Interference factors:

Various interference factors, such as noise, distortion, low

resolution, non-uniform illumination and partial occlusion,

may give rise to failures in scene text detection and recog-

nition.

In this paper, we tackle the problem of scene text detec-

tion, which involves discovering and localizing texts from

natural scene images. There are mainly two classes of

mainstream methods for scene text detection: those based

on a sliding window [5, 36, 27] and those based on con-

nected component extraction [7, 25, 9]. The latter category

has become the mainstream in the field of scene text de-

tection, since these methods are usually more efficient and

relatively insensitive to variations in scale, orientation, font,

and language type. In these methods, Maximally Stable Ex-

tremal Regions (MSER) [25] and Stroke Width Transform

(SWT) [7] are widely adopted as the basic representation

due to their efficiency and stability. However, such rep-

resentations may perform poorly under severe conditions,

such as blur, non-uniform illumination, low resolution and

disconnected strokes.

To address these issues, we propose in this work a novel

representation for localizing text regions. Unlike conven-

tional text detection methods, which typically start from

finding character candidates via connected component ex-

traction or sliding-window scanning, the proposed represen-

tation directly hunts text lines from natural images.

The mechanism of how mankind identify and recognize

text in natural scenes is still not clear at present, but it has

been shown that people with normal vision can effortlessly

discover text regions without looking into each individual

character, even at a glance. For example, we can easily dis-

tinguish the text regions in Fig. 1, even though the charac-



Figure 2. Schematic pipeline of our symmetry-based text-line de-

tection algorithm. (a) Input image; (b) Response map of the sym-

metry detector; (c) Symmetrical point grouping; (d) Estimated

bounding boxes based on the detected symmetrical axes. (e) De-

tection result after false alarm removal.

ters in those regions are difficult to recognize for us. Dif-

ferent from individual characters, text lines always bear dis-

tinctive symmetry and self-similarity properties. The sym-

metry property of text lines comes from both themselves

and their local backgrounds. Taking advantage of this prop-

erty, we approach the text detection problem from another

perspective and propose to seek the symmetrical axes of text

lines in natural images, with a symmetry detector.

The pipeline of the proposed symmetry-based text line

detection approach is shown in Fig. 2. For each pixel in the

image the probability of being on the symmetrical axis of

a text line is estimated using a predefined symmetry tem-

plate (see Fig. 3) at first. Then, text line candidates are

formed by grouping the pixels on symmetrical axes and es-

timating their corresponding bounding boxes. Finally, false

positives (non-text candidates) are identified and eliminated

with CNN classifiers [16, 15, 37, 11]. To deal with texts

of different sizes, the above described procedure is per-

formed at multiple scales. Detection activations from dif-

ferent scales are merged and non-maximum suppression is

adopted to remove redundant detections.

The proposed algorithm is able to handle several chal-

lenging scenarios (for instance, the characters with dot ma-

trix font as shown in Fig. 2) where MSER and SWT based

methods may fail. The experiments on the up-to-date IC-

DAR benchmarks [32, 13] demonstrate that the proposed

algorithm has a broader adaptability (higher detection rate)

than conversational methods and outperforms other compet-

ing algorithms regarding the final F-measure.

In summary, the core contribution of this work is a

symmetry-based text line detector, which directly operates

on character group level and achieves state-of-the-art per-

formance on standard benchmarks.

The remainder of this article is organized as follows. In

Sec. 2, we briefly review previous works that are related to

the proposed algorithm. In Sec. 3, we describe the proposed

algorithm in detail, including the symmetry template and

feature design, and strategies for text line candidate gen-

eration and false alarm removal. The experimental results

and discussions are presented in Sec. 4. Finally, conclusion

remarks and future works are given in Sec. 5.

2. Related Work

In recent years, the community has witnessed a surge

of research efforts on text detection in natural images. A

rich body of novel ideas and effective methods have been

proposed [7, 25, 47, 41, 26, 48, 11, 10]. For comprehensive

surveys, refer to [19, 44, 50]. In this section, we focus on

works that are most relevant to the proposed algorithm.

