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Abstract

Modeling human-object interactions and manipulating
motions lies in the heart of fine-grained action recogni-
tion. Previous methods heavily rely on explicit detection
of the object being interacted, which requires intensive hu-
man labour on object annotation. To bypass this con-
straint and achieve better classification performance, in
this work, we propose a novel fine-grained action recog-
nition pipeline by interaction part proposal and discrimi-
native mid-level part mining. Firstly, we generate a large
number of candidate object regions using off-the-shelf ob-
ject proposal tool, e.g., BING. Secondly, these object re-
gions are matched and tracked across frames to form a large
spatio-temporal graph based on the appearance matching
and the dense motion trajectories through them. We then
propose an efficient approximate graph segmentation algo-
rithm to partition and filter the graph into consistent lo-
cal dense sub-graphs. These sub-graphs, which are spatio-
temporal sub-volumes, represent our candidate interaction
parts. Finally, we mine discriminative mid-level part detec-
tors from the features computed over the candidate interac-
tion parts. Bag-of-detection scores based on a novel Max-
N pooling scheme are computed as the action representa-
tion for a video sample. We conduct extensive experiments
on human-object interaction datasets including MPII Cook-
ing and MSR Daily Activity 3D. The experimental results
demonstrate that the proposed framework achieves consis-
tent improvements over the state-of-the-art action recogni-
tion accuracies on the benchmarks, without using any ob-
ject annotation.

1. Introduction
In recent years, fine-grained action recognition has

raised extensive research [21, 13] due to its potential ap-

Figure 1: Our mid-level approach for fine-grained action
recognition includes interaction part formation to generate
candidate human-object interaction parts, and interaction
part mining to train discriminative exemplar part detectors.

plications in assisted daily living, medical surveillance and
smart home.

On one hand, fine-grained manipulation actions involve
a large amount of interactions between human and objects.
Therefore, how to model the interactions between human
and objects plays a critical role in action representation and
recognition. Many research works [36, 16, 17, 33, 32, 11,
35, 7, 10, 20, 21, 4, 24] have devoted to modeling the con-
textual information between human and objects/scenes for
action recognition. However, to model human and object
contextual information, explicit detection of objects is often
required by the above methods. Training these object de-
tectors requires labour-extensive human annotation work.
In fine-grained action recognition where many types of ob-
jects are manipulated in a single action, it is not feasible to
1) label the training object instances; and 2) detect those
objects with decent detection accuracy.

On the other hand, the spatio-temporal features [12], es-
pecially the recent proposed dense trajectories [29] encoded



with naive BoW [6] or Fisher vector representation [19] are
commonly used for action recognition, but they can only
capture the characteristics of the global motion in the en-
tire video volume. The low-level feature extraction with
global pooling might not be suitable for representing fine-
grained actions because this global presentation easily at-
tenuates the important localized interaction motion within
the background movement. In contrast, for fine-grained mo-
tion, it is more important to highlight what kind of interac-
tion motion is being performed in a local spatio-temporal
sub-volume of the video. Therefore, we need a mid-level
representation to capture the important local human-object
interaction motion.

To address the above two issues, we propose a novel
mid-level based pipeline for fine-grained action represen-
tation and classification, which is motivated by two recent
successes in visual recognition, i.e., object proposal tech-
nique [2] and mid-level discriminative visual element min-
ing [9, 8, 3]. We show the general framework in Figure 1.

Firstly, we utilize the off-the-shelf object proposal
BING [2] to generate a large number of object proposals
(i.e., candidate regions) on the segmented foreground mo-
tion pixels. Then we construct a spatio-temporal graph by
matching the object proposal spatio-temproally based on
both dense trajectory linkage and appearance similarity. An
efficient graph segmentation algorithm is proposed to group
the object regions which are temporally continuous and spa-
tially compact into spatio-temporal sub-volumes. We name
these sub-volumes as interaction parts. The extracted in-
teraction parts have two advantages: 1) the extraction pro-
cedure is unsupervised which means object annotation is
not required; and 2) the extracted interaction parts naturally
contain mid-level information on what object and what mo-
tion is being performed.

