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Abstract

The maximum a posterior (MAP)-based blind deconvo-
lution framework generally involves two stages: blur ker-
nel estimation and non-blind restoration. For blur kernel
estimation, sharp edge prediction and carefully designed
image priors are vital to the success of MAP. In this pa-
per, we propose a blind deconvolution framework together
with iteration specific priors for better blur kernel estima-
tion. The family of hyper-Laplacian (Pr(d) ∝ e−‖d‖

p
p/λ )

is adopted for modeling iteration-wise priors of image gra-
dients, where each iteration has its own model parameters
{λ(t), p(t)}. To avoid heavy parameter tuning, all iteration-
wise model parameters can be learned using our principled
discriminative learning model from a training set, and can
be directly applied to other dataset and real blurry images.
Interestingly, with the generalized shrinkage / thresholding
operator, negative p value (p < 0) is allowable and we
find that it contributes more in estimating the coarse shape
of blur kernel. Experimental results on synthetic and real
world images demonstrate that our method achieves bet-
ter deblurring results than the existing gradient prior-based
methods. Compared with the state-of-the-art patch prior-
based method, our method is competitive in restoration re-
sults but is much more efficient.

1. Introduction
Blind deconvolution is a severely ill-posed problem, in

which both latent image x and blur kernel k are required to
be estimated from an input blurred image y. One class of
popular solutions to blind deconvolution is the maximum a
posterior (MAP) approaches [3, 22, 24], in which the pair
(x,k) can be jointly estimated by maximizing a posterior
probability,

min
x,k

λ

2σ2
n

‖k⊗ x− y‖2 + φ (x) + µϕ (k) , (1)

where σn is the standard deviation (std.) of additive white
Gaussian noise, φ (x) and ϕ (k) are some regularizers for
x and k, respectively, λ and µ are the trade-off parameters.
Several regularizers on k had been proposed to enforce the
sparsity and spatial smoothness of the estimated kernel. As
to x, one natural choice is based on image prior or natural
image statistics, e.g., hyper-Laplacian of gradients [14].

However, naive MAP prefers the trivial delta kernel so-
lution [16]. To make MAP work, salient structure selec-
tion [4, 11, 32] and carefully designed image priors [15, 34]
should be adopted to enhance strong edges while suppress-
ing harmful small-scale textures. So far, a number of edge
prediction methods and image priors had been proposed,
and the recent MAP approaches can achieve high quality
results for blind deconvolution and even spatially variant
blind deblurring [8, 34]. Edge prediction based approaches
usually involve some heuristic and engineered methods,
e.g., shock and bilateral filters in [4] and relative total vari-
ation (RTV) [10], to restore salient edges explicitly. Image
prior-based approaches generally deploy novel regularizers,
e.g., l1/l2 [15] and generalized l0 [34], for implicit edge se-
lection. These edge based methods may fail to handle small
scale textures, in which, on the contrary, power-spectrum
based methods can work well [35, 9, 18, 7, 36].

For better estimation of k, researchers had noted that
parameters for edge prediction and image regularization
should be dynamically tuned during the iterations. For
edge prediction-based approaches, strong edges are selected
for coarse kernel estimation in the first a few iterations,
and subsequently more details are added to further refine
the estimated kernel [15, 27]. Under the MAP framework
[3, 15, 27, 23], the regularization parameter λ is set small
to preserve strong edges while suppressing detailed textures
in the first a few iterations, and gradually tuned along with
the iteration to produce accurate kernel. In summary, most
MAP approaches involve carefully designed regularizers
and handcrafted parameter tuning to guide the algorithms
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Figure 1: Illustration of iteration-wise priors for blind deconvolution.

converge to desired solution.
In this paper, we present a principled formulation on

MAP-based deconvolution, where we adopt the hyper-
Laplacian prior Pr(d) ∝ e−‖d‖

p
p/λ on gradients d but al-

low the parameters {λ(t), p(t)} to be iteration-wisely tuned.
As illustrated in Fig. 1, our algorithm iteratively performs
three steps: (i) updating the latent image gradient d(t) via
variable splitting and generalized shrinkage / thresholding
(GST) operator [40], (ii) updating the kernel k(t) via one-
step augmented Lagrangian method, and (iii) updating the
parameters {λ(t), p(t)} to {λ(t+1), p(t+1)}. Moreover, we
extend GST for solving lp-norm minimization problem with
p < 0, and find that it is effective in enhancing strong edges
while suppressing weak textures.

Instead of handcrafted tuning of parameters, a dis-
criminative learning method is developed for estimating
iteration-wise parameters {λ(t), p(t)} from a training set.
We adopt the weighted mean squared error (MSE) on the
estimated k and d as the loss function L(λ, p), and propose
a gradient descent algorithm for determining {λ(t), p(t)} in
each iteration. Experimental results show that the parame-
ters learned from the training dataset can be directly applied
to other synthetic and real world images. The proposed
method are more visually plausible than the existing gradi-
ent prior-based methods, including both MAP [4, 32, 15]
and variational Bayes [17], and is comparable with the
state-of-the-art patch-based method [29]. Our contribution
is three-fold:

(1) A novel MAP-based blind convolution method is de-
veloped by incorporating with iteration-wise image priors,
which provide a natural way to employ salient edges for ro-
bust estimation of coarse kernel, and gradually converge to
desired solution.

