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We first present a proof of Lemma 2 from the main text.

Proof. By the Pythagorean theorem, we have

N(x)2 = ‖P
V̂k
(Φ(x))‖2 = ‖Φ(x)‖2 − ‖P⊥

V̂k

(Φ(x))‖2.
(1)

The residual P⊥

V̂k

(Φ(x)) can be further decomposed into

P⊥

V̂k

(Φ(x)) = P⊥
Vk
(Φ(x)) +

(

P⊥

V̂k

(Φ(x))− P⊥
Vk
(Φ(x))

)

.

(2)

For the first term, we have

‖P⊥
Vk
(Φ(x))‖ ≤

√

λk. (3)

Then applying Theorem 4 in [4], with probability at least

1− e−ξ, we can also bound the second part of (2):

∥

∥

∥
P⊥

V̂k

(Φ(x))− P⊥
Vk
(Φ(x))

∥

∥

∥
≤ 2M

δk
√
m

(

1 +

√

ξ

2

)

, (4)

where δk = λk−λk+1

2
and M = sup

x
κ(x,x) = 1. Thus,

‖P⊥

V̂k

(Φ(x))‖ ≤
√

λk +
2

δk
√
m

(

1 +

√

ξ

2

)

. (5)

Putting these pieces together, with probability at least 1 −
e−ξ, we have

N(x) =
√

1− ‖P⊥

V̂k

(Φ(x))‖2 ≥ 1− ‖P⊥

V̂k

(Φ(x))‖ (6)

≥1−
√

λk − 2

δk
√
m

(

1 +

√

ξ

2

)

. (7)

Our proof of Theorem 3, which is given below, requires a

few prerequisite results, which we briefly summarize now.

The first is regarding the upper bound of inner product of

complement of projections onto the subspace from kernel

principal component analysis.

Lemma 1. Consider a feature map Φ ∈ H defined by a

normalized kernel function κ(·, ·) in X with a probability

measure p. Let Sm = {x1, . . . ,xm} be m i.i.d. samples

drawn from p and C be the covariance operator of p with

decreasing eigenvalues λ1 ≥ λ2 ≥ . . . . Let Vk and V̂k be

the eigen-spaces corresponding the covariance operator C

and its empirical counterpart CSm
. Then, with probability

at least 1− e−ξ over the selection of Sm, we have

〈P⊥

V̂k

(Φ(x)), P⊥

V̂k

(Φ(y))〉

≤
(

√

λk +
2

δk
√
m

(

1 +

√

ξ

2

))2

. (8)

Proof. From Cauchy-Schwarz inequality, we have

〈P⊥

V̂k

(Φ(x)), P⊥

V̂k

(Φ(y))〉 ≤ ‖P⊥

V̂k

(Φ(x))‖‖P⊥

V̂k

(Φ(y))‖.
(9)

Then, for any x ∈ X ,

‖P⊥

V̂k

(Φ(x))‖
≤‖P⊥

Vk
(Φ(x))‖+ ‖P⊥

V̂k

(Φ(x))− P⊥
Vk
(Φ(x))‖ (10)

≤‖P⊥
Vk
(Φ(x))‖+ ‖P⊥

V̂k

− P⊥
Vk
‖‖Φ(x)‖. (11)

By the definition of operator norms, we have

‖P⊥
Vk
(Φ(x))‖ ≤

√
λk‖Φ(x)‖. Moreover, as stated in

Theorem 4 in [4], with probability at least 1− e−ξ, we have

that

‖P⊥

V̂k

− P⊥
Vk
‖ ≤ 2M

δk
√
m

(

1 +

√

ξ

2

)

(12)

where δk = λk−λk+1

2
and M = supx κ(x,x) = 1.

Hence, with probability at least 1 − e−ξ over Sm, we

have

〈P⊥

V̂k

(Φ(x)), P⊥

V̂k

(Φ(y))〉 (13)

≤
(

√

λk +
2

δk
√
m

(

1 +

√

ξ

2

))2

‖Φ(x)‖‖Φ(y)‖.

1

978-1-4673-6964-0/15/$31.00 ©2015 IEEE



Since ‖Φ(x)‖ = 1 for any x, we have proved the lemma.