Secondly, for each interaction part, we compute a Fisher
vector representation by pooling the spatio-temporal motion
features of the sub-volume. We learn a set of discriminative
part detectors using an improved version of the image block
mining approach [9], i.e., to seed discriminative interaction
parts by considering both appearance and motion features.
Finally, we utilize the trained part detectors to score the in-
teraction parts within each video, and summarize the part
scores for each video sample using a generalization of max
pooling technique, i.e., Max-N pooling. We validate our
mid-level based video representation on the MPII Cook-
ing [26] and MSR Daily Activity 3D [30] datasets. The
results show that our mid-level approach outperforms the
state-of-the-art performance on both datasets. It is more ef-
fective than low-level features in capturing human-object
interaction motion, and it is even better than the previous
approach [38] which requires object detection.

We conclude our contribution as follows. We propose
a mid-level video representation for fine-grained action

recognition. The method effectively captures the signif-
icant human-object interaction motion by object proposal
based interaction part formation and discriminative inter-
action part mining. Most importantly, our method is free
of explicit object detection, which gives us three major ad-
vantages: 1) it is more stable than the object detection ap-
proaches which are quite affected by the detection accuracy
to different objects; 2) it saves extensive human labour for
object annotation; and 3) it is quite applicable and feasible
in real problems. Furthermore, we propose a novel Max-N
pooling which improves performance compared to the pre-
vious naive max pooling approach.

The rest of this paper is organized as follows. We list
some closely related works in Section 2. The details of our
mid-level interaction part mining pipeline are described in
Section 3. We demonstrate the experimental setting and re-
sults in Section 4. Conclusion is given in Section 5.

2. Related Work

There exists several pioneer works on using mid-level
representation for action recognition. Michalis et al. [25]
apply spatial grouping to trajectories to form action parts,
but the grouping is not semantic to capture human-object
interactions. Motion atoms and phrases [31] coarsely uses
temporally segmented video sub-volumes as their action
proposals which are not able to highlight the human-object
interaction motion. Wang et al. [30] model human action by
human joint features, but the approach needs skeleton and
depth information from sensors and trackers. Some other
action part mining approaches (e.g., [4, 27, 34]) mine sparse
action part using latent structural models, which in practice
is not flexible for real problem. On the contrary, a dense rep-
resentation like our proposed approach is much more dis-
criminative. Recently, Zhou et al. [38] propose the semantic
trajectories, a good step in fine-grained action recognition,
however, this method requires extensive human labour to
annotate the dataset for object detection.

Secondly, recent image mid-level patch mining ap-
proaches [9, 28, 3, 15] show success in image recognition
tasks. However, these mid-level mining techniques have
not been applied to learn discriminative spatio-temporal in-
teraction motion volumes in videos. Peng et al. [22] use
densely sampled spatio-temporal video sub-volumes as ac-
tion proposals, however it is not applicable to the fine-
grained interaction recognition problem because their sam-
pling method ignores the object information, it is rather a
random sampling method. Gupta et al. [8] propose a dis-
criminative patch mining method for action recognition, but
it is still image based, i.e., image patch mining. In con-
trast, our approach is to directly find spatio-temporal vol-
umes that are rich in human and object motion, instead of
linking image patches into sequence.



Figure 2: Procedure for interaction part formation. We
generate large amounts of object proposals on foreground
motion of each frame, the object regions are tracked by
dense trajectories and appearance matching to form graph
G = (V,E). Thicker edge indicates larger similarity be-
tween two nodes. The graph is segmented into interaction
parts by grouping object regions that share similar appear-
ance, spatial compactness and strong trajectory link.