(2) A principled discriminative learning approach is pro-
posed to learn iteration-wise image priors from the training
dataset, and experiments validate that the learned parame-
ters can be directly applied to test images.

(3) The GST operator for lp-norm minimization is ex-
tended to the case with p < 0, where GST can magnify the
strong edges whereas suppressing detailed textures, making
it very encouraging in estimating the coarse kernel in the

first a few iterations.

2. Related Work

Under the MAP framework, regularizers are critical to
facilitate the estimate of blur kernel. In this section, we
provide a brief survey on the representative regularizers on
both latent image and blur kernel.

2.1. Regularization on gradients

Total variation (TV) is an interesting regularizer for blind
deconvolution. Chan and Wong [3] proposed an alternat-
ing minimization algorithm that works well on TV-based
blind deconvolution (TVBD), following which several mod-
ifications were developed [27, 28, 33]. However, theoreti-
cal analysis by Levin et al. [16] showed that, instead of
the desired kernel, TVBD would converge to the trivial
delta kernel [22, 16, 27], and variational Bayes (VB) was
then suggested to avoid the local minima traps of MAP,
[31, 2, 6, 20, 1]. To explain the incongruence between the
success of TV in [3] and the failure of TV in [16], Per-
rone and Favaro [22] revealed that Chan and Wong actually
adopted a projected alternating minimization algorithm for
TVBD, and the success of the algorithm can be explained
by the delayed normalization of blur kernel.

Other gradient-based regularizers had been proposed to
enhance strong edges for better kernel estimation. In [12],
Paragios et al. proposed a discrete MRF prior to constrain
the latent image only with main structure, which essentially
produced highly sparse gradients. In [34], Xu et al. pro-
posed a generalized l0-norm regularizer, in which the inter-
mediate recovered gradient is much more sparse than nat-
ural image statistics. In [29], edge-based patch prior was
introduced for robust restoration of strong edges. Besides
gradient sparsity, the dictionary based sparsity has also been
employed in blind deconvolution [37].

In this work, instead of exploiting one specific gradient-
based regularizer, we suggest that the gradient priors and
regularization parameters are set iteration-wisely, and pro-
pose a principled method to learn the parameters from the
training set.



2.2. Regularization on blur kernel

One conventional regularizer on blur kernel k is the non-
negative constraint ki ≥ 0,∀i and the equality constraint∑
i ki = 1. To enforce sparsity on k, in the implemen-

tations [4, 15, 29, 21] the hard-thresholding operator was
adopted to make ki ≥ ε, ∀i, where ε is some small pos-
itive value. Other sparsity priors, e.g., TV [3] and hyper-
Laplacian [14, 13], were also suggested to avoid the non-
blur solution and converge to desired solution [24].

3. Blind deconvolution with iteration-wise pri-
ors

In this section, we incorporate the iteration-wise image
priors with the sparsity regularizer on blur kernel, and for-
mulate our MAP-based model in gradient space. An alter-
nating minimization algorithm is then proposed for blind
deconvolution. Moreover, we carefully design the updating
rules on blur kernel k and latent gradient image d, making
it possible to learn iteration-wise priors from training data.

3.1. Problem Formulation

As suggested in [4, 32, 15, 21], we formulate the pro-
posed MAP-based blur kernel estimation model in the gra-
dient space,

min
d,k

λ

2σ2
n

‖k⊗ d−∇y‖2 + φ (d) + µϕ (k) , (2)

where d = ∇x (dh = ∇hx and dv = ∇vx with gradi-
ent operator ∇ = {∇h,∇v}) denotes the gradient images
along both horizontal and vertical directions. In this work,
we impose the hyper-Laplacian priors on both k and d,

Pr(k) ∝ e−µ‖k‖
0.5
0.5 , (3)

Pr(d) ∝ e−‖d‖
p
p/λ , (4)

but allow the parameters λ, p to be iteration-wise, i.e., λ =
λ(t) and p = p(t) in the t-th iteration. Moreover, the image
d should be the gradient of some image x and thus satisfies
the constraint d = ∇x, which was generally omitted in
blind deconvolution. Actually, the constraint d = ∇x can
be explicitly expressed as [19],

∇hdv = ∇vdh. (5)
Furthermore, we also adopt the non-negative constraint and
the equality constraint on k∑

i
ki = 1, ki ≥ 0,∀i, (6)

By incorporating the constraints in Eqns. (5) and (6) and
the priors in Eqns. (4) and (3) into Eq. (2), the proposed
MAP-based model is then formulated as

min
d,k

λ(t)

2σ2
n
‖k⊗ d−∇y‖2 + ‖d‖p

(t)

p(t)
+µ ‖k‖0.50.5

s.t. ∇hdv = ∇vdh,
∑
i ki = 1, ki ≥ 0,∀i.

(7)

where λ(t) and p(t) are iteration-wise parameters to be
learned.

3.2. Alternating minimization

To solve the model in Eq. (7), we employ the alternating
minimization algorithm by iteratively performing the fol-
lowing two steps: (i) updating d given k, and (ii) updating
k given d.

