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1. Updating K−1
L,L

When the iteration proceeds, the size l of labeled set L will grow larger and larger, so inverting the l × l matrix KL,L
(KL,L is the sub-matrix of K corresponding to L) at scratch under each iteration is very inefficient. Here we tackle this

computational issue by incrementally updating K−1
L,L based on the previous inverting result.

As our submission, T is used to denote the curriculum set with size q, and KT ,L, KL,T , KL,L are sub-matrices of the

kernel matrix K indexed by the associated subscripts. After one iteration, the kernel matrix on the labeled set is updated by

KL,L ←
(
KL,L KL,T
KT ,L KT ,T

)
. (1)

As a result, its inverse can be updated by using the blockwise inversion equation [5] as

K−1
L,L ←

(
K−1

L,L +K−1
L,LKL,T (KT ,T −KT ,LK

−1
L,LKL,T )

−1
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−1
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−1
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−1
L,LKL,T )

−1

)
.

(2)

From (2) we observe that only a q × q matrix, instead of the original l × l (l � q in later iterations) matrix, should be

inverted in each iteration. Moreover, q will not be excessively large since only a small proportion of unlabeled superpixels

are included into the curriculum per iteration (see Figs. 3 and 5(d) in the submission). Therefore, the proposed algorithm

runs efficiently.

2. Physical Interpretation and Justification
A key factor to the effectiveness of our method is the well-ordered learning sequence from simple to difficult, which is

also considered by curriculum learning [1] and self-paced learning [8]. Our paper introduces this strategy to graph-based

saliency propagation. More interestingly, we provide a physical interpretation of this strategy, by relating the curriculum

guided propagation to the practical fluid diffusion.

In physics, Fick’s Law of Diffusion [2] is well-known for understanding the mass transfer of solids, liquids, and gases

through diffusive means. It postulates that the flux diffuses from regions of high concentration to regions of low concentration,

with a magnitude that is proportional to the concentration gradient (see Fig. 1(a)). Along one diffusive direction, the law is

formulated as

J = −γ
∂h

∂δ
, (3)

where γ is the diffusion coefficient, δ is the diffusion distance, h is the concentration that evaluates the density of molecules

of fluid, and J is the diffusion flux that measures the quantity of molecules flowing through the unit area per unit time.
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Figure 1. The physical interpretation of our saliency propagation algorithm. (a) analogies the propagation between two regions with equal

difficulty to the fluid diffusion between two cubes with same altitude. The left cube with more balls is compared to the region with larger

saliency value. The right cube with fewer balls is compared to the region with less saliency cues. The red arrow indicates the diffusion

direction. (b) and (c) draw the parallel between fluid diffusion with different altitudes and saliency propagation guided by curriculums.

The lowland “C”, highland “B”, and source “A” in (b) correspond to the simple node sC , difficult node sB , and labeled node sA in (c),

respectively. Like the fluid can only flow from “A” to the lowland “C” in (b), sA in (c) also tends to transfer the saliency value to the simple

node sC .

We regard the seed superpixels as sources to emit the fluid, and the remaining unlabeled superpixels are to be diffused,

among which the simple and difficult superpixels are compared to lowlands and highlands, respectively (see Figs. 1(b)(c)).

There are two obvious facts here: 1) the lowlands will be propagated prior to the highlands, and 2) fluid cannot be transmitted

from lowlands to highlands. Therefore, by treating γ as the propagation coefficient, h as the saliency value (equivalent to f in

the submission), and δ as the propagation distance defined by δji = 1/
√
ωji, (3) explains the process of saliency propagation

from sj to si as

Jji = −miγ
f
(t)
i − f

(t)
j

δji
= −miγ

√
ωji(f

(t)
i − f

(t)
j ). (4)

The parameter mi in (4), which plays the same role as Mii in Eq. (14) of our submission, denotes the “altitude” of si. It

equals to 1 if si corresponds to a lowland, and 0 if si represents a highland. Note that if si is higher than sj , the flux Jji = 0
because the fluid cannot transfer from lowland to highland. Given (4), we have the following theorem:

Theorem 1: Suppose all the superpixels s1, · · · , sN in an image are modelled as cubes with volume V , and the area of their

interface is A. By using mi to indicate the altitude of si and setting the propagation coefficient γ = 1, the proposed saliency

propagation can be derived from the fluid transmission modelled by Fick’s Law of Diffusion.

