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In this supplemental section, we provide additional ma-

terial to further the reader’s understanding of the work on

Open World Recognition, CAP models and the Nearest

Non-Outlier algorithm that we presented in the main pa-

per. We present additional experiments on ILSVRC 2010

dataset. We then present experiments on ILSVRC 2012

dataset to demonstrate the performance gain of NNO over

NCM (see fig 3 in the main paper) are not feature/dataset

specific. We then provide algorithmic pseudocode for im-

plementing the NNO algorithm. Finally we discuss the 1vs-

Set extension to liblinear, its parameter tuning and its com-

putational savings.

1. Experiments on ILSVRC 2010

1.1. Thresholding NCMSoftmax for ILSVRC 2010

In section 4.1 of the main paper, we explain the pro-

cess of rejecting samples from unseen categories to balance

open space risk and defined in Eq. 8, a probability func-

tion which is thresholded at zero. At first it might seem like

a viable idea to just threshold the original softmax proba-

bility used in NCM. As explained in the main paper this

will fail for open set because the normalization is improper

and hence the softmax probability calibration will bias re-

sults. To convince the skeptical reader, we add a small ex-

periment, similar to fig 3 in the main paper, and show the

performance of classifying samples as unknown by directly

thresholding softmax probabilities. As this is a smaller ex-

periment, we show 2D plots instead of a 3D surface as the

system is tested in closed set settings (fig 1a) and open set

settings with 100 unknowns (fig 1b). NNO algorithm per-

forms comparable with NCM in closed set settings. The

reader can observe the performance of NCM-STH is simi-

lar to NCM and significantly worse than NNO on open set

testing with 100 unknowns. Just thresholding the softmax

probability is not enough, because its normalization keeps it

from decaying as one move away from known data. This re-

sult confirms the suitability of balancing open set risk with

Eq 8,using transformed learned Mahalanobis distance to the

NCM. The results from this experiment are shown in fig 1.

1.2. Performance of NNO for different values of τ

Section 4.1 and 5.1 in the main paper describes NNO al-

gorithm in detail and steps involved in estimating optimal τ

required to balance open space risk. It is natural to ask how

sensitive are the results to the choice of τ . In this section, we

show the effect of different values of τ on the performance

of NNO tested in open set settings with 100 unknown cate-

gories, to provide reader the feeling for the sensitivity to the

parameter.

In the experimental results shown in Fig 3 in the main pa-

per, we used optimal τ for evaluation purpose, which was

approximately 5000. The optimal value near the beginning

of a broad peak and small changes in τ have minimal im-

pact. Even increasing it by 20% has only a small impact on

open set testing. Fig 2 shows performance for varying set

of τ . τopt is the optimal threshold that was selected. We

observe that performance of NNO continues to improve as

we near the optimal threshold from above. For a threshold

value lower than τopt (e.g. 4000), the number of false re-

jects raises significantly. Thus, a balance between correct

predictions retained and unknown categories rejected has to

be maintained by the selected τopt. The results are obtained

on ILSVRC’10 dataset, similar to fig 3a in the main paper.

In our experiments, we observed similar trends for all other

experiments – poor performance below the optimal τ and

insensitivity to modest changes above it.

2. Experiments on ILSVRC 2012 Dataset

As noted in section 5 (Experiments) in the main paper,

we used ILSVRC 2010 dataset because we needed access

to ground truth labels. Ground truth is necessary to perform

the open world recognition test protocol, which includes se-

lecting known and unknown set of categories. In this sec-

tion, we perform additional experiments on the training sub-

set of ILSVRC 2012 [8] 1 dataset across multiple features to

show that the effectiveness of NNO algorithm for closed set

and open set tasks does not significantly depend on feature

type.

1ILSVRC dataset remained unchanged between 2012, 2013 and 2014.

Ground truth labels are available for training data only.
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Figure 1: Effect of open set performance of thresholding softmax probabilities. Fig 1a shows performance with closed set

testing and 1b shows performance on open set testing with 100 unknown categories. Metric learning was performed on 50

categories, followed by incremental learning phase with 50 categories in each phase. NCM-STH denotes NCM algorithm

with open set testing with thresholded softmax probabilities. As can be seen clearly, just thresholding a probability estimates

does not produce good open set performance
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Figure 2: The above figure shows the effect of varying threshold τ on top-1 accuracy on ILSVRC’10 data. The results from

closed set testing are shown in fig 2a and results from open set testing with 100 unknown categories are shown in fig 2b.

