On the Relationship between Visual
Attributes and Convolutional
Networks
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We empirically show that a sparse number of nodes in a conv-net,
trained to recognize objects (e.g. 'dolphin'), inherently encode
information about semantic visual attributes (e.g. 'wet').

We call these activation locations Attribute Centric Nodes (ACNs).



Main Findings

Input Image Convolutional Network Object Classification
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1. ACNs exist. They are sparse and powerful representations to recover
attributes.

2. ACNs are unevenly distributed throughout the network and are attribute
specific. ACNs of co-occurring attributes tend to be similar.

3. ACNs are important for object classification.



1. ACNs Existence
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We found that only a small percentage of ACNs is required to produce
near perfect reconstruction. At u = 200 (1.2% of the conv-net nodes),
the AUC-ROC score stabilizes, which is evidence that ACNs are truly
sparse in the conv-net.

W is a hyper-parameter to trade-off sparsity and reconstruction. Check details in the paper.



1. ACNs Existence
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ACNs are powerful features for attribute prediction. They record an
improvement around 10% against multiple hand-crafted features with
non-linear kernels [15].



1. ACNs Existence

Attribute Group Our SVM FC-6 | SVM FC-7 | SVM FC-8
Color (11 attr) 00.5% 88.1% 89.6% 87.5%
Texture (& attr) &87.7% a8d. 3% 83.9% 83.5%
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In general, attribute prediction based on ACNs is better than
attribute prediction of one robust classifier trained over the
activations of a single fully-connected layer.

It suggests that some attributes take advantage of activations from
lower hidden layers.



2. Distribution of ACNs
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We study the importance of the ACN with respect to their localization

in the conv-net,

for

each attribute.

The average normalized

contribution of each layer is reported in parentheses.



2. Distribution of ACNs
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ACN localization is attribute dependent. For example, color
attributes tend to be represented well by activations from the

convolutional layers.
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In general, the most important activations are localized on higher
layers. This is experimental support for the common practice of
using features from the fully-connected layers



2. Distribution of ACNs
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The visual pattern of ACNs in convolutional layers is diverse. It tends to
be spatially structure-less in lower convolutional layers while it
becomes more centralized and spatially contiguous in higher layers.



2. Distribution of ACNs
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Interestingly, some layers (e.g. conv2 and conv3) of some attributes
contain ACNs in local patterns around image borders suggesting some
form of learned context.



3. Impact of ACNs on Object Recognition
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We perform an ablation study to measure the impact of ACNs on object
classification.
We compare ACN ablation to random node ablation.
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We ablated ACNs associated with all 25 absolute attributes. Both ablation
methods show a steep drop-off as u increases. However, the difference in
accuracy between the two is significant.

This suggests that ACNs encode important information used by the conv-net
for recognition.

50

The small standard deviation of random ablation is scaled up to be visually perceivable.
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We also remove ACNs for each attribute separately. Similarly, we
observe that ACN ablation produces a more drastic drop-off than
random nodes ablation.

The small standard deviation of random ablation is scaled up to be visually perceivable.
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We also found semantic relationships between ablated ACNs of specific
attributes and the most (and least) affected object categories. The
drop-off in mean average precision is reported in parentheses.
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