3. Methodology
Our idea is to learn mid-level interaction motion repre-

sentation for fine-grained action video. The key observa-
tion is that interesting interaction occurs within the spatio-
temporal volume surrounding the object being manipulated.
Therefore, the key step is to propose candidate spatio-
temporal sub-volumes of interaction (named as interaction
parts), then apply mid-level mining approach to capture dis-
criminative interaction part detection models. To bypass the
intensive human labeling work for object detection, we de-
velop a novel interaction part formation pipeline. Firstly,
we utilize the off-the-shelf object proposal generation tool
to generate object region candidates for each frame. Then
we utilize dense trajectories to temporally link these object
proposals and form the spatio-temporal region graph. Fi-
nally, we develop a simple yet effective graph segmentation
algorithm to obtain strongly connected sub-graphs. These
sub-graphs correspond to moving object regions that are ap-
pearance consistent and temporally continuous, i.e., the tar-
get spatio-temporal sub-volumes representing the candidate
interactions. The details of our method are given as follows.

3.1. Interaction Part Formation

We show the procedure of interaction part formation in
Figure 2. To get rid of background motion and filter out
still objects (which are not being interacted), we apply fore-
ground motion region segmentation using the state-of-the-
art method based on Gaussian mixture model background
subtraction [39] as a pre-processing step.

We utilize the off-the-shelf object proposal tool

BING [2] to generate a large number of object propos-
als (i.e., candidate regions) on the segmented foreground
motion regions. We follow the same parameter setting of
BING [2] to detect the object regions for each video frame.
The generated object proposals which have sufficient over-
lapping (> 50%) with the detected foreground motion re-
gions are selected. We keep 5000 object proposals for each
video frame. We also remove some bounding boxes which
are too large (i.e., larger than 100× 100), or in skewed size
ratio (i.e., larger than 6:1).

Next step, we match and track these object regions across
frames to build a large spatio-temporal graph based on
the appearance matching and the dense motion trajectories
through them. For each video sample, we build a graph de-
noted as G = (V,E). V = {v1, v2, . . .} are the vertex
nodes and they are constructed from the object regions ex-
tracted across the video frames. E = {e1, e2, . . .} are the
edges. The edge weight ω(v1, v2) between two nodes v1
and v2 are computed by matching their appearances and the
linkage between them through dense trajectories. Namely,
the edge weight is the linear combination of: 1) spatial over-
lap s(v1, v2); 2) trajectory link strength l(v1, v2); and 3)
appearance similarity a(v1, v2), which is formulated as:

ω(v1, v2) =

 λ1 · s(v1, v2) + λ2 · l(v1, v2) + λ3 · a(v1, v2),
|t(v1)− t(v2)| ≤ 1

−∞, otherwise
(1)

where t(v) is the time frame of node v. λ1, λ2, and λ3 are
the weights. We set these weights by cross-validation on the
training dataset. Although matching more than two frames
is also an option, in this work, we only connect nodes that
are in the same frame or two consecutive frames, i.e. when
|t(v1)− t(v2)| ≤ 1. We set −∞ weight to edge e(v1, v2) if
v1 and v2 are neither in the same frame nor two consecutive
frames. We explain these edge weight terms in detail as
follows:

Spatial Overlap: s(v1, v2) is computed as:

s(v1, v2) =
r (v1) ∩ r (v2)
r (v1) ∪ r (v2)

, |t(v1)− t(v2)| ≤ 1, (2)

where r(v) is the area of object region v, then s(v1, v2) is
the Jaccard similarity of two region areas.

Trajectory Link Strength: The key observation is that
if two object regions on two frames are linked by dense tra-
jectories, they are highly likely belonging to the same ob-
ject. l(v1, v2) is computed as:

l(v1, v2) =
2 · traj(v1, v2)
r(v1) + r(v2)

, |t(v1)− t(v2)| ≤ 1, (3)

where traj(v1, v2) is the number of trajectories to traverse
object region v1 and object region v2, the denominator is the
summation of region areas r(v1) and r(v2). Note that the



trajectory link is stronger when denser trajectories traverse
through v1 and v2.