Here τopt = 5000, which was the selected threshold for experiments in fig 3a. For a threshold value lower than τopt, the

number of correct predictions retained reduces significantly.

Since ground truth is not available for ILSVRC’12

dataset, we split the training data provided by the authors

into training and test split. The number of categories is the

same, this just limits the number of images per class used.

We use 70% of training data to train models and 30% of

the data for evaluation. This process is repeated over mul-

tiple folds. Once the data is split into training and test split

the remaining procedure for metric learning and incremen-

tal learning is similar to that in section 5 (Experiments) in

the main section. We conduct two sets of similar experi-

ments on ILSVRC’12 data: metric learning with 50 and 200

initial categories as shown in Figs 3 and 4 in the main paper.

The closed set and open set testing is conducted in similar

manner as well. While the open world experimental setup

for ILSVRC’12 is not ideal because of the smaller number

of images per class, the goal of this experiment is to show

that the advantages of NNO are not feature dependent.

We use pre-computed features as provided on

cloudcv.org [1]. We consider three set of features as

follows:

1. DenseSIFT: SIFT descriptors are densely extracted [6]

using a flat window at two scales (4 and 8 pixel radii)

on a regular grid at steps of 5 pixels. The three descrip-

tors are stacked together for each HSV color channels,
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Figure 3: The above figure shows experiments on ILSVRC’12 data with 50 classes used for metric learning. The top row

shows performance on closed set testing and bottom row shows performance on open set testing with 500 unknown categories.

Figs 3a, 3d are for HOG features [2], figs 3b, 3e are for DenseSIFT features [6] and figs 3c, 3f are for LBP features [7].

The training data for ImageNet’12 was split into train (70%) and test split (30%). This is similar to experiment shown in fig

3a in the main paper. The absolute performance varies from feature to feature, however we see similar trends in performance

as we saw on ILSVRC’10 data.

and quantized into 300 visual words by k-means. The

features used in the main paper are similar to these

features, except in the main paper, denseSIFT features

were quantized into 1000 visual words by k-means.

2. Histogram of Oriented Gradients (HOG): HOG fea-

tures are used in wide range of visual recognition tasks

[2]. HOG features are densely extracted on a regular

grid at steps of 8 pixels. HOG features are computed

using code provided by [4]. This gives a 31-dimension

descriptor for each node of the grid. Finally, the fea-

tures are quantized into 300 visual words by k-means.

3. Local Binary Patterns (LBP): Local Binary Patterns

(LBP) [7] is a texture feature based on occurrence his-

togram of local binary patterns. It has been widely

used for face recognition and object recognition. The

feature dimensionality used was 59.

Results on HOG [2] are shown in 3a, 3d, on DenseSIFT

[6] are shown in 3b, 3e and on LBP features [7] are shown

in 3c, 3f respectively. The absolute performance with

DenseSIFT features is the best, followed by HOG and LBP.

The DenseSIFT is very similarly to the results on ILSVRC

2010. Moreover, from these experiments we observe sim-

ilar trends across all features to the trends seen in Fig 3 in

the main paper. We see that as closed set performance of

NCM and NNO is comparable while NCM with open set

suffers significantly when tested with unknown set of cat-

egories. We continue to see significant gains of NNO over

NCM with open set testing across HOG and denseSIFT fea-

tures. We also observe the trend where as we add more

categories in the system, the closed set and open set per-

formance begin to converge. Thus, it is reasonable to con-

clude that the performance gain seen in terms of NNO on

open set testing is not feature dependent. These observa-

tions are consistent with our observations from experiments

on ILSVRC’10 data.

3. Algorithmic Pseudocode for Nearest Non-

Outlier (NNO)

In this section, we provide pseudocode for Nearest Non-

Outlier algorithm as described in section 4.1 in the main

paper. The algorithm proceeds in multiple steps. In the

first step, features are normalized by the mean and stan-

dard deviation over the starting subset. The initial set of



Algorithm 1 Nearest Non-Outlier Algorithm

Require: Xk, µk ⊲ Initial Training Data Xk from k categories and their means µk

function METRICLEARN(Xk, µk)

W = NCMMetricLearn(Xk, µk) ⊲ Train NCM Classifier

for i = 1 → m do ⊲ Over multiple folds

XkK
, XkU

= SplitKnownUnknown(Xk) ⊲ Split Training Data into known and unknown set

τi = OpenSetThresh(XkK
, XkU

) ⊲ Estimate optimal τi for each split

end for

τ = 1

m

∑m

i=1
τi ⊲ Use average τ

NNOModelk = [W,µk, τ ]
end function

Require: NNOModelk, Xn, µn ⊲ Add additional data Xn from n categories with means µn

function INCREMENTALLEARN( NNOModelk, Xn, µn)

NNOModelk+n = [W, [µk, µn], τ ] ⊲ Update model with means µn

end function

features is used to perform metric learning. Following this

step, threshold τ for open set NNO is estimated using per

class decisions using per Eq. 8 in the main paper and a

cross class validation procedure of [5] training data splits.