3.2.1 Updating d

Given the estimate of blur kernel k(t−1), the subproblem on
d can be formulated as

min
d

λ(t)

2σ2n

∥∥∥k(t−1)⊗d−∇y
∥∥∥2+‖d‖p(t)p(t)

s.t.∇hdv=∇vdh, (8)

This model is non-convex and non-smooth, and we em-
ploy the half-quadratic strategy to solve the model above,
in which an auxiliary variable w is introduced, making the
d-step decomposed into two subproblems,

w(t)=argmin
w

β(t)

2

∥∥w−d(t−1)
∥∥2+‖w‖p(t)

p(t)
,

d(t)=argmin
d

λ(t)

2σ2n

∥∥k(t−1)⊗d−∇y
∥∥2+β(t)

2

∥∥w(t)−d
∥∥2

s.t. ∇Tc d = 0,

(9)

where ∇c=[∇v,−∇h]. When the penalty parameter β ap-
proaches infinity, the alternating optimization of d and w is
exactly equivalent to optimize d-step in Eq. (8). The w-
subproblem and d-subproblem usually require to be solved
alternatively with several iterations, but this will make the
relationship between d(t) with (λ(t), p(t)) hard to analyze.
Therefore, we set the number of inner-iteration be 1.

In Eq. (9), the subproblem on w can be efficiently solved
using the GST operator with one-iteration [40],

w
(t)
i =

0, if d(t)i ≤ τ
(t)
i ,

sgn
(
d
(t)
i

)(∣∣∣d(t)i ∣∣∣− 1

β(t) p
(t)
(∣∣∣d(t)i ∣∣∣)p(t)−1) , else,

(10)

where the threshold τ (t)i is determined by

τ
(t)
i =

(
2

β(t)

(
1−p(t)

)) 1

2−p(t)

+
1

β(t)
p(t)
(

2

β(t)

(
1−p(t)

)) p(t)−1

2−p(t)

.

(11)
The d-subproblem is convex, whose closed-form solu-

tion can be obtained by adopting hybrid alternating direc-
tion method of multipliers,

d(t)= Ω−1
(
η + β(t)w(t)

)
, (12)

where Ω = AT
kAk +β(t)I, η = λ(t)

σ2n
ATk∇y−∇cν(t), and

Ak, with periodic boundary condition of blurred image, is
the block circulant with circulant blocks (BCCB) matrix of
corresponding PSF k, and it can be diagonalized via fast
Fourier transform (FFT). ν(t) is the Lagrangian vector,

ν(t)=
(
∇Tc Ω−1∇c

)−1∇Tc Ω−1
(
AT

k∇y+β(t)w(t+1)
)
. (13)



3.2.2 Updating k

Given the estimate of latent gradient d(t), the subproblem
on k can be formulated as

min
k

λ(t)

2σ2n

∥∥∥k⊗d(t)−∇y
∥∥∥2+µ‖k‖0.50.5 s.t.

∑
i

ki=1, ki≥0,∀i, (14)

We further introduce two auxiliary variables h = k and
g = k, and reformulate the model in Eq. (14) as

min
k,h,g

λ(t)

2σ2n

∥∥k⊗d(t)−∇y
∥∥2+B(h)+δ

(t)
1

2

(
1Tk−1

)2
+µ(t)‖g‖0.50.5

s.t. k = h,k = g,
(15)

where 1 is a vector with all entries being 1, and B(h) is
defined as

B (hi) =

{
+∞, if hi < 0,
0, else, (16)

The problem in Eq. (15) can be solved using the augmented
Lagrangian method by iteratively solving the following sub-
problems

h(t)=min
h

δ
(t)
2
2

∥∥∥k(t−1)−h
∥∥∥2+B (h) ,

g(t)=min
g

δ
(t)
1
2

∥∥∥k(t−1)−g
∥∥∥2+µ(t)‖g‖0.50.5,

k(t)=min
k

λ(t)

2σ2
n

∥∥∥k⊗ d(t)−∇y
∥∥∥2+ δ

(t)
3
2

(
1Tk−1

)2
+
δ
(t)
2
2

∥∥∥k−h(t)
∥∥∥2+ δ

(t)
1
2

∥∥∥k−g(t)
∥∥∥2.

(17)

Of course we can repeat the updating of h(t), g(t), k(t) for
a number of iterations. But, to explicitly analyze the rela-
tionship between k(t) and λ(t), we only update h(t), g(t),
k(t) one time. The solution to the h-subproblem is simply
a projection,

h
(t)
i =

{
k
(t−1)
i , if k(t−1)i > 0,

0, else.
(18)

The g-subproblem can be simply solved by the GST algo-
rithm [40]. The k-subproblem is a quadratic optimization
problem with the closed-form solution as

k(t)=Φ−1ζ, (19)

where ζ = λ(t)

σ2
n

Ad∇y + δ
(t)
1 g(t) + δ

(t)
2 h(t) + δ

(t)
3 1 and

Φ=λ(t)

σ2
n

AT
d Ad+δ

(t)
1 I+δ

(t)
2 I+δ

(t)
3 11T . 11T is a matrix

whose entries are all 1, and clearly, it is also a BCCB matrix
that can be efficiently diagonalized via FFT.

