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Figure 1. Nested motion descriptors - A Visualization

1. Complex Steerable Pyramid

The complex steerable pyramid [15, 14, 10] is an over-
complete decomposition of an image into orientation and
scale selective subbands. The orientation subbands exhibit
a steerability property such that the response to an arbitrary
orientation is a linear combination of basis subbands. Fur-
thermore, a complex steerable pyramid includes basis filters
in quadrature pairs, such that each basis filter is further de-
composed into a an oriented filter and it’s Hilbert transform,
forming an in-phase and quadrature component shifted by
90o in phase.

The complex steerable pyramid is computed using a re-
cursive pyramid decomposition [10]. Given a set of steer-
able basis filters G and Hilbert transform H , let a basis fil-
ter F be represented in complex form by F = G + H ∗ i.
Each filter is tuned to a bandpass response in frequency ω
and orientation θ forming a set of complex steerable filters
Fω,θ. The bandpass response Bω,θ = I ⊗Fω,θ is formed by
convolution of an image I with the complex filter. The pyra-

mid decomposition is formed by recursively convolving an
image I with a lowpass filter F0, downsampling the image
by a factor of 2, then computing the bandpass response B.
This pyramid decomposition procedure is shown in figure 3
This decomposition can be made faster by considering sep-
arable kernels for the lowpass and complex steerable filters
forming a separable quadrature steerable pyramid [14].

The complex steerable pyramid provides a measurement
of the magnitude and phase of oriented and scaled edges.
Following pyramid decomposition, complex valued band-
pass coefficients can be decomposed into a real component
representing the in-phase response, and the imaginary com-
ponent representing the quadrature response. Let a coef-
ficient cω,θ(u, v) = x + iy be the complex valued coeffi-
cient for subband with orientation θ and scale ω for pixel
(u, v) with real component x and imaginary component
y. Then, the magnitude and phase of this coefficient is
|c| =

√
x2 + y2 and phase of ∠c = atan2(y, x). Intu-

itively, the magnitude is proportional to the contrast of an
edge at the tuned orientation and scale at (u, v), and the
phase is proportional to the shift in the direction of the tuned
filter orientation to the dominant edge. In other words,
phase encodes a spatial offset to an edge.

Figure 4 (a-d) shows an example of the magnitude and
phase response of a complex quadrature filter for a 1D step
edge. The impulse response of this real and imaginary com-
ponent of this quadrature pair is shown in the second plot.
Observe that these filters form a quadrature pair such that
the quadrature component is shifted by +π

2 relative to the
in-phase component. The phase plot show that the phase ex-
hibits a linear response near the step edge (modulo π where
the phase wraps from +π to −π). Furthermore, the phase
gradient is constant in this region and equal to one. This lin-
earity of phase is exploited to estimate velocity in the next
section.

2. Phase Gradients and Component Velocity
In general, the relationship between phase, translation

and velocity is summarized in the Fourier shift theorem.
This classic theorem states that a translation in the spatial

1



Figure 2. From nested shape descriptors to nested motion descriptors. Nested shape descriptors pool oriented and scaled gradients magni-
tude which captures the contrast of an edge in an image. Nested motion descriptors pool relative phase which captures translation of an
edge. Projecting the structure of the nested motion descriptor onto a single image (”collapsing” the descriptor) will form the structure of
the nested shape descriptor.

Figure 3. Pyramid decomposition and reconstruction with the complex steerable pyramid.

domain is equivalent to a phase shift in the frequency do-
main. In this section, we derive the relationship between
phase and phase gradients to derive a measurement of ve-
locity.

An interesting property of the complex steerable pyra-
mid is the ability to introduce motion without changing po-
sition simply by varying the local phase. This phenomenon
has been described as ”Motion without Movement” [5],
such that continuously varying the local phase of a band-
pass response induces the visual phenomenology of global
motion. This relationship between phase and motion has
been used in phase based optical flow methods [3, 4] to en-
force the phase constancy constraint [3], such that feasible
optical flow solutions are constraint to lie on contours of
constant phase. This constraint has shown to be more sta-
ble than the more common brightness constancy constraint
[6, 4] over ranges of shape deformation and lighting. Re-

cent work has exploited this relationship between phase and
motion to amplify small changes in phase to visualize of mi-
croscopic motion at macro scale [17]. This approach multi-
plies small changes in phase by a large constant, then each
image is reconstructed by collapsing the steerable pyramid,
introducing a local image translation due to the local phase
shift.

