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Algorithm 1: E, F updates algorithm

Input: Ft, Wt and Bt; Parameter: γ

Initialization: s = 0 and F
′
s = Ft

1 repeat

2 Update E
′
s+1 = VEIn,cUE

T by (4) where

B
T
W

T
t Xt + γF′T

s = UEΣEVE
T ;

3 Update F
′
s+1 =

E
′

s+1+|E′

s+1|

2 by (5);

4 s = s+ 1;

5 until ‖△J
(t)
EF (E

′
s,F

′
s)‖ ≤ ǫ or s ≤ S;

Output: Et+1 = E
′
s, Ft+1 = F

′
s

1. Preliminaries

1.1. The Reformulated Objective Function

min
W,B,E,F

‖WT
X−BE

T ‖2F + λ‖W‖2,1 + γ‖F−E‖2F

s.t. B
T
B = I, ET

E = I, F ≥ 0. (1)

1.2. Update Rules

W update:

W = (XX
T + λD)−1

XEB
T . (2)

B update:

B = VBIm,cUB
T , (3)

where UB and VB are the left and right eigenvectors of

E
T
X

T
W computed by SVD, respectively.

E,F update:

E = VEIn,cUE
T , (4)

where UE and VE are the left and right eigenvectors of

B
T
W

T
X+ γFT computed by SVD, respectively.

F =
1

2
(E+ |E|). (5)

Algorithm 2: SOCFS

Input: Data matrix X ∈ R
d×n; Parameters: λ, γ

Initialization: t = 0, Dt = I and Bt,Et

1 repeat

2 Update Et+1 and Ft+1 by Algorithm 1;

3 Update Wt+1 = (XX
T + λDt)

−1
XEt+1B

T
t by

(2);

4 Update Bt+1 = VBIm,cUB
T by (3) where

E
T
t+1X

T
Wt+1 = UBΣBVB

T ;

5 Update the i-th diagonal elements of the diagonal

matrix Dt+1 with 1
2‖wi

t+1
‖2

;

6 t = t+ 1;

7 until ‖△J(Wt,Bt,Et,Ft)‖ ≤ ǫ or t ≤ T ;

Output: Features are selected corresponding to the

largest values of ‖wi
t‖, i = 1 . . . d, which are

sorted by descending order.

1.3. Algorithms

The optimization algorithm containing the E and F up-

date rules is summarized in Algorithm 1. The overall pro-

posed optimization algorithm of SOCFS is also presented

in Algorithm 2.

2. Convergence Analysis

We prove the convergence of the proposed optimiza-

tion algorithm with monotonic decrease at every itera-

tion. We denote the objective function in problem (1) as

J(W,B,E,F) for convenience.

Theorem 1. J
(t)
EF (E

′
s,F

′
s) , J(Wt,Bt,E

′
s,F

′
s) mono-

tonically decreases due to E, F updates in Algorithm 1.

Proof. For the F
′ update from by (5), we have

F
′
s+1 = argmin

F′:F′�0

‖F′ −E
′
s‖

2
F = argmin

F′:F′�0

J
(t)
EF (E

′
s,F

′)

=⇒ J
(t)
EF (E

′
s,F

′
s+1) ≤ J

(t)
EF (E

′
s,F

′
s). (6)
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Similarly, for the E
′ update by (4), we have

E
′
s+1 = argmin

E′:E′TE′=I

‖BtE
′T −W

T
t X‖2F + γ‖E′ − F

′
s+1‖

2
F

= argmin
E′:E′TE′=I

J
(t)
EF (E

′,F′
s+1)

=⇒ J
(t)
EF (E

′
s+1,F

′
s+1) ≤ J

(t)
EF (E

′
s,F

′
s+1). (7)

By combining (6) and (7), we finally obtain

J
(t)
EF (E

′
s+1,F

′
s+1) ≤ J

(t)
EF (E

′
s+1,F

′
s) ≤ J

(t)
EF (E

′
s,F

′
s).

Thus J
(t)
EF (E

′
s,F

′
s) monotonically decreases by the update

rules (4) and (5) in Algorithm 1. We also notice that, since

J
(t)
EF (E

′
s,F

′
s) is convex in each variable, the algorithm must

converge.

Theorem 2. J(Wt,Bt,Et,Ft) monotonically decreases

due to the update rules in Algorithm 2.

Proof. For the E and F updates, Et+1 and Ft+1 are up-

dated at the same time by Algorithm 1, so that we have

J(Wt,Bt,Et+1,Ft+1) ≤ J(Wt,Bt,Et,Ft). (8)

For the W update by (2), which follows the theorem in [1]

closely, Wt+1 is also the solution of the following problem

with fixed Dt as

Wt+1 = argmin
W

‖WT
t X−BtE

T
t ‖

2
F + λ tr(WT

t DtWt).

This implies that

‖WT
t+1X−BtE

T
t ‖

2
F + λ tr(WT

t+1DtWt+1)

≤ ‖WT
t X−BtE

T
t ‖

2
F + λ tr(WT

t DtWt).
(9)

And then according to the lemma in [1] with u =
w

i
t+1, ut = w

i
t and summation over all rows, we have

d
∑

i=1

(

‖wi
t+1‖2 −

‖wi
t+1‖

2
2

2‖wi
t‖2

)

≤

d
∑

i=1

(

‖wi
t‖2 −

‖wi
t‖

2
2

2‖wi
t‖2

)

.

We rewrite the inequality as

‖Wt+1‖2,1− tr(WT
t+1DtWt+1)

≤ ‖Wt‖2,1 − tr(WT
t DtWt).

(10)

By combining (9) and (10), we finally obtain

J(Wt+1,Bt,Et+1,Ft+1) ≤ J(Wt,Bt,Et+1,Ft+1).
(11)

For the B update by (3), we have

Bt+1 = argmin
B:BTB=I

‖Et+1B
T −X

T
Wt+1‖

2
F (12)

= argmin
B:BTB=I

JB(Wt+1,B,Et+1,Ft+1).

This implies that

J(Wt+1,Bt+1,Et+1,Ft+1) ≤ J(Wt+1,Bt,Et+1,Ft+1).
(13)

From (8), (11), and (13), each update rule monotonically

decreases the objective function at every iteration. We

also notice that, since J(Wt,Bt,Et,Ft) is convex in each

variable, the algorithm with the update rules must con-

verge.
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