Finally, Algorithm 1 summarizes the main steps of our
alternating minimization algorithm. Given an n × n im-
age, both the updating of d and k have the complexity of
O(n2logn), which make our algorithm very efficient for
blind deconvolution.

3.3. Extension of GST to p < 0

In [40], the GST operator was proposed to solve the fol-
lowing `p-minimization problem (0 ≤ p ≤ 1)

x̂ = min
x

1

2
(y − x)2 + λ|x|p. (20)

Algorithm 1 Blind deconvolution

Input: Blurry image y, and {θ(1), ...,θ(t), ...,θ(MaxIter)}
Output: Blur kernel k and latent image x

1: Initializing d(0), k(0), β(1), δ(1)1 , δ(1)2 , δ(1)3

2: for t = 1 to MaxIter do
3: //Lines 4-5 solve d-step Eq. (9)
4: w(t) = GST

(
d(t−1), p(t), 1/β(t)

)
5: d(t) = Ω−1

(
η + β(t)w(t)

)
6: //Lines 7-9 solve k-step Eq. (17)

7: h(t) = argmin
h

δ
(t)
2
2
‖k(t−1) − h‖2+B (h)

8: g(t) = GST
(
k(t−1), 0.5, µ(t)/δ

(t)
1

)
9: k(t) = Φ−1ζ

10: if‖d(t)−d(t−1)‖/‖d(t)‖≤ε0&‖k(t)−k(t−1)‖/‖k(t)‖ ≤ε0
11: break
12: endif
13: Updating β(t+1), δ(t+1)1 , δ(t+1)2 , δ(t+1)3

14: end for
15: k = k(t)

16: Given k, recovering x using non-blind deconvolution methods

Let
τGSTp (λ) = (2λ(1− p))

1
2−p + λp(2λ(1− p))

p−1
2−p , (21)

when |y| ≤ τGSTp (λ), we have x̂ = 0, and when |y| >
τGSTp (λ), x̂ can be obtained by repeating the following step:

x̂ = sgn(y)
(
|y| − λp(|x|)p−1

)
(22)

Although GST was proposed for 0 ≤ p ≤ 1, from Eqns.
(21) and (22), one can easily see that the threshold rule
and the shrinkage rule can be directly extended to the case
p < 0. It is interesting to point out that, when p < 0,
Eq. (22) actually is an expansion rule. Thus, GST with
p < 0 can be adopted to suppress detailed textures while
enhancing strong edges, which in spirit is similar with the
bilateral and shock filters but is computationally more effi-
cient. Considering this fact, p < 0 is allowed in our blind
deconvolution method.

4. Discriminative learning of iteration-wise
priors

Given the maximum number of iterations MaxIter in
Algorithm 1, we should set 2 × MaxIter image prior
parameters {(λ(t), p(t))}MaxIter

t=1 . Hand-crafted tuning of
these parameters is too challenging and impractical. There-
fore, we adopt a discriminative learning method to learn the
parameters directly from a training set.

Denote D by a set of synthetic images
{(dgti ,k

gt
i ,∇yi)}Ni=1, where dgti denotes the gradient

of the i-th clear image, kgti denotes the i-th blur kernel,
and ∇yi denotes the gradient of the i-th blurry image. For
estimating θ(t) =

{
λ(t), p(t)

}
, we adopt the following loss



function defined on D,

L(t)(θ)=
∑N
i=1 L

(t)
i (θ) =

∑N
i=1 α

(t)L
(t)
di

(θ) + L
(t)
ki

(θ)

=
∑N
i=1
α(t)

2

∥∥∥d(t)
i −dgti

∥∥∥2/∣∣dgti ∣∣+ 1
2

∥∥∥k(t)i −kgti

∥∥∥2/∣∣kgti ∣∣ , (23)

where |• | counts the entries of the vector for the normaliza-
tion of image and kernel sizes, and α denotes the trade-off
parameter. Note that our aim is to estimate the desired blur
kernel. Therefore, we set α to be small at first a few iter-
ations, which thus can make the learned prior contribute to
rough kernel estimation. Then the larger α value will be set
to learn the parameters θ(t) for better estimation of the clear
latent image and refinement of the blur kernel.

4.1. Learning algorithm

To learn the parameters, we adopt the gradient descent
algorithm. From Eqns. (10), (12), (19), and (23), we have
the following observations:

(1) L(t)
i (θ) is a function of d

(t)
i and k

(t)
i ;

(2) d
(t)
i is a function of w

(t)
i and λ(t);

(3) w
(t)
i is a function of p(t);

(4) k
(t)
i is a function of λ(t).

By combining these observations, the gradient of loss
function L(t)

i (θ) w.r.t. θ can be written as,

∂L
(t)
i

∂θ
=

(
α(t)

∂L
(t)
di

∂p
, α(t)

∂L
(t)
di

∂λ
+
∂L

(t)
ki

∂λ

)
. (24)

Based on Eq. (12), the derivatives of L(t)
di

w.r.t. λ and p can
be written as

∂L
(t)
di

∂λ =
∂L

(t)
di

∂di
(t)

∂d
(t)
i

∂λ

=1/
(
σ2
n

∣∣dgti ∣∣)(d
(t)
i −dgti

)T
Ω−1
(
ATk∇yi−AT

kAk

)
.