Appearance Similarity: To calculate a(v1, v2), we
compute the HSV color histograms of v1 and v2, apply l2
normalization to them and get H(v1) and H(v2). Then we
compute their correlation coefficient as:

a(v1, v2) =
cov(H(v1), H(v2))

σ(H(v1)) · σ(H(v2))
, |t(v1)− t(v2)| ≤ 1,

(4)
where cov(H(v1), H(v2)) is the covariance of H(v1) and
H(v2), σ(H(v1)) and σ(H(v2)) are the standard deviations
of H(v1) and H(v2) respectively.

Algorithm 1 Approximate Graph Segmentation Algorithm
for Interaction Part Formation.
Input: G = (V,E)

for v ∈ V do
V

′ ⇐ {v′|v′ ∈ V − v}
for v′ ∈ V ′

do
if ω(v, v′) ≤ τ ∧ t(v1) = t(v2) then
E ⇐ E − e(v, v′)

else if ω(v, v′) ≤ ε ∧ |t(v1)− t(v2)| = 1 then
E ⇐ E − e(v, v′)

end if
end for

end for
Connected⇐ FindConnectedComponents(G)
I ⇐ DensifyInteractionParts(Connected)

Output: I (Interaction Parts)

With the above graph G, the task of generating can-
didate interaction parts is equivalent to partitioning and
filtering the graph into consistent local dense sub-graphs,
since such sub-graphs contain moving objects or body parts
which have consistent appearances and can be tracked over
frames. To this end, we propose an efficient approximate
graph segmentation algorithm. For each interaction part,
we require the object regions to be temporally continuous,
spatially compact, strongly linked and share similar appear-
ances. This corresponds to large edge weights in the graph.
We require two nodes of the same interaction part to share
very large weight (ω(v1, v2) > τ ) if they are in the same
frame (t(v1) = t(v2)). We set τ = 0.75 to enforce nodes of
the same frame to be extremely compact. We also require
two nodes of consecutive frames (|t(v1) − t(v2)| = 1) to
share weight as ω(v1, v2) > ε. We set ε = 0.25 to ensure
compactness, and to allow motion displacement between
two consecutive frames. Finding an exact solution as [1]
is computationally expensive. Considering that the action
video database is often large-scale, we propose an approxi-
mate algorithm to segment the graph G to interaction parts
in terms of our criteria. We show the graph segmentation

algorithm in Algorithm 1. Firstly, we remove the edges not
meeting our criteria. Secondly, we find the connected com-
ponents as the segmented graphs. In the DensifyInteraction-
Parts step, we densely sample sub-graphs from the segmen-
tations. We cut a large sub-graph (i.e., long frame range) to
small ones by different length scale (15, 20, 25, 30, 35, 40,
45, 50) respectively, with 75% overlap between neighbors
for each scale. The dense sub-graphs including the original
segmentations are utilized to form the interaction parts I .

To represent each candidate interaction part (i.e., to form
mid-level feature descriptor), we adopt the method of Fisher
vector coding of dense trajectories [29]. We densely ex-
tract trajectories within each candidate interaction part us-
ing the default parameters as in [29]. Motion features, i.e.,
MBH (96-dim for MBHx and 96-dim for MBHy) and HOG
(96-dim) are computed from the extracted dense trajecto-
ries. We apply PCA to reduce feature dimension from 96
to 64. We train Gaussian mixture models with 64 compo-
nents, and encode the interaction parts with improved Fisher
vectors [19]. Following [23], we also apply square-rooting
and normalization for the computed Fisher vectors. Fi-
nally, each candidate interaction part is described by a 8192-
dimensional (i.e., 64× 64× 2) vector x. A video sample v
contains a bag of mid-level features Xv={x1,x2, . . .}.