Sliding-window based methods [5, 27] have been very

popular in the field of scene text detection. Such meth-

ods make use of the texture or local structure property of

text and scan all possible positions and scales in the im-

age. The algorithm proposed in this paper also works in a

sliding-window fashion. The main difference is that previ-

ous methods seek scene text either at a fairly coarse granu-

larity (whole text lines [5]) or at a fine granularity (charac-

ters parts or strokes [27]), while our algorithm capture scene

text at a moderate granularity (several adjacent characters).

The advantages are two-fold: (1) It allows to exploits the

symmetry property of character groups, which cannot be

excavated at stroke level; (2) It can handle variations within

a word or text line, such as mixed case and minor bending.

SWT [7] and MSER [25] are two representative

component-based methods for scene text detection, which

constitute the basis of a lot of subsequent works [41, 26,

9, 48]. These algorithms assume that characters consist of

one or several connected components and utilize this prop-

erty to seek individual characters or strokes. These algo-

rithms obtained excellent performance on a variety of stan-

dard benchmark datasets. However, the weakness of them

lies in their inability to handle characters that do not meet

the connection assumption, for instance, those composed of

broken strokes (see Fig. 2). In contrast, the proposed algo-

rithm abandons the assumption of connection and exploits

the vertical symmetry property of character groups, which

take advantage of the characteristics of text at a higher level

and is applicable to more forms of characters in real-world

scenarios, thus leading to higher detection rate.

Over the past few years, there has emerged a new de-

velopment trend of adopting deep convolutional neural net-

works [16, 15, 17] for scene text detection. These deep

learning based methods [37, 11, 10] usually achieve supe-

rior performance over conventional methods [7, 25, 47, 29,

41, 26]. In this work, we also leverage the powerful dis-

crimination ability of deep convolutional neural networks

to better eliminate false positives produced in the candidate

generation stage, while maintaining a relatively high recall.

The proposed algorithm is inspired by a number of works

on symmetry detection [34, 18], which aim at discovering

symmetrical structures in generic natural images. In this pa-

per, we make use the symmetry property of text at character

group level and draw lessons from such symmetry detection

approaches. In this sense, the algorithm proposed in this pa-

per introduces a general technique into a specific domain.
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3. Proposed Methodology

In this section, we will describe in detail the proposed

algorithm. Generally, this algorithm works in a hypothesis-

verification manner. Text proposals are extracted via a sym-

metry detector 3.1 at first and these proposals are then iden-

tified by a verification procedure 3.2, in which non-text pro-

posals are eliminated.

3.1. Symmetry­Based Text Line proposals

At stroke level, the symmetry of text lies in the gradi-

ent orientation and magnitude on the stroke boundary. This

property has been explored in the SWT work [7]. In this

paper we employ the symmetry property at a higher level.

The key observation is that a text region usually exhibits

high self-similarity to itself and strong contrast to its local

background, regarding low-level image cues, such as gradi-

ent and texture.

Taking advantage of this property, we propose a novel

representation to describe texts in natural scenes. This rep-

resentation facilitates a text detection approach, which can

directly discover text lines from natural images. In this ap-

proach, text lines are sought by detecting symmetry axes in

the image, followed by bounding box estimation.

3.1.1 Feature Extraction

Figure 3. Left: Template used to compute the features for sym-

metry axis detection, which consists of four rectangles with equal

size. The height and the width of each rectangle are s and 4s, re-

spectively. The scale of the template is determined by s. Right:

The contents within the two middle rectangles are similar to each

other but dissimilar to the contents of the top and bottom rectan-

gles. Therefore, the symmetry response on the center line (the ad-

jacent edge of the two middle rectangles) of the text region should

be high.

We devise a symmetry template that is suitable for seek-

ing symmetrical structures, following [34]. The template, as

illustrated in Fig. 3, consists of four rectangles with equal

size s × 4s, denoted by RT , RMT , RMB and RB , respec-

tively. The rectangle formed by the two middle rectangles

RMT and RMB are denoted by RM . The height of each

rectangle, i.e s, is defined as the scale of the template.

To detect symmetry axes as text line proposals, we

employ two types of features: symmetry feature and ap-

pearance feature, which capture the intrinsic properties

of text. Assume that the template is centered at loca-

tion (x, y) on the image plane and let hc
x,y(RP )(P ∈

{T,M,B,MT,MB}) denote the histogram of the low-

level image cue c in the rectangle RP . The details for com-

puting the two types of features at location (x, y) are de-

scribed as follow:

Symmetry Feature. This feature is used to characterize the

self-similarity and symmetry property of character groups.