(25)

∂L
(t)
di

∂p =
∂L

(t)
di

∂d
(t)
i

∂d
(t)
i

∂w
(t)
i

∂w
(t)
i

∂p

=
(
β(t)/

∣∣dgti ∣∣ ) (d
(t)
i −dgti

)T
Ω−1

∂w
(t)
i

∂p .
(26)

Based on Eq. (10), the derivative of w
(t)
i w.r.t. p can be

obtained by,

∂w
(t)
i

∂p
=

0, if d(t)i ≤τ
(t)
i ,

−
sgn

(
d
(t)
i

)
β(t)

((∣∣∣d(t)i ∣∣∣)p−1+p(∣∣∣d(t)i ∣∣∣)p−1

ln
(∣∣∣d(t)i ∣∣∣)),else,

(27)

where the threshold τ
(t)
i in Eq. (11) is determined by p

value, and we approximate it based on p(t−1).
Based on Eq. (19), the derivative of L(t)

ki
w.r.t. λ can be

written as
∂L

(t)
ki

∂λ =
∂L

(t)
ki

∂k
(t)
i

∂k
(t)
i

∂λ

=1/
(
σ2n
∣∣kgti ∣∣)(k

(t)
i −kgti

)T
Φ−1

(
AT

d∇yi−AT
dAd

)
.

(28)

Given the derivative of L(t)(θ) w.r.t. θ, we use simple
gradient descent method to search the optimal θ(t). The
procedure of learning priors is summarized in Algorithm 2.

Algorithm 2 Learning iteration-wise priors
Input: Training set D, MaxIter

Output:
{
θ(1), ...,θ(t), ...,θ(MaxIter)

}
1: Initializing α(1), µ(1), β(1), δ(1)1 , δ(1)2 , δ(1)3

2: for t = 1 to MaxIter do
3: grad = 0
4: for i = 1 to N do
5: Updating d

(t)
i Eq. (9) and k

(t)
i Eq. (17)

6: grad = grad + ∂L
(t)
i (θ)/∂θ

7: end for
8: Using gradient descent method to search optimal θ(t)

9: Updating α(t+1), µ(t+1) and penalty parametersβ(t+1),
δ
(t+1)
1 ,δ(t+1)2 , δ(t+1)3

10: end for

4.2. Discussion

Our MAP-based blind deconvolution method in Section
3 is specially designed for learning iteration-wise priors.
Unlike the conventional alternating minimization and ALM
algorithms, we only perform one time for the inner-loop it-
erations to solve the problems in Eqns. (9) and (17), and
adopt the one-step GST operator and the approximation of
the threshold τ (t)i . As shown in Section 4, all these make it
feasible to compute the derivative of L(t)

i (θ) w.r.t. θ, and
allow us to learn iteration-wise priors from training data D.

Our work is conceptually similar to the models in [25,
26] which discriminatively learn a cascade of image priors
[25, 5, 26]. Our model is distinctly different with them from
two aspects. First our model is designed for blind deconvo-
lution rather than non-blind deconvolution. Second, instead
of learning shrinkage function for filter responses, we learn
the iteration-wise parametric priors for image gradients.

Besides, some extra constraints are considered to im-
prove the algorithm robustness and stability. In [3, 15, 27,
23], the regularization parameter λ begins with small value
and gradually increases along with the iteration. Thus the
search range of λ is constrained in [0.5, 5], and we further
require the sequence {λ(t)} should be non-decreasing, i,e,,
λ(t+1) ≥ λ(t). As to the p value, Xu et al. [34] first adopt
p = 0 for estimating blur kernel, and then set p = 0.5
for final restoration. Therefore, we also incorporate the
non-decreasing constraint on the the sequence {p(t)}, i.e.,
p(t+1)≥p(t), and its search range is constrained in [−1, 0.2].

4.3. Implementations

In our implementation, we set MaxIter = 200.
The weighting parameter α is initialized as 1 × 10−3,
and then increases along with the iteration by α(t+1) =



min
(
1.1× α(t), 1

)
. The regularization weight µ on blur

kernel k is initialized as 1 × 10−6, and updated by
µ(t+1) = min

(
1.1× µ(t), 1× 10−3

)
. The penalty pa-

rameter β is initialized as 1 × 10−4, and updated by
β(t+1) = min

(
1.5× β(t), 1× 10−2

)
. The three δs

are initialized as 1 × 10−3, and updated by δ(t+1) =
min

(
1.1× δ(t), 1× 10−1

)
.

5. Experimental Results
Two synthetic datasets and real blurry photographs are

used to evaluate the proposed method. We first learn the
iteration-wise priors using Levin et al.’s dataset [16] which
contains 8 kernels and 4 images with the size of 255× 255.
Then, Sun et al.’s dataset [29] is applied to evaluate the gen-
eralization of the learned iteration-wise priors. Finally, we
apply our method to real blurry photographs and compare
with the state-of-the-art gradient prior based and patch prior
based methods.