The phase constancy constraint is defined as follows [3].
Let a complex bandpass response B tuned to an orientation
and scale be given by:

B(x, t) = ρ(x, t)eiφ(x,t) (1)

The magnitude ρ and phase φ of this complex valued spa-
tiotemporal function are also are spatiotemporal functions
that evolve in space and time. Next, consider a moving point
at x0. This moving point evolves according to the motion
field, a spatiotemporal vector field that defines the move-



Figure 4. An example of the magnitude and phase response of a complex filter to a translating 1D step edge signal. (left column, top
to bottom) (a) step edge signal (b) impulse response of 1D quadrature filters (c) magnitude of complex filter response to step edge (d)
phase and spatial phase gradient (|~φ|) of complex filter response showing linearity of phase. (right column, top to bottom) (e) A step edge
translating left to right. (f) the magnitude response (g) the temporal phase gradient (φt). Observe that at the edge, the spatial phase gradient
|~φ| = 1 and the temporal phase gradient is φt = ±2, which measures a spatial shift of φt

|~φ|
= ±2.

ment of each pixel through time. The motion field is en-
coded as a function x0(t) which defines the spatial position
of x0 as a function of time. Fleet and Jepson in their seminal
work on phase based optical flow [2, 6, 3, 4] hypothesized
that the temporal evolution of spatial contours of constant
phase provides a better approximation to the motion field
than do contours of constant amplitude. This phase contour
assumption states that the motion field must satisfy

φ(x0(t), t) = c (2)

where c is a real valued constant. A point x0(t) propagating
as a function of time according to the motion field is con-
strained to fall on a contour of constant phase φ(x0(t), t).
Intuitively, this states that phase is coherent and is preserved
as a point propagates through time.

The phase contour assumption can be used to construct
the phase constancy constraint. Differentiating the phase
contour constraint, we obtain:

5 φ(x, t) • ~v = 0 (3)

where 5φ(x, t) = [∂φdx ,
∂φ
dy ,

∂φ
dt ]T is the phase gradient

and ~v = [∂x0

dt ,
∂y0
dt , 1]T is the component velocity at point

(x0, y0). Rearranging terms

∂φ

dx
vx +

∂φ

dy
vy = −∂φ

dt
(4)

where we use the shorthand notation ~v = [vx, vy, 1] for
the partial derivatives of component velocity and similarly
5φ(x, t) = [φx, φy, φt]

T for the phase gradient. The

phase constancy constraint states that the projection of the
component velocity onto the spatial phase gradient is equal
to the negative temporal phase gradient. This is identical
to the classic brightness constancy constraint, using local
phase instead of local brightness. Observe that the dot prod-
uct in (3) shows that the velocity cannot be determined nor-
mal to the phase gradient, which provides a constraint only
on the component of velocity tuned to the orientation of the
filter B. The phase constancy constraint in (4) shows the
explicit relationship between the phase gradient and veloc-
ity.

This method can be used to estimate the component ve-
locity for each tuned orientation and scale Bω,θ. We use
the notation ~φ = [φx, φy]T to denote the spatial phase gra-
dient, then the spatial phase gradient defines a unit vector
n̂ = [φx

|~φ|
,
φy

|~φ|
]T . The unit vector constraints the direction of

the component velocity, due to the dot product in the phase
constancy constraint. The velocity magnitude α can be de-
termined directly from (4):

α =
−φt
|~φ|

(5)

where ~φ = [φx, φy] is the spatial phase gradient. This is a
single equation in a single unknown for the velocity scale α.
Given the observed phase gradient, the component velocity
is estimated ~v = αn̂. Fleet and Jepson further proposed that
the component velocities can be used as an overcomplete set
of measurements to estimate the optical flow v using regu-
larized least squares optimization. This can provide an esti-
mate of pixel velocity or optical flow from measurements of



component velocity, which is the foundation of phase based
optical flow methods [2, 6, 3, 4].

The component velocity (5) is a function of only phase
gradients which can be computed efficiently from the com-
plex steerable pyramid. The bandpass response in the com-
plex steerable pyramid for a given tuned orientation and
scale at time t is denoted Btω,θ. To simplify notation, when
the bandpass orientation and scale (ω, θ) is implied, let this
bandpass response be written as Btω,θ = Bt. The phase
gradient is given by

5 φ =
Im(B∗∆B)

|B|2
(6)

where Im(z) is the imaginary component of the complex
number z, and B∗ is the complex conjugate of the complex
valued bandpass response [3]. This identity for the phase
gradient depends only on the complex bandpass response,
and avoids an explicit computation of the phase angle using
a trigonometric function.

Figure 4 (d-f) shows an example of the phase gradient
and component velocity estimate. In this example, a 1D step
edge is translating by two pixels from left to right. Figure
4 (e) shows the magnitude response of this translation, and
(f) shows the temporal phase gradient computed using (6).
The spatial phase gradient is shown in figure 4 (d). Using
the measured phase gradients, we can use (5) to compute
the velocity magnitude α = ±2

1 , which shows that the phase
gradients provide a measurement of shift of the translating
step edge.