Character groups have self-similarity since adjacent charac-

ters bear similar color and structure. The self-similarity is

defined as the difference between the two middle rectangles

in low-level image cues:

Sc
x,y = χ2(hc

x,y(RMT ), h
c
x,y(RMB)), (1)

where χ2(·) is the χ2-distance function [31].

Meanwhile, a text region is usually highly dissimilar to

its local background. This can be seen as another kind

of symmetry, since the contents in the middle rectangles

(RMT and RMB) are both different from those in the outer

rectangles (RT and RB). To measure this dissimilarity, we

define the contrast feature as the differences of the low-level

image cues within the rectangle pairs:

Ctcx,y = χ2(hc
x,y(RT ), h

c
x,y(RMT )), (2)

and

Cbcx,y = χ2(hc
x,y(RB), h

c
x,y(RMB)). (3)

Appearance Feature. The symmetry feature is effective

at finding text lines in images, but it also fires on some

non-text symmetrical structures. To better distinguish text

and non-text, we employ appearance feature, as it has been

widely used in previous works [5, 29]. Specifically, the lo-

cal binary pattern (LBP) feature [28] of the middle rectangle

RM is taken as the appearance feature.

To compute the above described symmetry and appear-

ance features, we adopt four kinds of low-level image cues:

brightness, color, texture and gradient. In order to obtain the

brightness and color histograms, images are convert to the

LAB color space and the pixel values from the brightness

channel L∗ and the color channels a∗ and b∗ are quantized

into 32 bins respectively. For texture T ∗ we use the tex-

ton implementation proposed in [23]. For gradient G∗, we

compute the gradient magnitudes of the pixels and quan-

tize them into a histogram of 16 bins. For the appearance

feature, the standard uniform LBP with 59 bins is adopted.

All these features are concatenated to represent the pixel at

location (x, y), which results in a 74-dimensional feature

vector.

3.1.2 Symmetry Axis Detection

For symmetry axis detection, we train a strong classifier

to estimate the probability of being on a symmetry axis at

each pixel. Random Forest [4] is chosen as the classifier
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for its high efficiency and performance. To train the sym-

metry axis detector, the ground truth rectangles of text lines

are required. However, the current text detection bench-

marks, such as ICDAR 2011 and 2013, only provide bound-

ing boxes that correspond to parts of text. To produce text

line level ground truth, we simply compute the center lines

of the bounding boxes.

In the training phase, we sample about 450k positive pix-

els (pixels whose distances to the ground truth are less than

2 pixels) and 450k negative pixels (the pixels whose dis-

tances to the ground truth are larger than 5 pixels) from the

training images. For each negative pixel, we compute mul-

tiple feature vectors for it, based on templates with multi-

scales to form multiple negative training samples. For each

positive pixel, as it corresponds to an annotated bounding

box, we compute one feature vector for it, based on the

template with the size equals to half of the height of the

annotated bounding box. The training samples are fed into

the tree and split recursively into different leaf nodes. The

splitting is determined by the feature selection mechanism,

which is important for training a “good” tree. As the dimen-

sions of the proposed two types of features are not equal,

we assign different selection weights to them to avoid un-

balance selection results. Intuitively, the weights should be

in inverse proportion to the feature dimensions.

In the testing phase, as neither the locations nor the

scales of text lines are known, we visit each pixel in the im-

age and compute multiple feature vectors for it (Fig. 4 (b)).

The learned Random Forest classifier predicts the probabil-

ity of the image pixel being on a symmetry axis or not, given

the feature vector computed on it. Since feature vectors of

multiple scales are computed for each image pixel, multiple

symmetry probability maps (Fig. 4 (c)) are generated for a

testing image.

3.1.3 Proposals Generation

After the symmetry detection stage, we obtain multiple

symmetry probability maps (Fig. 4 (c)) for a testing image.

Based on these maps, we can aggregate axis pixels to form

text line proposals (Fig. 4 (d)). At first, we directly group

pixels whose distance is smaller than 3 pixels to produce

symmetry axis fragments. Then, we adopt a graph model

to further aggregate the fragments. Each fragment is rep-

resented as a vertex in the graph and an edge is constructed

between two fragments if they satisfy the following geomet-

ric constraints:

Angular Difference Constraint. The direction of frag-

ments who belongs to the same text region is usually closed.