The complete pseudocode is given in Alg 1

4. Liblinear 1-vs-set extension Baseline

For this paper, we needed a baseline from an existing

open set algorithm, so the performance of NNO was prop-

erly placed in context. Unfortunately, the 1-vs-all nature of

the computations used in the various libsvm open set exten-

sions developed to date ([10], [9], and [5]) make them very

expensive for use in the scale of experiments in this paper.

We tried the linear 1-vs-set machine of [10] and abandoned

when it was not done with one fold of the smallest experi-

ment after 3 weeks of computing. Recognizing that to scale

we needed a more efficient implementation we adapted the

concept/code from [10] into a liblinear ([3]) implementa-

tion. While still a 1-vs-all implementation, the liblinear li-

brary uses a much more efficient algorithm for estimation

of the hyperplane than the libsvm and reduced the compu-

tation from more than 30,000 minutes (3weeks) to about 5

minutes for processing one fold of 50 classes. The default

liblinear solver (L2-regularized logistic regression (primal))

did not converge so we switched to L2-regularized L2-loss

support vector classification (primal).

A second issue we address in the extension is support-

ing searching for the “pressure” parameters discussed in the

original 1-vs-set paper [10]. There is a parameter for the

near plane, close to the negative data and a second parame-

ter for the far plane. That paper provided no formal process

for setting the pressures, saying it is problem dependent.

Initially, we used strict 1-vs-set slabs with “-G 0 1” and the

performance was quite weak with only about 5% top-1 ac-

curacy on closed set testing. The out of the box liblinear

was doing much better. Upon examination we found that

liblinear was choosing the class with largest score, even if

that score was negative. Thus, we needed to move beyond

the default 1-vs-set machine parameters and add some near

pressure to capture the negatives. The obvious process is a

grid search of parameters using training data. For that pro-

cess, we choose to mimic the process for selection of τ in

the NNO algorithm. In particular we split the 50 classes into

3 folds of 32 classes each: first 32 classes, last 32 classes

and first 16 + last 16). We trained a 1-vs-set machine with

both near and far pressure and then used them to predict per-

formance on the full 50 class training sample. Among the

parameters that achieved at 90% or better recall on at least

one fold, we choose the set of parameters that optimized F-

measure. Our grid search included: near pressure = [0 .05

.1 .2 .3 .4 .5 .6. 7. 8. .9 1 2 3 4 5 6] and far pressure = [1 2

3 4 5 10 15 20 25 30 35 40 45 50 55 60 65]. We found the

optimal parameters to be near pressure =.2, and far pressure

= 55, i.e. a small expansion inside the margin space but a

large expansion on the back side of the training data. We

used the same parameters for 200 classes.

With that many parameters to grid search, we decided

that retraining a new model with liblinear, even though it

is efficient, was still computationally expensive at 56 hours

for our grid search. Recognizing that other researchers may

face a similar issue, we decided to develop a more efficient

way to search. We adapted the liblinear 1-vs-set extension

to support a mode that reads an existing liblinear model (raw

or 1-vs-set), as well as the training data and 1-v-set parame-

ters such as pressure, then computes the optimized 1-vs-set

data from that starting model. The result is that for one fold

it takes about 7 seconds to train model for a given set of

pressures and 2 second to predict with that model on the full

training data. Thus the full grid search of 225 values and 3

folds, was reduced to under 2 hours. This mode allows any-



one that has liblinear models to quickly adapt existing mod-

els for 1-vs-set testing without the costs of retraining the

original model. The 1-vs-set liblinear extension discussed

in this section is available as open-source from https:

//github.com/Vastlab/liblinear.git.

5. Numerical Values for Results

In this section, we provide numerical values for clarity.

The following table shows numerical values for the surface

plot presented in Fig 3a in the main paper for each algo-

rithm. Metric learning/parameter estimation was performed

on 50 categories followed by updating classifier with 50 ad-

ditional categories. As 1vSet and SVM do not have incre-

mental learning capabilities, results with only varying num-

ber of unknown categories in testing are shown.