We assume the std. σn of the additive Gaussian white
noise should be in the range of [1 × 10−3, 1 × 10−2], and
estimate it using [38]. To evaluate the restoration quality,
we use three quantitative metrics, i.e., PSNR, SSIM [30]
and error ratio [16]. We also evaluate the efficiency of each
competing method, and all the programs are ran on proces-
sors with Intel(R) Xeon(R) CPU 3.30GHz.

5.1. Training on Levin et al.’s dataset

Fig. 2 shows the plot of the learned iteration-wise p and
λ values. One can see that, smaller p (≈ −1) and λ (≈ 0.5)
values benefit the rough estimation of blur kernel at the first
a few iterations, and larger p (≈ 0.2) and λ (≈ 5) values are
required at the last a few iterations, which are are consistent
with the handcrafted parameter setting [15, 27, 33].

Table 1 lists the three quantitative metrics and running
time of the competing methods and Fig. 4 shows the suc-
cess ratio of error ratios. To be fair, the method in [17] is
adopted for final non-blind deconvolution after the kernels
were estimated. One can see that, our method is compara-
ble to the state-of-the-art patch prior based method by Sun
et al. [29], and significantly outperforms all the gradient
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Figure 2: Learned iteration-wise p and λ for each iteration.

Table 1: Comparisons on Levin et al.’s dataset [16] using mean PSNR,
mean SSIM, mean error ratio and mean running time (seconds)

PSNR SSIM Error Ratio Time
Known k 32.31 0.9385 1.0000 —

Krishnan et al. [15] 28.26 0.8547 2.3746 8.9400
Cho & Lee [4] 28.83 0.8801 1.5402 1.3951

Levin et al. [17] 28.79 0.8922 1.5592 78.263
Xu & Jia [32] 29.45 0.9000 1.4071 1.1840
Sun et al. [29] 30.85 0.9191 1.2244 191.03

Ours 30.33 0.9192 1.2537 25.184

prior based methods [17, 15, 4, 32] in terms of all the three
quantitative metrics. Fig. 3 provides the deblurring results
of one image. The estimated blur kernel by our method
is more accurate, making our deblurring image more visu-
ally plausible. As to running time, the methods of Cho &
Lee [4] and Xu & Jia [32] are significantly faster than the
others [17, 15, 29], partially for their optimized coarse-to-
fine implementations in C/C++. Compared with Sun et al.
[29], our method is more than 6 times faster even they also
adopted the coarse-to-fine scheme.
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Table 1 presents three quantitative indicators and 
running time comparison on Levin’s dataset. One can see 
that the proposed algorithm is comparable to Sun’s method, 
which is state-of-the-art patch prior based method. 
Meanwhile, our method significantly outperforms than all 
the other gradient prior based methods, in terms of all the 
three quantitative indicators. The error ratio of each method 
is plotted in Figure 2. Although the mean error ratio of our 
method is slightly higher than Sun’s method, our method 
can recover 100% deblurred images with error ratio lower 
than 3, which is deemed to be the threshold for visually 
plausible perception. Figure 4 provides the deblurring 
examples, from which one can see that our estimated blur 
kernel is more clear, making the deblurred latent image 
more visually plausible. From the aspect of running time, 
Table 1 shows that the methods of Cho & Lee and Xu & Jia 
are significantly faster than the others, partly for their 
optimized implementations in C/C++. Although Sun’s 
method adopted the coarse-to-fine strategy to save 
computation, our method is more than 6 times faster. 

 
Figure 2: Iteration-wise p and   for each iteration 

 
Table 1: Comparisons on Levin dataset [5] using mean PSNR, 

mean SSIM, mean error ratio and mean running time (seconds) on 
32 test images 

 PSNR SSIM Error Ratio Time 
Known k 32.31 0.9385 1.0000 --- 

Krishnan et al. [9] 28.26 0.8547 2.3746 8.9400 
Cho & Lee [6] 28.83 0.8801 1.5402 1.3951 

Levin et al. [16] 28.79 0.8922 1.5592 78.263 
Xu & Jia [7] 29.45 0.9000 1.4071 1.1840 

Sun et al. [17] 30.85 0.9191 1.2244 191.03 
Our 30.33 0.9192 1.2537 25.184 
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Krishnan et al.-->2.37
Levin et al.-->1.56
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Xu&Jia-->1.41
Sun et al.-->1.22
Our-->1.25

 
Figure 3: Comparison of error ratios for competing algorithms on 

Levin’s dataset, and the values in the legend indicate the 
corresponding mean error ratio 

4.2. Evaluation on Sun’s dataset 

Since our method is trained on Levin’s dataset, we 
further applied the learned iteration-wise priors to another 
test set with complex diversity and large sizes. Sun et al. 
has established a new dataset [17], which contains 80 
images with large sizes and 8 blur kernels [5], and Gaussian 
white noise with std. 1 × 10-2 was added to the blurred 
images, consisting of 640 synthetic blurred images. Also 
we use the non-blind deconvolution algorithm [32] for all 
the methods. 

