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Appendix A: Inference Algorithm Listing

We present here a summary of the inference algorithm for reference. It takes as input the following elements:

1. Sets of regions Pk, k ∈ {1, . . .K} at K different scales.

2. For each region p ∈ Pk, k > 1, a set Hp consisting of non-overlapping child regions that partition p, and are from scales smaller

than k (i.e. Hp ⊂
⋃k−1

k′=1
Pk′ ).

3. The data cost functions Dp(·) and scalar outlier costs τp for every region p.

4. The value of the consistency weight λ. Additionally, its value λ0 to be used at the beginning of the iterations, the factor λf > 1 by

which it is to be increased at every Tλ iterations.

5. An initial estimate Z0(n) of the scene value map.

Given these elements, the algorithm to minimize the cost function L is reproduced below:

# Initialization

Set λ∗ = λ0, Z(n) = Z0(n) for all n.

In parallel, for all p ∈ P1:

Set Qp =
∑

n∈p
U(n)TU(n).

end;

for k = 2 . . .K
In parallel, for all p ∈ Pk:

Set Qp =
∑

c∈Hp
Qc.

end;

end;

# Main Iterations

for iters = 1 . . .MAXITERS

# Upsweep

In parallel, for all p ∈ P1:

Set φp =
∑

n∈p
U(n)TZ(n), ep =

∑
n∈p

‖Z(n)‖2.
end;

for k = 2 . . .K
In parallel, for all p ∈ Pk:

Set φp, ep as per (10).

end;

end;

# Minimize

In parallel, for all p ∈ P :

Set θp, Ip as per (8) and (9).

end;

# Downsweep

for k = K,K − 1, . . . 1
In parallel, for all p ∈ Pk:

Set θ+p , I
+
p as per (11).

end;

end;

In parallel, for all n:

Set Z(n) as per (12).

end;

# Update λ∗

Set λ∗ =MIN(λ∗ × λf , λ) if mod(iters,Tλ) = 0.

end;
.
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Appendix B: Evolution of Consensus Objective during Optimization
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Figure 5. This figure shows the evolution of the consensus cost during optimization for a typical image with using different initial values

λ0 and update schedules λf , Tλ (see Appendix A) for λ′. The consensus cost shown is computed with the true value of the consistency

weight λ (even for the iterations when minimization is done with lower values λ′), and the occlusion-based correction step is omitted.

As described in Sec. 4, to avoid poor local minima and promote convergence to a good solution with a low cost, we use a lower value

λ′ of the consistency weight in the early iterations of the alternating minimization method, and increase it slowly to the desired weight λ.

Figure 5 illustrates the effect of different schedules for λ′ on convergence for a typical example. In Fig. 5 (a), we show the evolution of the

objective starting with different values of λ′ = λ0, and increasing it by a constant factor of λf =
√
2 at every iteration, and keeping it fixed

after it reaches λ′ = λ. We see that the direct alternating minimization case (λ0 = λ) decreases the consensus cost sharply in the first few

iterations, but then stagnates at a local minima with a relatively high cost. As we lower the starting value of λ0, the cost has higher values

and decreases more gradually in the initial iterations, but continues to decrease over a larger number of iterations and eventually converges

to a better solution with a lower cost. Figure 5 (b) explores the effect of a higher rate λf of increasing λ′. We see that like with a lower

starting value for λ0, a slower rate λf leads to convergence to a better solution, albeit more gradually.

In addition to requiring more iterations to converge, another computational penalty of changing λ′ across iterations is that it requires

re-doing any pre-computations that depend on the consistency weight. For our stereo algorithm, minimizing the sum of the data and consis-

tency costs involves solving a 3× 3 linear system for each region, and changing the value of λ′ requires re-doing the LDL decompositions

of the system matrices. Since this is expensive, it is desirable to avoid changing the value of λ′ at every iteration. In Fig. 5 (c), we consider

different cases with the same value of λ0 while jointly setting the increase factor λf , and the interval Tλ at which it is applied, so that the

total number of iterations taken for λ′ to reach its final value λ remains the same (i.e., by applying a higher rate at larger intervals). We

see that choosing higher intervals leads to a “stair-casing” effect in the evolution of the objective, but the solution it converges to is only

worse by a relatively small margin. We find this to be an acceptable trade-off between convergence to a low-cost solution and limiting

computational expense, and use the parameters λ0 = λ/218, λf =
√
2Tλ , Tλ = 6 in our stereo implementation.