NCM
# Known Categories

in Training

50 100 150 200

# Unknown

Categories

in testing

0 20.5600 9.3667 9.4400 9.1033

100 6.8533 4.6833 5.6640 6.0689

200 4.1120 3.1222 4.0457 4.5517

500 1.8691 1.5611 2.1785 2.6010

Table 1: NCM with metric learning performed on 50 cate-

gories

NNO
# Known Categories

in Training

50 100 150 200

# Unknown

Categories

in testing

0 19.8933 8.0000 8.5600 8.4267

100 12.2178 7.5700 7.9440 7.8267

200 10.0267 7.2667 7.5752 7.5667

500 9.0412 7.5656 7.7015 7.6867

Table 2: NNO with metric learning performed on 50 cate-

gories

1vsSet
# Known Categories

in Training

50

# Unknown

Categories

in testing

0 16.0267

100 13.5689

200 11.2827

500 9.0412

Table 3: 1vSet algorithm tested with varying number of un-

known categories. Model trained on 50 categories

The following tables show results shown in Fig 3b in the

main paper. Metric learning/parameter estimation was per-

formed with 200 initial categories. Similarly, we provide

SVM
# Known Categories

in Training

50

# Unknown

Categories

in testing

0 21.12

100 7.04

200 4.224

500 1.92

Table 4: SVM algorithm tested with varying number of un-

known categories. Model trained on 50 categories

results for 1vSet and SVM algorithms with varying num-

ber of unknown categories. Incremental learning results for

1vSet and SVM are not provided as they do not possess

those capabilities.

NCM
# Known Categories

in Training

200 300 400 500

# Unknown

Categories

in testing

0 22.6133 10.1400 9.3300 7.2987

100 12.4089 2.3550 2.6640 2.7489

200 9.3067 1.8840 2.2200 2.3562

500 5.3181 1.1775 1.4800

Table 5: NCM with metric learning performed on 200 cate-

gories

NNO
# Known Categories

in Training

200 300 400 500

# Unknown

Categories

in testing

0 22.4033 9.1000 9.2833 7.0307

100 17.7378 6.3933 5.8520 5.3478

200 16.2900 7.4627 6.8178 6.2276

500 12.4343 7.3167 6.8926 1.6493

Table 6: NNO with metric learning performed on 200 cate-

gories

1vsSet
# Known Categories

in Training

200

# Unknown

Categories

in testing

0 14.0933

100 12.4044

200 11.6617

500 10.8448

Table 7: 1vSet algorithm tested with varying number of un-

known categories. Model trained on 200 categories



SVM
# Known Categories

in Training

200

# Unknown

Categories

in testing

0 19.25

100 12.8333

200 9.625

500 5.5

Table 8: SVM algorithm tested with varying number of un-

known categories. Model trained on 200 categories

References

[1] H. Agrawal, N. Chavali, M. C., Y. Goyal, A. Alfadda,

P. Banik., and D. Batra. Cloudcv: Large-scale distributed

computer vision as a cloud service, 2013. 2

[2] N. Dalal and B. Triggs. Histogram of oriented gradient for

object detection. CVPR, 2005. 3

[3] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J.

Lin. Liblinear: A library for large linear classification. The

Journal of Machine Learning Research, 9:1871–1874, 2008.

4

[4] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ra-

manan. Object detection with discriminatively trained part

based models. IEEE TPAMI, 2010. 3

[5] L. P. Jain, W. J. Scheirer, and T. E. Boult. Multi-class open

set recognition using probability of inclusion. In Computer

Vision–ECCV 2014, pages 393–409. Springer, 2014. 4

[6] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of

features: Spatial pyramid matching for recognizing natural

scene categories. CVPR, 2006. 2, 3

[7] T. Ojala, M. Pietikainen, and T. Maenpaa. Multiresolution

gray-scale and rotation invariant texture classification with

local binary patterns. IEEE TPAMI, 2002. 3

[8] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual

Recognition Challenge, 2014. 1

[9] W. Scheirer, L. Jain, and T. Boult. Probability models for

open set recognition. Pattern Analysis and Machine Intelli-

gence, IEEE Transactions on (T-PAMI), 36(11):2317–2324,

Nov 2014. 4

[10] W. J. Scheirer, A. Rocha, A. Sapkota, and T. E. Boult. To-

wards open set recognition. IEEE Transactions on Pattern

Analysis and Machine Intelligence (T-PAMI), 36, July 2013.

4