To validate the effectiveness of the proposed 
iteration-wise priors, we also fixed the p value as -1 and 0.2 
for 200 iterations, all the other settings same with the 
iteration-wise priors. From Fig. 5, the iteration-wise priors 
can achieve more accurate blur kernel than both fixed 
priors. From the three quantitative indicators in Table2, the 
iteration-wise priors can also obtain superior deblurred 
results than fixed priors.  

Compared with other gradient prior based methods, our 
method significantly outperforms in terms of three 
indicators. Similarly, our method is a little inferior than 
Sun’s method in terms of mean PSNR and mean error ratio, 
while our method can recover 83.44% latent images with 
error ratio lower than 3, as shown in Fig. 6, higher than all 

the other methods. In Fig. 7, our recovered latent image is 

    
                  Ground truth                                  Our (-1)                                    Our (0.2)                                         Our 

Figure 5: Comparison of fixed priors and iteration-wise priors 

Figure 4: Comparison of error ratios for competing algorithms on Levin et
al.’s dataset, and the values in the legend indicate the mean error ratio.

5.2. Evaluation on Sun et al.’s dataset

We further applied the learned iteration-wise priors to
Sun et al.’s dataset [29] which consists of 640 synthetic
blurry images generated with 80 images and 8 blur kernels.
The EPLL method [39] is adopted to non-blind deconvolu-
tion for all the competing methods.

Table 2: Comparisons on Sun et al.’s dataset [29] using mean PSNR, mean
SSIM, mean error ratio and mean running time (seconds)

PSNR SSIM Error Ratio Time
Known k 32.35 0.9536 1.0000 —

Krishnan et al. [15] 22.76 0.8136 6.8351 159.29
Cho & Lee [4] 26.13 0.8624 5.0731 10.518

Levin et al. [17] 24.64 0.8606 4.5798 518.59
Xu & Jia [32] 28.11 0.9016 3.2843 6.2940
Sun et al. [29] 29.32 0.9200 2.4036 3911.1

Ours (-1) 27.96 0.9019 3.2188 311.77
Ours (0.2) 28.35 0.9111 2.9877 312.11

Ours 29.10 0.9220 2.4054 311.61
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Input: Training set gtD  and gtK , maxIter 

Output:  (1) ( ) (maxIter ),..., ,...,tθ θ θ  

1. Initialize (0) , (0) , (0) , (0)
1 , (0)

2 , (0)
3  

2. For t =1 to maxIter 
3.     grad 0  

4.     For i = 1 to n 
5.           ( )grad grad ,t gt gt

i iL   d k θ  

6.     End for 
7.     Using gradient descent method to search optimal ( )tθ  

8.     Increase ,   and penalty parameters  , 1 , 2 , 3  

9. End for 

3.3. Discussions 

Ideally, ( )tθ  can be searched in 2 , however, since of 
the local traps of MAP, we have to constrain the candidate 
solution space. As to the trade-off parameter λ, the search 
range is constrained in [0.5, 5]. Meanwhile, based on 
previous work, the sequence {λ(t)} should be 
non-decreasing, thus ( ) ( -1)t t   is forced. As to the p 
value, at first a few iterations, it should be small to produce 
more sparse gradients, then the increasing p value will 
introduce more detailed edges to refine blur kernel 
estimation. Thanks to the GST algorithm, the negative p 
value, i.e., p < 0 is allowed, in which the small gradients 
below threshold are set to be 0, while the strong gradients 
are magnified (17), interestingly contributing more to 
estimate the coarse shape of the blur kernel. The natural 
image statistic prior with p ranged in [0.5, 0.8] will produce 
more detailed textures, which are not useful to blur kernel 
estimation. Thus the p value is searched in [-1, 0.2], and the 
non-decreasing constraint is also satisfied, i.e., 

( 1) ( )t tp p  .  

3.4. Implementations  

In our implementation, we set the iteration number as 
200. The weighting parameter   is initialized as 1 × 10-3, 

then with the iteration number increasing, the value of ( )t  

is updated by  ( ) ( -1)min 1.1 ,1t t   . The p values for 

200 iterations are initialized as logistic function, which is 
then scaled to [-1, 0.2]. The  regularization weight   on 

blur kernel k is initialized as 1 × 10-6, and updated by 

 ( ) ( -1) -3min 1.1 ,1 10t t    . For the penalty parameter 

  is initialized as -41 10 , and updated by 

 ( ) ( -1) -2min 1.5 ,1 10t t    , and for the three  , 

initialized as -31 10 , updated by 

 ( ) ( -1) -1min 1.1 ,1 10t t    .  

The use of FFT requires the blurred image to be with 
periodic boundary condition, which is not satisfied for real 
blurry images. Thus, we use “edgetaper” function in 
Matlab to reduce the boundary effect. Furthermore, in each 
iteration, the estimated blur kernel is centered, while the 
gradients are shifted with the opposite direction, 
eliminating the misalignments.  

 

4. Experimental results 

We first train the iteration-wise priors on the simple 
synthetic camera shake blurred image dataset containing 4 
images and 8 kernels, produced by Levin et al. [5]. The 32 
images are all of size 255 × 255. Then the learned adaptive 
priors are applied in another more complex synthetic 
dataset, which contains 640 images with large sizes, 
produced by Sun et al.  [17]. Finally, for the blur removal of 
real blurry photographs, we compare the proposed 
discriminative approach with several state-of-the-art 
methods.  