Based on this observation, we define the angular difference

between two fragments as:

Φ(A,B) = |φ(A) − φ(B)|, φ(A), φ(B) ∈ (−
π

2
,
π

2
], (4)

where A and B represent two fragments, and φ represents

the direction angular of a fragment. In practice, we use the

average direction angles of each pixels to estimate it. If

Φ(A,B) > π
16 , A and B are labeled as unconnected.

Distance Constraint. If two fragments are far away from

each other, they shouldn’t be grouped together. We define

the distance between two fragments as:

D(A,B) = min(‖p− q‖), p ∈ A, q ∈ B, (5)

where p and q are two points in fragment A and B respec-

tively. ‖p− q‖ indicates the distance between p and q. The

height of a fragment H is defined as the scale of the corre-

sponding template. If D(A,B) > max(H(A), H(B)), A
and B are labeled as unconnected.

Text line proposals are formed by simply seeking con-

nected subsets in the graph. Each connected subset corre-

sponds to a text line proposal. The bounding box of each

proposal (Fig. 4 (e)) is calculated as follows: The width is

determined by the horizontal axis coordinates of the axis

pixels belong to the proposal and the height is the scale of

the corresponding template.

To handle text lines of different sizes, we extract propos-

als at multiple scales and merge all text line proposals from

all different scales (Fig. 4 (f)).

In this paper, we only consider horizontal or near-

horizontal texts. However, the strategies presented are actu-

ally general and thus are readily applicable to texts of dif-

ferent orientations.

3.2. False Positive Removal

Figure 5. False positive removal. For simplicity, we only show the

procedure of false positive removal at a single scale.

A portion of the text candidates generated in the pro-

posal generation stage are non-text (Fig. 5 (a)). The purpose

of false positive removal is to identify and eliminate such

non-text candidates. Inspired by the deep learning meth-

ods of Jaderberg et al. [11] and Huang et al. [10], we also

adopt CNN classifiers for false positive removal. Different

from [11, 10], which only used CNN classifier for patch or

character level discrimination, we train two classifiers that

work at character level and text region level, respectively.
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Figure 4. Procedure of text line proposal generation. (a) Input image. (b) Feature extraction at multiple scales. (c) Symmetry probability

maps. (d) Axes sought in the symmetry probability maps. (e) Bounding box estimation. (f) Proposals from different scales

The training examples for the character level classifier

is from [11], which is publicly available1. The training ex-

amples for the text region classifier are harvested from sev-

eral text related datasets (ICDAR 2011 [32], SVT [36] and

IIIT 5K-Word [24]) and generic image datasets (PASCAL

VOC [8] and BSDS500 [2]).

In the false positive removal procedure, the character

level classifier is first applied to the text line proposals,

which are later partitioned into “words” (Fig. 5 (b)), us-

ing the method proposed in [11]. The text region classi-

fier is then applied to these “word” regions and those with

low scores are discarded. After false positive removal, the

remained proposals are considered as the final detection re-

sults (Fig. 5 (c)).

4. Experiments

We implemented the proposed algorithm in Matlab (with

C/C++ mex functions) and evaluated it on the latest ICDAR

datasets: ICDAR 2011 [32] and ICDAR 2013 [13], as well

as the SWT dataset [7]. The proposed algorithm is com-

pared with other methods for scene text detection, including

the top performers [10, 11] on these two benchmarks.

All the experiments were carried out on a regular com-

puter (2.0GHz 8-core CPU, 64G RAM and Windows 64-bit

OS). For the Random Forest classifier, 50 trees were used

and the maximum depth of the trees was set to 100. At

runtime, all the testing images were rescaled to a standard

height of 800 pixels, with aspect ratio kept unchanged. The

symmetry detector ran at 24 different scales and the scales

1https://bitbucket.org/jaderberg/eccv2014 textspotting/overview

of the symmetry templates (s) range from 2 to 256 pixels.

4.1. Datasets and Evaluation Protocol

In this paper, we evaluated the proposed algorithm on

standard datasets and followed the standard evaluation pro-

tocols in this field.