For completeness, we also state the performance bound

of standard LSH:

Theorem 2. [3, 2, 1]. Let (X, dX) be a metric space on

a subset of Rd. Suppose that (X, dX) admits a similarity

hashing family. Then for any ǫ > 0, there exists a ran-

domized algorithm for (1 + ǫ)-near neighbor on n-point

database with success probability larger than 0.5, which

uses O(dn + n1+ 1
1+ǫ ) space, with query time dominated

by O(n
1

1+ǫ ) distance computations.

Using the above results, we are ready to prove our main

result in Theorem 3.

Proof. By the definition of P
V̂k

, we can decompose

κ(q, ŷq,k) into two parts,

κ(q, ŷq,k) = κ̂(q, ŷq,k) + 〈P⊥

V̂k

(Φ(q)), P⊥

V̂k

(Φ(ŷq,k))〉.
(14)

Thus, by Lemma 1, we have

κ(q, ŷq,k)

≥κ̂(q, ŷq,k)−
∣

∣

∣
〈P⊥

V̂k

(Φ(q)), P⊥

V̂k

(Φ(ŷq,k))〉
∣

∣

∣
(15)

≥κ̂(q, ŷq,k)−
(

√

λk +
2

δk
√
m

(

1 +

√

ξ

2

))2

. (16)

To lower-bound κ̂(q, ŷq,k), we need to use the result for

LSH, which asks for normalized kernels. Thus, we consider

the normalized version,

κ̂n(q, ŷq,k) =
κ̂(q, ŷq,k)

N(q)N(ŷq,k)
. (17)

Then we can relate a distance function via d̂(q, ŷq,k) = 1−
κ̂n(q, ŷq,k) [1]. By the LSH guarantee in Theorem 2, with

probability larger than 0.5, we have

d̂(q, ŷq,k) ≤ (1 + ǫ)d̂(q,y∗
q,k), (18)

which is equivalent to

κ̂n(q, ŷq,k) ≥ (1 + ǫ)κ̂n(q,y
∗
q,k)− ǫ, (19)

where y
∗
q,k = argmax

x∈S κ̂n(q,x). Applying Lemma 2,

with probability 1 − e−ξ, the true optimal y∗
q with respect

to κ is not eliminated for LSH, thus we have κ̂n(q,y
∗
q,k) ≥

κ̂n(q,y
∗
q ) due to the optimality of y∗

q,k with respect to κ̂n,

and with probability 0.5× (1− e−ξ)

κ̂n(q, ŷq,k) ≥ (1 + ǫ)κ̂n(q,y
∗
q )− ǫ. (20)

Expanding κ̂n, we get

κ̂(q, ŷq,k)

N(q)N(ŷq,k)
≥ (1 + ǫ)

κ̂(q,y∗
q )

N(q)N(y∗
q )

− ǫ. (21)

which can be reduced to

κ̂(q, ŷq,k) ≥ (1 + ǫ)(1−
√

λk − η)κ̂(q,y∗
q )− ǫ, (22)

since 1 −
√
λk − η ≤ N(x) ≤ 1. Decompose κ̂(q,y∗

q ) on

right hand-side above as

κ̂(q,y∗
q ) = κ(q,y∗

q )− 〈P⊥

V̂k

(Φ(q)), P⊥

V̂k

(Φ(y∗
q ))〉. (23)

Thus,

κ̂(q, ŷq,k) ≥ (1 + ǫ)(1−
√

λk − η)κ(q,y∗
q ) (24)

− (1 + ǫ)
∣

∣

∣
〈P⊥

V̂k

(Φ(q)), P⊥

V̂k

(Φ(y∗
q ))〉

∣

∣

∣
− ǫ.

Combining results in Equation 14 and 24,

κ(q, ŷq,k)

≥κ̂(q, ŷq,k)−
∣

∣

∣
〈P⊥

V̂k

(Φ(q)), P⊥

V̂k

(Φ(ŷq,k))〉
∣

∣

∣
(25)

≥(1 + ǫ)(1−
√

λk − η)κ(q,y∗
q )− ǫ

− (1 + ǫ)
∣

∣

∣
〈P⊥

V̂k

(Φ(q)), P⊥

V̂k

(Φ(y∗
q ))〉

∣

∣

∣

−
∣

∣

∣
〈P⊥

V̂k

(Φ(q)), P⊥

V̂k

(Φ(ŷq,k))〉
∣

∣

∣
(26)

Now we can apply Lemma 1:

κ(q, ŷq,k) ≥(1 + ǫ)(1−
√

λk − η)κ(q,y∗
q )− ǫ

− (2 + ǫ)
(

√

λk + η
)2

. (27)
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