The std. of Gaussian white noise is estimated using [31], 
and since the estimation is not accurate when the noise is 
too high or too low, we fixed the noise level std. ranged 
from 1 × 10-3 to 1 × 10-2, which is usually assumed in 
deblurring applications. To evaluate the restoration quality, 
we use three quantitative indicators to assess the recovered 
latent images, i.e., PSNR, SSIM and error ratio [5], which 
is defined as,  

  Error Ratio gt
gt gt  k kx x x x              (22) 

where  kx  and  gtkx  are the recovered latent images using 

estimated blur kernel k  and ground truth  of blur kernel 
gtk , respectively.  We also evaluate the efficiency of each 

competing method, and all the programs are ran on 
processors with Intel(R) Xeon(R) CPU 3.30GHz.  

4.1. Training on Levin’s dataset  

The learned p and trade-off parameter λ is plotted in 
Figure 2. For the fairness, after all the kernels were 
estimated, we use sparse deconvolution [16] to do the final 

       
      Ground truth         Krishnan et al.           Cho & Lee              Levin et al.              Xu & Jia                  Sun et al.              Ours 

Figure 4: Example of deblurring results on Levin’s dataset 
Figure 3: Example of deblurring results on Levin et al.’s dataset.

 

 

   Ground truth              Ours (-1)               Ours (0.2)                 Ours 
Figure 6: Comparison of fixed priors and iteration-wise priors 

 

    
    Ground truth              Ours (-1)                Ours (0.2)                  Ours 

 

   

Figure 5: Comparison of fixed priors and iteration-wise priors.

Blurry input Ground truth Cho & Lee Krishnan et al.

Levin et al. Xu & Jia Sun et al. Ours
Figure 7: Example of deblurring results on Sun et al.’s dataset.
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Krishnan et al.-->6.84
Cho&Lee-->5.07
Levin et al.-->4.58
Xu&Jia-->5.07
Sun et al.-->2.40
Our-->2.41

 
Figure 6: Comparison of error ratios for competing algorithms on 

Sun’s dataset, and the values in the legend indicate the 
corresponding mean error ratio 

4.3. Real camera shake blurry photographs  

       

       

       
                Ground truth       Cho & Lee      Krishnan et al.      Levin et al.         Xu & Jia            Sun et al.              Our 

Figure 8: More deblurred results on Sun’s dataset 

Figure 6: Comparison of error ratios for competing algorithms on Sun et
al.’s dataset, and the values in the legend indicate the mean error ratio.

Table 2 lists the performance metrics of the competing
methods. To validate the effectiveness of iteration-wise pri-
ors, we also consider two variants of our method by fixing
the p value as −1 and 0.2. From Table 2 and Fig. 5, one
can see that our method with iteration-wise p values out-
performs the two variants by all performance metrics, and
can obtain more accurate estimation on blur kernel and the
deblurring result is visually more pleasing.

In terms of quantitative metrics, our method significantly
outperforms the other gradient prior based methods [17, 15,
4, 32], which indicate that the learned iteration-wise priors
have good generalization ability and can be directly applied
to other dataset. The mean SSIM value of our method is



Blurry input Xu & Jia Sun et al. Ours
Figure 8: Comparison of deblurring results for real camera shaken photographs.

a little higher than Sun et al. [29]. When the error ratio
is higher than 2.6, our method achieves the highest success
rate. In Fig. 7, the deblurring results by our method is more
visually plausible. As to the computational efficiency, our
method is more than 12 times faster than Sun et al. [29].

5.3. Blur removal for real blurry images

We further validate the performance of our method on
real blurry photographs, and compared with Xu & Jia [34]
and Sun et al. [29], which are the top two methods on the
two synthetic datasets. Fig. 8 presents the deblurred results,
in which kernel sizes are fixed as 51 × 51 for the first two
images, and large kernel size 95 × 95 is set for the third
image. For the first two images, all the three methods can
achieve satisfactory deblurring results, and our method can
better preserve the detailed textures, e.g., the winkles in the
second image of our method are more clear. For the third
image, Sun et al. [29] fails to estimate the large kernel,
while our method can achieve comparable if not superior
restoration quality compared with Xu & Jia [34]. More re-
sults and evaluation on the effect of p < 0 can be found in
the supplementary materials.

6. Conclusions
In this paper, we propose an MAP-based blind decon-

volution model with iteration-wise image priors discrimi-
natively learned from the training set of synthetic images.
Experimental results demonstrated that he learned iteration-
wise image priors can be well extended to the other syn-
thetic dataset and real blurry photographs. Our method can
achieve more visually plausible deblurring results than the
competing gradient prior based methods, and is compara-
ble but more efficient while compared with state-of-the-art
patch prior based method.

In this work, hyper-Laplacian is adopted for modeling
image gradients which is limited in modeling patch-level
structures in images. Our future work will extend the dis-
criminative learning framework to learn priors on patches
or filter responses, and multi-scale scheme will be also con-
sidered.
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