3.2. Interaction Part Mining

To mine discriminative mid-level interaction part detec-
tors from the set of candidate parts extracted from the train-
ing video dataset, we leverage the strategy proposed in [9],
that includes seeding, expansion, and selection. In par-
ticular, the previous heuristic seeding scheme in [9] seeds
large number of image patches by only considering the ap-
pearance (i.e., HOG), which is not suitable for the spatio-
temporal parts in our problem. Also, training for all parts
is computationally expensive and unnecessary. Therefore,
we propose a new seeding scheme based on tf-idf score to
only seed the discriminative parts considering both appear-
ance (i.e., HOG) and motion (i.e., MBH) features. Details
of seeding are given as follows.

Initially, we have the interaction part representations
Xv={x1,x2, . . .} of the video sample v. First of all,
we compute the nearest neighbors for each interaction
part. Given two part representations, xi={hc

i}
3
c=1 and

xj=
{
hc
j

}3
c=1

, c represents the channel of HOG, MBHx or
MBHy, hc is a D dimensional Fisher vector for c-th chan-
nel. The distance metricK(xi,xj) between two interaction
parts xi and xj is given as the weighted normalized Eu-
clidean distances of three channels:

K (xi,xj) =
∑
c

wc · exp

(
−
d
(
hc
i ,h

c
j

)
Ac

)
, (5)

where Ac is used for normalization of the channel, which
is the mean value of the Euclidean distances between the



training samples for the c-th channel. The weight wc is
an empirical value. It can be simply set as the 1/c or give
more weights to features that typically achieve better per-
formance, i.e., the MBH feature descriptors by empirical
experience. d

(
hc
i ,h

c
j

)
is the Euclidean distance between

hc
i and hc

j .
We rank the interaction parts by their discriminability.

To require one interaction part x(x ∈ Xv) of action class
y(x) to be discriminative, the same label y(x) (compared
to other action classes) should account for the major part
among its top retrieved nearest neighbors. Therefore, we
compute the tf-idf score from the action labels of its top
k nearest neighbors knn(x). In our implementation, we

set k = 20, the tf-idf score is |{x
′|x′∈knn(x)∧y(x′)=y(x)}|

|{x′|x′∈knn(x)| ,
which is the ratio of interaction parts belonging to y(x)
among the top k nearest neighbors. Then we seed the in-
teraction parts that rank higher with tf-idf scores.

After seeding some distinct interaction parts as exem-
plars, we then apply the same strategy as [9] to learn and
select the discriminative exemplar detectors as our inter-
action part detectors. Each part detector p is the trained
weight vector. M discriminative interaction part detectors
are selected for each action class. Assuming that we have
Q action classes, there will be T = Q×M part detectors in
total. The part detectors P={p1,p2, . . . ,pT } are utilized
to form the video representation in next step.

3.3. Max-N pooling

Given the learned discriminative interaction part detec-
tors P={p1,p2, . . . ,pT }, a popular way to form video
level representation is to apply all the learned detec-
tors onto all candidate interaction parts extracted within
the video, i.e., to score each candidate interaction part.
Then for each part detector we maximumly pool its re-
sponses and concatenate all detector scores into a T -
dimensional vector. Mathematically, given the interaction
parts Xv={x1,x2, . . .} of the video sample v, the score
f(p, v), i.e., part detector p with respect to video v is given
by max pooling the part scores:

score(x,p) = 〈x,p〉 ,x ∈ Xv,p ∈ P, (6)
f(p, v) = max

x∈Xv

score(x,p),p ∈ P, (7)

where 〈x,p〉 is the inner product between part detector p
and interaction part x. The final video representation is
fv=[f (p1, v) , f (p2, v) , . . . , f (pT , v)], which is an acti-
vation vector, scored by each part detector of P. The acti-
vation vector fv is used to represent the video sample v.