3. Perspective views of the NMD

Figure 2 and figure 5 show perspective views of the
nested motion descriptor. This provides a visualization of
the 3D pooling structure of this descriptor.

4. Construction of the NMD

Figure 6 shows the log-spiral property the the log-spiral
normalization of the nested motion descriptor.

5. Experimental Results

The goal of our experimental evaluation is demonstrating
of relative performance of local motion descriptors for the
task of activity recognition. This experimental evaluation
does not attempt to achieve the state of the art in activity
recognition on any one dataset. For example, the current
state of the art uses higher level activity representations us-
ing improved dense trajectories and Fisher vector encoding
of activities [19]. Instead, we are interested in determining
the relative effect of only the local motion descriptors, in
order to determine the relative benefit of this representation

for this task. As a result, we consider only the relative per-
formance of classification using a simple and well under-
stood activity representation based on bag-of-words. This
will not achieve state of the art, but the relative ranking is
insightful for the performance of the descriptors only. These
descriptors could then be used to improve the performance
of dense trajectories to further push the state of the art. This
evaluation strategy was used for baseline comparisons of lo-
cal motion descriptors in activity recognition evaluations in
[18, 1], and we follow the same approach.

We compare performance of the nested motion descrip-
tors to HOG-HOF [9] and HOG-3D [7]. As described in
the related work, there are many other motion descriptors
including motion boundary histograms, motion interchange
patterns and variants of dense trajectories. However, all of
these descriptors are non-local. They focus on optical flow
to aggregate local descriptors by tracking points through a
long trajectory, which is a form of a global representation.
In fact, dense trajectories define their representation as set
of HOG-HOF descriptors extracted along a trajectory. The
nested motion descriptor is local to a specific interest point,
rather than capturing the properties of a trajectory. There-
fore, we compare to other local motion descriptors. The
evaluation in [18] showed that HOG-HOF and HOG-3D
outperformed cuboid and dense SURF, so we limit our eval-
uation to these two descriptors. Furthermore, the improved
dense trajectories consider HOG-HOF as the local motion
descriptor extracted along the trajectory, so we use this as
our baseline.

The datasets chosen for this evaluation span the com-
plexity representative of classic and modern activity recog-
nition problems. The KTH actions dataset [13] (2004), is
representative of classic activity recognition dataset, with
six classes and unmoving and zooming cameras. The UCF
sports actions dataset [12] (2008) has nine activity classes,
but these videos are collected in unconstrained television
footage. Finally, the human motion database (HMDB) [8]
(2011) is representative of a modern dataset with over fifty
actions in unconstrained video.

The state of the art for activity recognition has moved to
larger and more diverse datasets [11][16] with hundreds of
activity classes, however since our focus is on relative per-
formance of descriptors, we focus on classic datasets that
span the complexity rather than pushing the absolute classi-
fication accuracy performance. Furthermore, classification
performance has saturated on the KTH actions dataset to
near perfect classification results, due primarily to the fact
that the camera is not moving. However, remember that
our analysis is focused on demonstrating the relative per-
formance benefit of the local motion descriptors, and not the
absolute classification performance of the activity recogni-
tion framework. So, these datasets remain informative for
this relative analysis task.



Figure 5. Perspective views of the spatiotemporal pooling regions of the nested motion descriptor. (left) az=90o, el=90o, the temporal axis
is pointed into the page. We overlay the nested shape descriptor onto this view, which shows that the NMD has an equivalent pooling
structure to the NSD (middle) az=45o, el=25o, with the temporal axis pointed into the page, (right) az=90o, el=0o, with the Y axis pointed
out of the page. This view shows that the temporal pooling regions increase proportionally to spatial scale. The slope of the line connecting
the centers is determined by the velocity tuning of the descriptor. A video visualization of this descriptor is available in the supplementary
material.

Figure 6. (top) Logarithmic spiral property of the nested motion descriptor provides normalization and binarization. The log-spiral and it’s
reflection shown in grey form an elegant flower-like structure. (bottom) An NMD is formed at each interest point by (left) nested pooling
of scaled and oriented gradients and (right) log-spiral difference and binarization.

5.1. Experimental System

The experimental system we consider for evaluation of
nested motion descriptor performance is activity recogni-
tion using a bag of words representation.

For each observation, we densely extract local motion
descriptors from each frame in the video, with the given
spatiotemporal stride. We use a all descriptors from a ran-
dom sample of 30 videos to perform vector quantization to
learn the K words in the vocabulary. Then, for each video,
we construct a bag-of-words representation by assigning
each densely extracted descriptor to the closest word, and
creating a normalized histogram of word occurrence. Fi-
nally, classification is performed by training a one-vs-rest
linear SVM classifier for each class, then selecting the max-
imum likelihood class for each observation. We report re-
sults in classification rate or mean average precision across
all classes for each dataset.