ICADR 2011. The datasets used in ICDAR 20112 and

20133 are inherited from the benchmark used in the pre-

vious ICDAR competitions [21, 20], but have undergone

extension and modification, since there are some problems

with the previous dataset (e.g., imprecise bounding boxes

and inconsistent definitions of “word”). The ICDAR 2011

dataset includes 299 training images and 255 testing im-

ages.

ICDAR 2013. The ICDAR 2013 dataset is a subset of IC-

DAR 2011. Several images that duplicated over training and

testing sets of the ICDAR 2011 dataset is removed. In ad-

dition, a small port of the ground truth annotations has been

revised. There are 229 images for training and 233 images

for testing.

SWT Dataset. The SWT dataset, which is introduced by

[7], consists of 307 color images with sizes ranging from

1024×368 to 1024×768. This dataset is more challenging

than ICDAR datasets, because of the smaller texts, repeat-

ing patterns, various plants, etc.

Evaluation Protocol. In scene text detection, there are

three important metrics in performance assessment: preci-

sion, recall and F-measure. Precision measures the ratio

between true positives and all detections, while recall mea-

2http://robustreading.opendfki.de/wiki/SceneText
3http://dag.cvc.uab.es/icdar2013competition/
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sures the ratio true positives and all true texts that should be

detected. F-measure, as an overall, single indicator of algo-

rithm performance, is the harmonic mean of precision and

recall.

The evaluation method used in ICDAR 2011 was origi-

nally proposed by Wolf et al. [38]. The protocol of Wolf et

al. [38] considers three matching cases: one-to-one, one-to-

many and many-to-many. Precision and recall are defined

as follows:

precision(G,D, tr, tp) =

∑

j MatchD(Dj , G, tr, tp)

|D|
,

(6)

recall(G,D, tr, tp) =

∑

iMatchG(Gi, D, tr, tp)

|G|
. (7)

G and D represent ground truth rectangle set and detec-

tion rectangle set, respectively. tr ∈ [0, 1] is the constraint

on area recall and tp ∈ [0, 1] is the constraint on area pre-

cision. The typical values of tr and tp are 0.8 and 0.4, re-

spectively. MatchD and MatchG are functions which take

different types of matches into consideration. The evalua-

tion protocol for ICDAR 2013 is similar with that of ICDAR

2011, expect for a number of heuristics cues. For more de-

tails, please refer to [13].

The evaluation protocol for SWT dataset was proposed

by [7]. Because this dataset does not clearly seperate train-

ing set and testing set, we followed [30] to use all images

as testing set.

4.2. Experimental Results and Discussions

4.2.1 Text Detection Performance

Fig. 6 illustrates several detection examples of the proposed

algorithm on the ICDAR 2011 dataset. As can be seen,

the algorithm works fairly well under various challenging

cases, such as dot matrix fonts (Fig. 6 (a) and (j)), low con-

trast (Fig. 6 (b) and (i)), low resolution (Fig. 6 (g)), non-

uniform illumination (Fig. 6 (f)), inner texture (Fig. 6 (h)),

and broken strokes (Fig. 6 (c)). Note that for these challeng-

ing cases, conventional methods (such as SWT and MSER)

usually produce unsatisfactory results.

The proposed algorithm might chop letters in some

cases(see the last image in Fig. 7), due to mixed case or spe-

cial alignment of certain characters. But in most cases the

estimation error of final bounding boxes is within accept-

able range (Fig. 6 (d) and (k)), because: (1) We generate

bounding boxes at different scales independently. The most

proper scale will be selected in the last stage. (2) We did not

solely rely on symmetry feature. Appearance feature and

false positive removal (CNN based verification) also play

an important role in rejecting improper bounding boxes.

Table 1. Performances of different algorithms evaluated on the IC-

DAR 2011 dataset.

Algorithm Precision Recall F-measure

Proposed 0.84 0.76 0.80

Huang et al. [10] 0.88 0.71 0.78

Yin et al. [48] 0.863 0.683 0.762

Koo et al. [14] 0.814 0.687 0.745

Yao et al. [39] 0.822 0.657 0.730

Huang et al. [9] 0.82 0.75 0.73

Neumann et al. [27] 0.793 0.664 0.723

Shi et al. [33] 0.833 0.631 0.718

Kim et al. [32] 0.830 0.625 0.713

Neumann et al. [26] 0.731 0.647 0.687

Yi et al. [45] 0.672 0.581 0.623

Yang et al. [32] 0.670 0.577 0.620

Neumann et al. [32] 0.689 0.525 0.596

Shao et al. [32] 0.635 0.535 0.581

Table 2. Performances of different algorithms evaluated on the IC-

DAR 2013 dataset.