However, using max pooling sometimes might miss im-
portant responses from some candidate parts of the video.
These parts might not give the max response values for a
certain detector, however, they are still representative for
a certain action class, and retaining the values in the final

representation still adds discriminative information. There-
fore, in this work, we propose a generalized approach for
max pooling, called Max-N pooling. Namely, for each part
detector p, we keep its top N detection scores to the inter-
action parts. The f(p, v) is computed as:

f(p, v) = MaxN
x∈Xv

score(x,p),p ∈ P, (8)

where MaxN function keeps the top N scores of part de-
tector p with respect to interaction part x. The per-detector
scores are sorted and concatenated as the video representa-
tion fv . Assuming that the traditional max pooling yields a
T dimensional feature vector, the Max-N pooling gives us a
T ×N feature vector.

To combine the representations from MBHx, MBHy and
HOG, we concatenate the fv vectors of the three channels
as a high dimensional vector. Based on the final video rep-
resentation, we train a linear SVM classifier. We fix the
regularization parameter C = 10 for a large dataset, and set
C = 0.01 for a small dataset to avoid overfitting. We use
the LibLinear [5] as our SVM solver.

4. Experiment

4.1. Implementation Details

We evaluate the classification performance of our mid-
level interaction part based representation on MPII Cook-
ing [26] and MSR Daily Activity 3D [30] datasets. For our
method, during the seeding procedure, we seed 350 inter-
action parts per-class on MPII Cooking and 100 interaction
parts per-class on MSR Daily Activity 3D. During expan-
sion, we expand 10 rounds for MPII Cooking and 5 rounds
for MSR Daily Activity 3D. During selection, we fix the
per-class part detector number M = 50 on MSR Daily Ac-
tivity 3D. On the large-scale MPII Cooking dataset, 250
part detectors are selected for each action class. We also
try different M (per-class part detector number) for param-
eter evaluation. To form the final video representation, we
apply a late fusion approach to concatenate the Fisher vec-
tors of MBHx, MBHy and HOG, and apply Max-N pooling
(N = 2) to summarize the interaction part scores. These pa-
rameters are determined via cross-validation on the training
dataset. All the experiments are conducted on a computing
server with two Intel Xeon E5450 Quad Core processors
(3.00GHz) and 16GB memory.

In the following, we evaluate the classification perfor-
mance of our mid-level interaction part mining approach on
both datasets. We quantitatively compare the algorithmic
behavior of our approach under different parameter settings,
and compare the performance of our method with the state-
of-the-art results.
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Figure 3: Per-class classification performance comparison on MPII Cooking. We compare our method with the pipelining
localized semantic features [38] in terms of classification accuracy, i.e., number of true positive predictions out of total.

Table 1: Classification performance (%) comparison among
different methods on MPII Cooking dataset.

Method Pr Rc AP
Pose-based Approach [26] 28.6 28.7 34.6
Holistic Dense Trajectories [29] 49.4 44.8 59.2
Holistic + Pose [26] 50.4 45.1 57.9
Pipelining Localized Semantic Feature [38] 60.1 54.3 70.5
Proposed Method (Max Pooling) 59.4 53.9 69.1
Proposed Method (Max-N pooling) 62.7 55.6 72.4

4.2. MPII Cooking Dataset

MPII Cooking dataset [26] is a very recent fine-grained
human cooking action dataset published on CVPR 2012. It
is very challenging for fine-grained action recognition due
to its large-scale and complexity. A total of 5609 video seg-
ments are annotated for 65 action categories such as “open
drawer”, “cut slices”, “cut into dices”, “wash hands” or
“background” (“background” is dropped in evaluation as
indicated in [26]). Following [26], we perform leave-one-
subject-out for performance evaluation. 5 out of 12 subjects
are used to train the model, and the remaining 7 subjects
are tested in 7 cross-validation rounds. We evaluate classi-
fication performance in terms of multi-class precision (Pr),
recall (Rc) and per-class average precision (AP).

