
6. Supplementary Material

6.1. On the (joint) convexity of Sparse Kernel MTL

As stated in the paper, it can be shown that the Sparse

Kernel MTL problem introduced in Eq. (4) is jointly con-

vex in the two optimization variables f and A. The proof

of this fact requires the introduction of functional analysis

tools that are beyond the scope of this work. Indeed, ac-

cording to equation (6) we have observed that it is possi-

ble to restrict the SKMTL problem to functions of the form

f(·) =
Pn

i=1
k(·, xi)bi with bi 2 R

T . The following result

proves the joint-convexity of Eq. (4) for this setting. It is an

extension of similar results in [2, 28] and we give it here for

completeness.

Proposition 6.1. Let V : RT ! R
T ! R+ be a convex

loss function. Then the functional in problem (4) – restricted

to functions f of the form f(·) =
Pn

i=1
k(·, xi)bi with bi 2

R
T – is convex in both f and A.

Proof. Notice that, the only term that requires some care

is the component of the functional that is mixing f and A

together, namely kfkH (where the dependency to A is im-

plicit in H. Indeed, since V is chosen to be convex, the em-

pirical risk term is clearly convex in f and does not depend

on A, while all the remaining terms are – i.e. the tr(A−1),
tr(A) and kAk`1 – penalize only the structure matrix A and

are clearly convex with respect to it.

According to Eq. (6) f(·) =
Pn

i=1
k(·, xi)bi and

we have that kfk2H can be rewritten as kfk2H =
tr(B>KBA−1)), with K 2 Sn

+ the empirical kernel ma-

trix and B 2 R
n⇥T the matrix whose rows correspond to

b>i . Let us now set b = vec(B) 2 R
nT the vectorization

of matrix B, obtained by concatenating the columns of B.

Then we have that

tr(B>KBA−1) = bT (A−1 ⌦K)b. (11)

In order to show that the function Q(A, b) = bT (A−1⌦K)b
is jointly convex in b and A we will show that its epigraph

is a convex set. To see this notice that

epiQ = {(A, b, c) 2 ST
++ ⇥ R

nT ⇥ R | c ≥ w>(A−1 ⌦K)w}

= {(A, b, c) 2 ST
++ ⇥ R

nT ⇥ R |

✓

A⌦K† b

b> c

◆

2 Snt+1
+ }

(12)

where the second equality is directly derived from a Schur’s

complement argument. Consider now any couple of points

(A1, b1, c1), (A2, b2, c2) 2 epiQ and any ✓ 2 [0, 1]. We

clearly have that the convex combination

✓

✓

A1 ⌦K† b1
b>1 c1

◆

+ (1− ✓)

✓

A2 ⌦K† b2
b>2 c2

◆

=

✓

✓A1 ⌦K† + (1− ✓)A2 ⌦K† ✓b1 + (1− ✓)b2
✓b>1 + (1− ✓)b>2 ✓c1 + (1− ✓)c2

◆

(13)

still belongs to SnT+1
+ , which implies that

(✓A1+(1−✓)A2, ✓b1+(1−✓)b2, ✓c1+(1−✓)c2) 2 epiQ
(14)

therefore proving that Q is jointly convex in b and A.

6.2. Cluster Multi-task Learning

We briefly recall here the Convex Multi-task Cluster

Learning proposed in [13] and show that it can be cast in the

same framework as that of our Sparse Kernel MTL model.

In particular we comment what choice of constraint set A
can be imposed on the structure matrix A to recover clus-

tered structures of tasks.

In the setting proposed by [13], tasks are assumed to be-

long to one of r of unknown clusters, with r fixed a priori.

While the original formulation is for the linear kernel, it can

be easily extended to the non-linear setting of RKHSvv. Let

E 2 {0, 1}T⇥r be the binary matrix whose entry Est has

value 1 whenever a task s belongs to cluster t, and 0 oth-

erwise. Let L be the normalized Laplacian of the Graph

defined by E. Set M = I − L, and U = 1

T
11>. As we

have observed in Eq. (6), the regularizer kfkH depends on

A−1. The role of this term could be shaped to reflect the

structure of the clusters encoded in the Laplacian L, hence

in the matrix M . As noted in [13] A−1(M) can be chosen

so that:

A−1(M) = ✏MU + ✏B(M − U) + ✏W (I −M), (15)

where the first term is a global penalty on the average pre-

dictor, the second term penalizes the between cluster vari-

ance, and the third term penalizes the within cluster vari-

ance. Since M belongs to a discrete set, the authors propose

a relaxation for M by constraining it to be in a convex set

Sc = {M 2 ST
+, 0 ( M ( I, tr(M) = r} which directly

induces a set A of spectral constraints for A.

7. Further Results

We report here further results that suggest the efficacy

of our method in sharing information across tasks also in

settings that are not related to computer vision applications.

While the interpretation of the sparse matrix recovered was

less clear in this context, we notice that such recovered

structure is beneficial to the multi-task prediction.

Sarcos. Sarcos3 is a regression dataset designed to evalu-

ate machine learning solutions for inverse dynamics prob-

lems in robotics. It consists in a collection of 21-

dimensional inputs, i.e. the joint positions, velocities and

acceleration of a robotic arm with 7 degrees of freedom

3urlhttp://www.gaussianprocess.org/gpml/data/
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50 tr. samples per class 100 tr. samples per class 150 tr. samples per class 200 tr. samples per class

nMSE (± std) nI nMSE (± std) nI nMSE (± std) nI nMSE (± std) nI

STL 0.2436 ± 0.0268 0 0.1723 ± 0.0116 0 0.1483 ± 0.0077 0 0.1312 ± 0.0021 0

MTFL 0.2333 ± 0.0213 0.0416 0.1658 ± 0.0107 0.0379 0.1428 ± 0.0083 0.0281 0.1311 ± 0.0055 0.0003

MTRL 0.2314 ± 0.0217 0.0404 0.1653 ± 0.0112 0.0401 0.1421 ± 0.0081 0.0288 0.1303 ± 0.0058 0.0071

OKL 0.2284 ± 0.0232 0.0630 0.1604 ± 0.0123 0.0641 0.1410 ± 0.0087 0.0350 0.1301 ± 0.0073 0.0087

SKMTL 0.2127 ± 0.0248 0.0713 0.1591 ± 0.0127 0.0748 0.1410 ± 0.0081 0.0393 0.1303 ± 0.0071 0.0073

Table 4. Comparison of Multi-task learning methods on the Sarcos dataset. The advantage of learning the tasks jointly decreases as more

training examples became available.

and 7 outputs (the tasks), which report the corresponding

torques measured at each joint.

For each task, we randomly sampled 50, 100, 150 and

200 training examples while we kept a test set of 5000 ex-

amples in common for all tasks. We used a linear kernel and

performed 5-fold crossvalidation to find the best regulariza-

tion parameter according to the normalized mean squared

error (nMSE) of predicted torques. We averaged the results

over 10 repetitions of these experiments. The results, re-

ported in Table 4, show clearly that to adopt a multi-task

approach in this setting is favorable; however, in order to

quantify more clearly such improvement, we report in Ta-

ble 4 also the normalized improvement (nI) over single-task

learning (STL). For each multi-task method MTL, the nor-

malized improvement nI(MTL) is computed as the average

nI(MTL) =
1

nexp

nexp
X

i=1

nMSEi(STL)− nMSEi(MTL)
p

nMSEi(STL) · nMSEi(MTL)

over all the nexp = 10 experiments of the normalized differ-

ences between the nMSE achieved by respectively the STL

approach and the given multi-task method MTL.