Algorithm Precision Recall F-measure

Proposed 0.88 0.74 0.80

iwrr2014 [49] 0.86 0.70 0.77

USTB TexStar [48] 0.88 0.66 0.76

Text Spotter [26] 0.88 0.65 0.74

CASIA NLPR [1] 0.79 0.68 0.73

Text Detector CASIA [33] 0.85 0.63 0.72

I2R NUS FAR [1] 0.75 0.69 0.72

I2R NUS [1] 0.73 0.66 0.69

TH-TextLoc [1] 70 0.65 0.67

The performances of the proposed algorithm as well as

other methods on the ICDAR 2011 dataset are shown in

Tab. 1. The proposed algorithm achieves an F-measure of

0.80, outperforming other methods. Compared to the clos-

est competitor [10], the recall of our algorithm (0.76) is

much higher that of [10] (0.71). This confirms the effective-

ness of our algorithm, especially its advantage in handling

various challenging scenarios.

The performances of the proposed algorithm as well as

other methods on the ICDAR 2013 dataset are depicted in

Tab. 2. The proposed algorithm obtains 0.88, 0.74, 0.80

in precision, recall and F-measure, respectively. As on IC-

DAR 2011, the proposed method achieves state-of-the-art

performance on this dataset.

The performance of the proposed algorithm as well as

other methods on the SWT dataset are depicted in Tab. 3.

The proposed algorithm obtains 0.68, 0.53, 0.60 in preci-

sion, recall and F-measure, outperforming other competi-

tors. This demonstrates the advantages of the proposed al-

gorithm.
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(a) (b) (c) (d) (f)

(g) (h) (i) (j) (k)

Figure 6. Detection examples of the proposed method.

Table 3. Performances of different algorithms evaluated on the

SWT dataset.

Algorithm Precision Recall F-measure

Proposed 0.68 0.53 0.60

Du et al. [6] 0.66 0.51 0.58

Phan et al. [30] 0.50 0.51 0.51

Yi et al. [46] 0.42 0.60 0.49

Mao et al. [22] 0.58 0.41 0.48

Epshtein et al. [7] 0.54 0.42 0.47

4.2.2 Character Detection Rate

To demonstrate the effectiveness and robustness of the pro-

posed symmetry-based representation, we compared it with

MSER [25, 26] with respect to the text candidate extraction

ability. This ability is measured using the character detec-

tion rate on the training set of the ICDAR 2013 dataset. We

chose it because it provides an detailed annotations for sin-

gle characters. It includes 229 images and 4786 characters.

Since our symmetry-based representation works at char-

acters group level while MSER extracts characters or char-

acter parts, their character detection rates cannot be com-

pared directly. To make fair comparison possible, we

adopted the following definition of character detection rate:

R =

∑N

i=1

∑|Gi|
j=1 max

|Di|
k=1 m(G

(j)
i , D

(k)
i )

∑N

i=1 |Gi|
, (8)

where N is the total number of images in the dataset. G
(j)
i

and D
(k)
i are the jth ground truth rectangle and kth detec-

tion rectangle in image i. m(G
(j)
i , D

(k)
i ) is the match score

between the jth ground truth rectangle and kth detection

rectangle D
(k)
i . The match score is defined as:

Table 4. Detection rates of different methods on the ICDAR 2013

dataset.

Algorithm Detection Rate Proposal Number

Proposed 0.977 1310

MSER (Gray+LUV) 0.964 8415

m(G
(j)
i , D

(k)
i ) =



















































1
|G

(j)
i ∩ D

(k)
i |

|G
(j)
i |

≥ 0.8 and

max(h(G
(j)
i ), h(D

(k)
i ))

min(h(G
(j)
i ), h(D

(k)
i ))

≤ 1.5,

0 otherwise

(9)

where h is the height of a rectangle.