In Table 1, we compare our approach with the state-of-
the-art methods on MPII Cooking. First of all, the posed-
base approach [26] utilizes human skeleton joints to model
human motion, i.e., body model feature and FFT feature. It
is observed that the pose-based approach achieves signifi-
cantly lower performance than the other approaches. This
may be because the pose-based approach is based on ex-
tremely sparse joint trajectories, which are noisy and coarse.
The holistic approach [29] benefits from robust motion fea-
tures (i.e., MBH, HOG, HOF) around the dense tracks, and

Figure 4: Classification performance under different N
for Max-N pooling. The testing is performed by 7 cross-
validation rounds on MPII Cooking dataset.

Figure 5: Classification performance by varying the per-
class part detector number M . The testing is performed by
7 cross-validation rounds on MPII Cooking dataset.

achieves much better performance. Marcus et al. [26] at-
tempt to combine the low-level features, i.e., pose features
and dense motion features, but it only improves the preci-
sion from 49.4% to 50.4%. With our mid-level interaction
part mining approach, the performance consistently out-
performs the low-level feature approaches with more than
10% increase. The pipelining localized semantic feature
approach [38] reasonably improves the performance by ap-
plying explicit object detection, our approach can achieve



comparable performance with naive max pooling. We can
further obtain an increase of more than 2% by applying the
novel Max-N pooling. Note that our approach is free from
object detection, but achieves better performance.

To demonstrate the algorithmic performance of our ap-
proach under different parameter settings, we vary N for
Max-N pooling and the per-class part detector number M ,
which are two important parameters of performance. The
results are shown in Figure 4 and Figure 5 respectively.
When changing N , the best performance is achieved when
N = 2, and the naive max pooling strategy (N = 1) is
not compared to the Max-N pooling (N = 2 and N = 3).
When N continues to increase, there is little improvement.
When changing M , the best performance is achieved when
M = 250. The performance is rather bad when M is very
small (M = 10 and M = 50). This is reasonable be-
cause there are far from enough discriminative part detec-
tors being used for a good video representation. Thus the
performance is largely improved by increasing M . How-
ever, there is little improvement when M reaches the cap
(M = 300), since it does little help to include the non-
discriminative part detectors.

To show the per-class classification performance on
MPII Cooking, we compare our method which is free from
explicit object detection and the method [38] which re-
quires object detection. The experimental results are shown
in Figure 3. The approach of [38] achieves good perfor-
mance on “put in bowl” and “put on bread/dough” thanks
to explicit detection to the bowl and bread/dough, but the
object detection accuracy is quite unstable for other ob-
jects in their method, e.g., the per-class classification per-
formance is rather bad for some actions such as “lid: re-
move”, “strew”, “rip open”, “package X”, etc. Note that
both the per-class performance and overall performance of
our method are better than [38], which shows the advantage
that object detection free method is more stable than the
object detection method, not to mention our method saves
extensive human labour for object annotation.

To demonstrate the discriminative and representative in-
teraction parts on MPII Cooking, we show some of the top
ranked exemplars mined from the action classes of “peel”,
“put on plate”, “wash objects”, “wipe clean”, “grate” and
“stir” in Figure 6. Such exemplars are significant for action
representation, e.g., our method discovers the interactions
between hands and knives, knives and different vegetables,
which are intuitively important for representing the action
“peel”. For “wipe clean”, the interactions between hands
and towels, towels and tables are highlighted in the corre-
sponding interaction regions.

4.3. MSR Daily Activity 3D Dataset

MSR Daily Activity 3D dataset [30] is a daily activity
dataset captured by a Kinect device, to cover human daily

Table 2: Classification performance comparison among dif-
ferent methods on MSR Daily Activity 3D dataset.

