6. Supplementary Material
6.1. On the (joint) convexity of Sparse Kernel MTL

As stated in the paper, it can be shown that the Sparse
Kernel MTL problem introduced in Eq. (4) is jointly con-
vex in the two optimization variables f and A. The proof
of this fact requires the introduction of functional analysis
tools that are beyond the scope of this work. Indeed, ac-
cording to equation (6) we have observed that it is possi-
ble to restrict the SKMTL problem to functions of the form
f() =300, k(-,2;)b; with b; € R The following result
proves the joint-convexity of Eq. (4) for this setting. It is an
extension of similar results in [2, 28] and we give it here for
completeness.

Proposition 6.1. Let V : RT — RT — R, be a convex
loss function. Then the functional in problem (4) — restricted
to functions f of the form f(-) = >_1" | k(-,x;)b; with b; €
RT — is convex in both f and A.

Proof. Notice that, the only term that requires some care
is the component of the functional that is mixing f and A
together, namely || f||3 (where the dependency to A is im-
plicit in H. Indeed, since V' is chosen to be convex, the em-
pirical risk term is clearly convex in f and does not depend
on A, while all the remaining terms are — i.e. the tr(A~1),
tr(A) and || A||s, — penalize only the structure matrix A and
are clearly convex with respect to it.

According to Eq. (6) f(-) = Y.i_,k(-,z;)b; and
we have that [|f[|3, can be rewritten as |f||3, =
tr(BT KBA™1)), with K € S7 the empirical kernel ma-
trix and B € R™*7T the matrix whose rows correspond to
b]. Let us now set b = vec(B) € R"T the vectorization
of matrix B, obtained by concatenating the columns of B.
Then we have that

tr(BTKBA™Y) = bT (A7 @ K)b. (11)
In order to show that the function Q(A, b) = bT (A1 K)b

is jointly convex in b and A we will show that its epigraph
is a convex set. To see this notice that

epiq = {(A,b,c) € ST, xR xR|c>w' (A7 ®@ K)w}

T
= {(Ab,¢) € ST, xR"T xR | ( A%TK b
12)
where the second equality is directly derived from a Schur’s
complement argument. Consider now any couple of points
(A1,D01,¢1), (A2,b2,¢2) € epig and any § € [0,1]. We
clearly have that the convex combination
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still belongs to SQTH, which implies that

(9141 + (1 — 9)1427 0b, + (1 — 0)1)27 Ocy + (1 — 0)02) S BpiQ
14

therefore proving that () is jointly convex in b and A.
O

6.2. Cluster Multi-task Learning

We briefly recall here the Convex Multi-task Cluster
Learning proposed in [13] and show that it can be cast in the
same framework as that of our Sparse Kernel MTL model.
In particular we comment what choice of constraint set .4
can be imposed on the structure matrix A to recover clus-
tered structures of tasks.

In the setting proposed by [13], tasks are assumed to be-
long to one of r of unknown clusters, with r fixed a priori.
While the original formulation is for the linear kernel, it can
be easily extended to the non-linear setting of RKHSvv. Let
E € {0,1}T*" be the binary matrix whose entry E; has
value 1 whenever a task s belongs to cluster ¢, and 0 oth-
erwise. Let L be the normalized Laplacian of the Graph
defined by E. Set M = I — L,and U = £117. As we
have observed in Eq. (6), the regularizer || f||3 depends on
A~ The role of this term could be shaped to reflect the
structure of the clusters encoded in the Laplacian L, hence
in the matrix M. As noted in [13] A=!(M) can be chosen
so that:

AN M) = epyU + ep(M —U) + ew (I — M), (15)
where the first term is a global penalty on the average pre-
dictor, the second term penalizes the between cluster vari-
ance, and the third term penalizes the within cluster vari-
ance. Since M belongs to a discrete set, the authors propose
a relaxation for M by constraining it to be in a convex set
S.={M e ST,0=<M <1I,tr(M) = r} which directly
induces a set A of spectral constraints for A.

7. Further Results

We report here further results that suggest the efficacy

c Sf“} of our method in sharing information across tasks also in

settings that are not related to computer vision applications.
While the interpretation of the sparse matrix recovered was
less clear in this context, we notice that such recovered
structure is beneficial to the multi-task prediction.

Sarcos. Sarcos® is a regression dataset designed to evalu-

ate machine learning solutions for inverse dynamics prob-
lems in robotics. It consists in a collection of 21-
dimensional inputs, i.e. the joint positions, velocities and
acceleration of a robotic arm with 7 degrees of freedom

3urlhttp://www.gaussianprocess.org/gpml/data/



50 tr. samples per class 100 tr. samples per class 150 tr. samples per class 200 tr. samples per class

nMSE (& std) nl nMSE (& std) nl nMSE (& std) nl nMSE (& std) nl
STL 0.2436 + 0.0268 0 0.1723 £ 0.0116 0 0.1483 £+ 0.0077 0 0.1312 4+ 0.0021 0
MTFL 0.2333 £+ 0.0213 0.0416 0.1658 £ 0.0107 0.0379 0.1428 £+ 0.0083 0.0281 0.1311 £+ 0.0055 ~ 0.0003
MTRL 0.2314 4+ 0.0217 0.0404 0.1653 £ 0.0112 0.0401 0.1421 4+ 0.0081 0.0288 0.1303 4+ 0.0058 ~ 0.0071
OKL 0.2284 4+ 0.0232 0.0630 0.1604 £+ 0.0123 0.0641 0.1410 + 0.0087 0.0350 0.1301 £ 0.0073 ~ 0.0087

SKMTL  0.2127 +0.0248 0.0713 0.1591 +0.0127 0.0748 0.1410 £0.0081 0.0393 0.1303 £0.0071  0.0073

Table 4. Comparison of Multi-task learning methods on the Sarcos dataset. The advantage of learning the tasks jointly decreases as more
training examples became available.

and 7 outputs (the tasks), which report the corresponding
torques measured at each joint.

For each task, we randomly sampled 50, 100, 150 and
200 training examples while we kept a test set of 5000 ex-
amples in common for all tasks. We used a linear kernel and
performed 5-fold crossvalidation to find the best regulariza-
tion parameter according to the normalized mean squared
error (nMSE) of predicted torques. We averaged the results
over 10 repetitions of these experiments. The results, re-
ported in Table 4, show clearly that to adopt a multi-task
approach in this setting is favorable; however, in order to
quantify more clearly such improvement, we report in Ta-
ble 4 also the normalized improvement (nl) over single-task
learning (STL). For each multi-task method MTL, the nor-
malized improvement nI(MTL) is computed as the average

1 <X nMSE;(STL) — nMSE; (MTL)
Neep “= /nMSE;(STL) - nMSE; (MTL)

nI(MTL) =

over all the n.,, = 10 experiments of the normalized differ-
ences between the nMSE achieved by respectively the STL
approach and the given multi-task method MTL.



