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Abstract

The following document gives additional information

with respect to the paper “Active Learning and Discov-

ery of Object Categories in the Presence of Unnameable

Instances”. Details for five aspects are presented: (i) an

additional comparison of loss functions and probability

estimates (Sect. S1), (ii) additional evaluations focusing

on labeling time rather than on number of requested la-

bels (Sect. S2), (iii) a visualization of requested samples

(Sect. S3), (iv) a visual inspection of the experiments with

best and worst results (Sect. S4), and (v) an evaluation of

statistical significance of experimental results (Sect. S5).

The provided information is not necessary to understand

the main paper, but sheds light on interesting aspects not

included therein due to the lack of space.

S1. Comparing loss functions and probability

estimates for EMOC

As mentioned in Sect. 3 of the main paper, several

choices for loss functions and multi-class classification

probabilities are possible when computing the expected

model output changes as introduced in Eq. (7). We shortly

list two choices for both aspects, and compare the resulting

performance within the active discovery scenario of object

proposals as tackled in Sect. 6.4.

Loss-functions for multi-class scenarios In our paper,

we proposed using the L1-loss on the one-vs-all classifi-

cation scores to measure the model output change denoted

with L|·|:

L|·| (f (x) , f ′ (x))) =

C∑

c=1

|fc(x)− f ′
c(x)| . (S1)

When working in multi-class scenarios, however, an alter-

native choice would be to directly measure changes in hard

L|·|-loss L0/1-loss
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Figure 1: Comparison of different loss functions when com-

puting EMOC scores according to Eq. (7) in the main paper.

classification decisions

L0/1 (f (x) , f ′ (x)) = 1− δȳ(x),ȳ′(x) (S2)

where δ·,· is the Kronecker delta and ȳ(x) is the hard clas-

sification decision as defined in Eq. (10) in the main paper.

We tested both loss functions within our active learn-

ing and discovery framework and the results on the COCO

dataset are visualized in Figure 1. As can be seen, com-

paring continuous classification scores directly with a sim-

ple L1-loss significantly outperforms the loss working on

label changes as given in Eq. (S2). We attribute this behav-

ior to two aspects: on one hand, estimates of continuous

scores are likely more reliable compared with hard deci-

sions. Thus, we believe that changes in continuous scores

are more meaningful, especially in early stages of learn-

ing. In addition, changes in hard decisions do not reward

samples that would confirm current class estimates, which

however would potentially result in decreased classification

uncertainties.

Multi-class classification probabilities As explained in

the main paper, we apply a Monte-Carlo sampling strategy
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Random GP-Var [7] GP-Unc [7] 1-vs-2 [6] PKNN [5]

DPEA [3] ERM [11] GP-EMOCMC GP-EMOCPDE GP-EMOCPDE+R
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(a) 1s for labeling
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(b) 10s for labeling
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(c) 50s for labeling

Figure 3: Evaluating active class discovery (top) and improving recognition accuracy with active learning (bottom). Results

are obtained on the USPS dataset [1] with labeling times ranging from 1s (left) over 10s (middle) to 50s per query. Baselines

are indicated with dotted lines, whereas our techniques are plotted solidly. See main paper for details on the experimental

setup. Best viewed in color.

further analysis. In Figure 8, we show for both scenarios

exemplary images which either resulted in a drastic change

of the recognition performance or which lead to no perfor-

mance gain at all. A complete overview of all training ex-

amples as well as all queried samples in both scenarios is

additionally given in Figure 7. Besides their visual beauty,

however, we are not able to see any specific characteristics

for these images that might give reason for the performance

difference of the best and the worst run.

S5. Significance of results

The evaluations in Sect. 6 of the main paper are based on

averaging results over 100 individual runs per experiment.

We already concluded that our techniques lead to improved

learning curves, however, the statistical significance is still

unanswered. Therefore, we applied a paired students t-test

to evaluate the significance of differences in performance.

Evaluations are applied to areas under learning curves cor-

rected by the corresponding initial accuracy, thus, we com-

pare accuracy improvements of different techniques. Re-

sults given in Table 1 are conducted for the scenario of

learning with object proposals from the COCO dataset as

introduced in Sect. 6.4 using a significance level of α = 5%.

We observe that the resulting improvements in accuracy are

statistically significant with p-values smaller than 10−2.
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(a) 1s for labeling
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(b) 10s for labeling

101 102 103 104
2

4

6

8

10

Time in s

#
D

is
co

v
er

ed
C

la
ss

es

101 102 103 104

20

40

60

80

Time in s

A
v
er

ag
e

A
cc

u
ra

cy
[%

]

(c) 50s for labeling

Figure 4: Evaluating active class discovery (top) and improving recognition accuracy with active learning (bottom). Results

are obtained on the LFW dataset [4] with labeling times ranging from 1s (left) over 10s (middle) to 50s per query. Baselines

are indicated with dotted lines, whereas our techniques are plotted solidly. See main paper for details on the experimental

setup. Best viewed in color.

GP-EMOC

Random GP-Var [7] GP-Unc [7] 1-vs-2 [6] PKNN [5] ERM [11] MC PDE

GP-EMOCPDE+R 1.4e-4 3.8e-3 2.0e-4 5.2e-6 2.3e-3 3.5e-3 4.8e-21 1.9e-4

Table 1: Evaluating statistical significance of differences in learning curves obtained on the COCO dataset. A paired student

t-test validates statistical significance. Numbers shows probabilities for pairwise equality on a significance level of α = 5%.
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Figure 8: A visual analysis of active learning and discovery on COCO. We displayed learning curves for the best and worst

scenario of EMOCPDE+R. Samples which either resulted in a drastic change of the recognition performance or which lead to no

performance gain at all are additionally shown. Unsupervised object proposals obtained with [8] as well as the corresponding

bounding box for feature extraction are overlayed in red and green.