Method Accuracy (%)
Dynamic Temporal Warping [18] 54.0
Moving Pose [37] 73.8
Holistic Dense Trajectories [29] 71.7
Joint Features [30] 68.0
Actionlet Ensemble + Joint Features [30] 85.8
Proposed Method 83.3
Proposed Method + Joints Features 89.3

Figure 7: Confusion matrix of using our proposed method
on MSR Daily Activity 3D dataset.

activities in the living room. There are 16 action classes and
10 subjects. Each subject performs an activity in two differ-
ent poses: “sitting on sofa” and “standing”. The total num-
ber of the video samples is 320. This dataset is challenging
due to the background noise and human-object interactions.
We perform cross-subject evaluation to report classification
accuracy, i.e., half subjects are used for training and half
subjects are tested.

We compare our approach with results achieved by the
state-of-the-art methods on MSR Daily Activity 3D. The
results are shown in Table 2. By only analyzing the 2D
video content (i.e., without using 3D skeleton joints and
depth map), our approach achieves the classification accu-
racy of 83.3%, which is much better than the 71.7% by
holistic dense trajectory [29] approach. The performance
of our approach is improved to 89.3% when we further uti-
lize the skeleton information to localize useful interaction
parts and remove background noise. It is still much bet-
ter than other methods that are based on the skeleton infor-
mation [18, 37]. Our result is even better than the action-
let ensemble model [30], they obtain 85.8% by using ex-
tra depth map, note that we achieve the better performance
without using the depth information. Range-sample depth
feature [14] achieves 95.6% classification accuracy, how-
ever, they use the raw depth information. In contrast, we
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(b) put on plate

(c) wash objects

(d) wipe clean

(e) grate

(f) stir
Figure 6: Some exemplars selected from the mined interaction parts. The red boxes represent the interaction regions. For
each action class, we apply the most discriminative interaction part detectors to the interaction parts. Then these regions
come from the interaction parts which achieve the top detection scores.

only analyze the 2D video content without using the depth
map. For fair comparison, we do not include it in Table 2.

Figure 7 shows the confusion matrix of using our ap-
proach on MSR Daily Activity 3D. We can observe that the
actions containing human-object interactions (e.g., “write
on a paper”, “use laptop”, “play game”) are more difficult
to be recognized than the other human actions such as “lay
down on sofa”, “stand up”, “sit down”. Especially, “use lap-
top” has the worst recognition accuracy because motions are
not salient in such actions and we can only extract relatively
sparse interaction parts from the action videos. As long as
there exists salient motions, our approach is very effective
in recognizing the human-object interactions, even to dif-

ferentiate some similar actions, e.g., “drink” and “eat”.
5. Conclusion

In this paper, we propose an efficient mid-level inter-
action part mining approach for fine-grained action recog-
nition. In particular, we model human-object interactions
without explicit object detection. We validate the proposed
approach on two fine-grained action benchmark datasets in-
cluding MPII Cooking and MSR Daily Activity 3D, and
it consistently achieves the state-of-the-art performance on
both datasets. Our approach, which is free of explicit object
detection, is quite applicable and promising to be applied in
fine-grained action recognition applications such as assisted
daily living, medical assistance or smart home.
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to be recognized than the other human actions such as “lay
down on sofa”, “stand up”, “sit down”. Especially, “use lap-
top” has the worst recognition accuracy because motions are
not salient in such actions and we can only extract relatively
sparse interaction parts from the action videos. As long as
there exists salient motions, our approach is very effective
in recognizing the human-object interactions, even to dif-

ferentiate some similar actions, e.g., “drink” and “eat”.
5. Conclusion

In this paper, we propose an efficient mid-level inter-
action part mining approach for fine-grained action recog-
nition. In particular, we model human-object interactions
without explicit object detection. We validate the proposed
approach on two fine-grained action benchmark datasets in-
cluding MPII Cooking and MSR Daily Activity 3D, and
it consistently achieves the state-of-the-art performance on
both datasets. Our approach, which is free of explicit object
detection, is quite applicable and promising to be applied in
fine-grained action recognition applications such as assisted
daily living, medical assistance or smart home.
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