We compare to the baseline of [9] and HOG-3D [7] lo-
cal motion descriptors. We use the public implementations
available from the author’s websites, and initialize these de-
scriptors to the parameters listed below.

Finally, we use the following parameters in all experi-
ments, in addition to the default parameters recommended
by the original authors.

• Resolution: We downsample frames so that the maxi-
mum dimension is 160 pixels.
• Visual words: 600 words in the vocabulary, trained

from a random sample of 10,000 descriptors from 30
videos.
• Stride: dx=5, dy=5 spatially, dt=5 temporally
• NMD parameters: scales=5, orientations=8, lobes=8,

real valued (without binarization), with log-spiral nor-
malization
• Dataset size per class: 30 training videos, 65 testing

videos.

Training and testing splits follow the recommendations
from the dataset authors, unless otherwise noted. For KTH
actions, we follow the recommended training and testing
splits where we divide the test set into nine subjects (2, 3, 5,
6, 7, 8, 9, 10, and 22) and the training set into the remain-
ing subjects. For HMDB, we use the unstabilized HMDB



videos and limit the training and testing to the listed num-
ber of videos per class above. For UCF sports, we perform
leave one out cross validation due to the limited number of
videos available per class and report only confusion matrix
and mean classification rate results.

5.2. Experimental Datasets

KTH actions is a classic activity recognition dataset
[13]. This dataset contains six types of human actions
(walking, jogging, running, boxing, hand waving and hand
clapping) performed several times by 25 subjects in four
different scenarios: outdoors, outdoors with scale variation,
outdoors with different clothes and indoors. This dataset
contains 2391 sequences, such that all sequences were taken
over homogeneous backgrounds with a static camera with
25 Hz frame rate. The sequences were downsampled to the
spatial resolution of 160x120 pixels and have an average
length of four seconds.

The UCF sports actions dataset [12] consists of a set
of nine actions collected from various sports typically fea-
tured on broadcast television channels such as the BBC and
ESPN. The video sequences were obtained from a wide
range of stock footage websites including BBC Motion
gallery, and Getty Images. This dataset contains close to
200 video sequences at a resolution of 720x480. The collec-
tion represents a natural pool of actions featured in a wide
range of scenes and viewpoints. Actions in this data set in-
clude: Diving (16 videos), Golf swinging (25 videos), Kick-
ing (25 videos), Lifting (15 videos), Horseback riding (14
videos), Running (15 videos), Skating (15 videos), Swing-
ing (35 videos) and Walking (22 videos).

The Human Motion DataBase (HMDB) is a recent ac-
tivity dataset containing a large number of activities in the
wild [8]. HMDB is an activity recognition dataset collected
from various sources, mostly from movies, and a small pro-
portion from public databases such as the Prelinger archive,
YouTube and Google videos. The dataset contains 6849
clips divided into 51 action categories, each containing a
minimum of 101 clips. The categories can be grouped in
five types:

• General facial actions such as smile, laugh, chew, talk.
• Facial actions with object manipulation such as smoke,

eat, drink.
• General body movements: cartwheel, clap hands,

climb
• Body movements with object interaction: brush hair,

catch, draw sword,
• Body movements for human interaction: fencing, hug,

kiss

6. Additional Motion Visualization Examples
Figure 7 shows an example of jogging from the KTH

actions dataset. This example considers a static camera,

so there is zero motion in the background due to camera
motion. The bottom row shows the motion visualization
without the log-spiral normalization, and this shows that the
motion is dominated by the overall movement of the jogger
from right to left. The top row shows the effect of the log-
spiral normalization which causes the motion of the legs and
pumping of the arms to pop out.

Figure 8 shows an example of hug from the HMDB. This
example also includes a camera motion panning from left to
right as the two people converge to a hug. Without the log-
spiral normalization, this camera motion dominates, reduc-
ing the scene to a single motion blob. With the log-spiral
normalization, the salient motion of the hands and head as
two enter the hug.

7. KTH Actions
Figure 9 shows detailed classification results on the KTH

actions dataset. This dataset has a large number of train-
ing examples per class which allows for evaluation using
precision-recall curves in addition to the confusion matrices
and classification rates. This result shows that the NMD ex-
hibits significantly improved average precision for boxing
and handwaving, but is worse on jogging. An analysis of
the confusion matrix for the NMD shows that performance
on jogging is confused with running and walking. This sug-
gests that the absolute velocity is a discriminative feature
for this class, and the log-spiral normalization discards this
information when computing the invariance to camera mo-
tion. It is interesting to note that in some cases, the dom-
inant motion in the scene is informative for classification.
This highlights the need for a composition of various de-
scriptors for accurate activity classification.
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