As shown in Tab. 4, MSER ran in 4 channels(gray and

L,U,V, respectively) and detected about 96.4% of the char-

acters, and the average number of proposals per image is

8415. The proposed method detected 97.7% of the charac-

ters and only produced 1310 proposals on average for each

image. This demonstrates that the adaptability of the pro-

posed representation is stronger than that of MSER. Upon

investigation, we found that our method can handle chal-

lenging cases (for example, characters with broken strokes,

dot matrix fonts, low resolution or partial occlusion, as

shown in Fig. 6) where MSER failed.

In this paper, we mainly exploited the symmetry property

of text at character group level, which only reflects a portion

of the characteristics of text. Obviously, to build more ef-

fective and reliable systems for text detection, one should

take full advantage of the characteristics of text. We believe

higher performance could be attained, if the proposed rep-

resentation is integrated with conventional representations,
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Table 5. Contributions of different types of features.

Feature Precision Recall F-measure

symmetry 0.80 0.65 0.72

appearance 0.79 0.57 0.66

symmetry+appearance 0.84 0.76 0.80

such as SWT [7] and MSER [25].

4.2.3 Applicability to Texts in Different Languages

Figure 7. Detection examples on texts in different languages.

Fig. 7 depicts several examples of the proposed text de-

tection algorithm on texts in different languages. As can

be seen, even though the detector was only trained on En-

glish texts, it can be easily applied to texts of other lan-

guages. This further confirms the applicability of the pro-

posed symmetry-based text detector.

4.2.4 Contributions of Different Types of Features

In the proposed symmetry detector, we employed two types

of features: symmetry feature and appearance feature. To

assess the contributions of these features, we conducted

a experiment on the ICDAR 2011 dataset with different

settings: symmetry feature, appearance feature and their

combination (symmetry+appearance). The performances of

these three settings are shown in Tab. 5. As can be seen,

these two types of features already achieve promising re-

sults when used in isolation. The symmetry feature works

better than the appearance feature. These two types of fea-

tures are indeed complementary. Their combination leads

to a significant boost in F-measure (from 0.72 to 0.80).

4.3. Limitations of Proposed Algorithm

Though the proposed algorithm is capable of dealing

with various challenging scenarios and achieves excellent

performance on standard benchmarks, it is far from per-

fect. It may give false positives or miss true texts in cer-

tain situations. Fig. 8 depicts some failure cases of the

proposed method. The algorithm failed to detect charac-

ters with extremely low contrast (Fig. 8 (c)) or strong re-

flect light (Fig. 8 (a) and (b)), or missed single character

(Fig. 8 (f)), or tremendous size difference between charac-

ters(Fig. 8 (d)). Note that the characters in the bottom of

Fig. 8 (e) were successfully detected by the proposed algo-

rithm, but these characters are not included in the ground

(a) (b) (c)

(d) (e) (f)

Figure 8. Failure cases of the proposed method.

truth, so they were regarded as false alarms. This indicates

the broad adaptability of our algorithm.

Another shortcoming of the proposed algorithm is that

the processing speed is relatively slow, since it is partially

implemented in Matlab and should scan tens of scales for a

given image. Without optimization and parallelization, the

average runtime on the ICDAR 2011 dataset [32] is about

30 seconds for each image.

In summary, there is still great room for improvement in

both accuracy and efficiency, as relevant real-world prod-

ucts and services pose high requirements for effective and

efficient textual information extraction from natural scenes.

5. Conclusion

In this paper, we have presented a novel algorithm for

text detection in natural scenes. Different from traditional

methods, which focus on hunting characters or strokes via

connected component extraction [7, 25] or sliding window

scanning [36, 27], this algorithm makes use of the symmetry

and self-similarity properties of character groups and is able

to directly discover text lines from natural images. The core

contribution of the proposed algorithm is a novel symmetry-

based representation, which can detect challenging charac-

ters that are usually missed by conventional component ex-

tractors, like SWT [7] and MSER [25]. The experiments

on the latest ICDAR datasets [32, 13] demonstrate that the

proposed algorithm outperforms other competing methods

in the literature.

One major drawback of the proposed algorithm lies in

its low efficiency. We will investigate better strategies, in-

cluding multi-thread and GPU techniques, to speed up the

procedure. Another direction worthy of exploring is to de-

sign symmetry templates that can handle texts of varying

orientations. Moreover, we could apply the proposed idea

to other detection problems, such as human detection [40].
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