Proof. The propagation process from superpixels sj to si is illustrated in Fig. 1(a). Since both superpixels are regarded as

cubes with volume V , and the area of their interface is A, so during an unit time from t to t + 1, the amount of saliency

information (similar to the number of molecules in fluids) received by si satisfies the following equation

(f
(t+1)
i − f

(t)
i )V = JjiA, (5)

where Jji is diffusion flux. By replacing Jji with the Eq. (4) and considering V = A/
√
ωji, we have the basic propagation

model between two superpixels expressed as

f
(t+1)
i − f

(t)
i = −γmiωji(f

(t)
i − f

(t)
j ). (6)

Practically, a superpixel receives the saliency values from all its neighbors rather than only one as modelled by (6), so the

saliency value propagated to si should be summed over multiple superpixels. Therefore, by treating ωji = 0 if si and sj are

not directly linked by an edge on G, (6) is extended to

f
(t+1)
i − f

(t)
i = −γmi

∑
j=1∼N,j �=i

ωji(f
(t)
i − f

(t)
j ), (7)

where N is the total amount of superpixels in the image. After re-arranging (7), we obtain the following model explaining

the diffusions among multiple superpixels:

f
(t+1)
i =

⎛
⎝1− γmi

∑
j=1∼N, j �=i

ωji

⎞
⎠ f

(t)
i + γmi

∑
j=1∼N, j �=i

ωjif
(t)
j . (8)



By applying (8) to all the N superpixels {si}Ni=1 in the image, the saliency propagation on graph G can be reformulated

into a compact formation

f (t+1) = Ψf (t), (9)

where f (t) = (f
(t)
1 , f

(t)
2 , · · · , f (t)

N )
T

as defined in our submission, and

Ψ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1− γm1

∑
j=1∼N, j �=1
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∑
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...
...

. . .
...

γmNω1N γmNω2N · · · 1− γmn

∑
j=1∼N, j �=N

ωjN

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

For propagation purpose, the diagonal elements in Ψ are set to 0 to avoid the self-loop on graph G [16]. Therefore, (9)

can be rewritten as

f (t+1) = γM(t)Wf (t). (10)

By row-normalizing W as W ← D−1W and setting the propagation coefficient γ = 1, we achieve the employed

propagation model that has the same formation as Eq. (14) in the submission. Consequently, our algorithm can be perfectly

explained and derived from the practical fluid diffusion process. This completes the proof.

Theorem 1 reveals that our propagation strategy from simple superpixels to difficult superpixels has a close relationship

with the practical fluid diffusion with highlands and lowlands.

3. Additional Experiment on DUT-OMRON Dataset
To further demonstrate the strength of our Teaching-to-Learn and Learning-to-Teach (abbreviated as “TLLT”) algorithm,

we test TLLT on a challenging dataset DUT-OMRON [15] that is much more difficult than the two databases in the sub-

mission. DUT-OMRON consists of 5168 high quality images, in which the images contain extremely complex background,

and one or more salient objects of different sizes and locations. Furthermore, even the foregrounds may not show sufficient

compactness and the backgrounds also contain broad diversity in many images, which present great difficulty for saliency

detectors to obtain perfect results.

Fig. 2 shows the precisionw, recallw, and Fw
β averaged over the 5168 images of our algorithm and the baselines appeared

in the submission, including LD [9], GS [12], SS [4], PD [10], CT [7], RBD [17], SF [11], MR [15], GP [3], AM [6],

GRD [14]. HS [13] is not compared because this method fails to apply to this dataset. We observe that our TLLT performs

better than other baselines with a large margin in precisionw and Fw
β , and the resulting precisionw and recallw are also more

balanced than other algorithms. The reason that other baselines obtain higher recallw than TLLT is that they tend to detect

the most salient regions at the expense of low precision, therefore the background is very likely to be mistakenly detected as

target. As a result, the imbalance between precisionw and recallw will happen, which yield unsatisfactory Fw
β .

Fig. 3 visually compares the saliency maps of all the evaluated methods on a number of example images. Though

it is tough to detect the salient regions in these testing images, the proposed method obtains near-perfect saliency maps.

Comparatively, the saliency maps generated by other baselines have some defects, such as blurred foreground, incomplete

foreground, and unsatisfactory background suppression, etc.

The average CPU seconds of all comparators for processing one image are reported in Tab. 1. With unoptimized matlab

code, our method takes 2.90 seconds per detection, which is more efficient than LD, SS, PD, CT, and GP.

The parametric robustness of N and θ is also investigated on DUT-OMRON dataset. Fig. 4 shows the results. By fixing

θ to 0.25, we notice that the Fw
β is not sensitive to the choice of N . In contrast, the parameter θ has a large influence on the

final performance, and the peak value of Fw
β is achieved when θ = 0.25. Above experimental results are consistent with our

findings in the submission.
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Figure 2. Comparison of different methods on DUT-OMRON dataset. TLLT generates balanced precisionw and recallw, leading to better

Fw
β than all the baselines.
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Figure 3. Visual comparison of our method with other baselines.
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Figure 4. Parametric sensitivity on DUT-OMRON dataset. (a) shows the variation of Fw
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