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1. Computations for Propositions and Lemmas
We detail the calculations that were left out in Section 2.2 of the manuscript. We repeat some definitions for the con-

venience of the reader. Note the Lemma and Proposition numbers correspond to the numbers in the manuscript, however,
equation numbers do not correspond.

Definition 1 (Shape-Tailored Local Descriptors). Let R ⊂ R2 be a bounded region with non-zero area and smooth boundary
∂R. Let I : R→ Rk. A Shape-Tailored Descriptor, u : R→ RM (where M = n×m, n,m ≥ 1) consists of components
uij : R→ R so that u = (u11, . . . , u1m, . . . , un1, . . . , unm)T . The components are defined as:{

uij(x)− αi∆uij(x) = Jj(x) x ∈ R
∇uij(x) ·N = 0 x ∈ ∂R

, (1)

where 1 ≤ i ≤ n, 1 ≤ j ≤ m, ∆ denotes the Laplacian, ∇ denotes the gradient, N is the unit outward normal to R, αi > 0
are scales, and Jj : R→ R are point-wise functions of the image I . In vector form, this is equivalent to{

u(x)−A∆u(x) = J(x) x ∈ R
Du(x)N = 0 x ∈ ∂R

, (2)

where A = diag(α111×m, . . . , αn11×m) (an M ×M diagonal matrix), 11×m is a 1 × m matrix of ones, D denotes the
spatial derivative operator, and J = (J1, . . . , Jm, . . . , J1, . . . , Jm, . . .)

T .

Lemma 1 (PDE for Descriptor Variation). Let u satisfy the PDE (1), h be a perturbation of ∂R, and uh denote the variation
of u with respect to the perturbation h. Then{

uh(x)− αi∆uh(x) = 0 x ∈ R
∇uh(x) ·N = us(x)(hs ·N)−NTHu(x) · h x ∈ ∂R

(3)

where s is the arc-length parameter of ∂R, hs denotes the derivative with respect to arc-length, and Hu(x) denotes the
Hessian matrix.

Proof. The PDE for uh is obtained by computing the variation with respect to h of both conditions of the PDE (1). The
variation of the first equation in (1) leads to the first equation in (3). This is because the variation and spatial derivatives
commute by equality of mixed partials as the variation and spatial derivative operators are independent. Next we compute
the variation of the boundary condition using the Chain Rule:

d[∇u(c(p)) ·N ] · h = NTHu(c(p)) · h+∇u(c(p)) ·Nh = 0, (4)
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where again we have switched the order of spatial derivatives and the variation by equality of mixed partials. Let c be a
parameterization of ∂R with parameter p, and cp indicate the derivative w.r.t the parameter. The variation of N = JT =
Jcp/|cp| (J is a 90◦ rotation matrix) is

Nh = J
hp|cp| − cp·hp

|cp| cp

|cp|2
= J(hs − (hs · T )T ) = −(hs ·N)T. (5)

Substituting (5) into (4) leads to the boundary condition in (3).

Definition 2 (Green’s Function for (3)). The Green’s function, Kαi : R×R→ R, for the problem (3) (and (1)) satisfies{
Kαi(x, y)− αi∆xKαi(x, y) = δ(x− y) x, y ∈ R
∇xKαi(x, y) ·N = 0 x ∈ ∂R, y ∈ R

(6)

where ∆x (∇x) is the Laplacian (gradient) with respect to x, and δ is the Delta function.

Lemma 2 (Region and Boundary Integrals of K). If f : R→ R, g : ∂R→ R and

û(x) =

∫
R

Kαi
(x, y)f(y) dy −

∫
∂R

Kαi
(x, y)g(y) ds(y) (7)

where K is the Green’s function that satisfies (6), then û satisfies{
û(x)− αi∆û(x) = f(x) x ∈ R
∇û(x) ·N = g(x) x ∈ ∂R

. (8)

Proof. This is a standard result in PDE (see, for example [2], for a proof).

Proposition 1 (Descriptor Gradient). The gradient with respect to c = ∂R of u(x) (one component of u(x)), which satisfies
the PDE (1), is

∇cu(x) =

[
(Du)TDyKαi(x, ·) +

1

αi
Kαi(x, ·)(u− Jj)

]
N (9)

where N is the outward normal, Dy denotes the derivative wrt the second argument of Kαi
, and Du indicates the spatial

derivative of u.

Proof. By the property (7), we may express the solution of (3) as

uh(x) = −
∫
∂R

Kαi
(x, y)

[
us(y)hs ·N −NTHu(x) · h

]
ds(y)

=

∫
∂R

[
∂s(Kαi

usN) +Kαi
NTHu

]
· hds,

where ∂s denotes derivative with respect to arc-length. Therefore, ∇cu(x) is the bracketed expression above, which we
now simplify. We note that Ns = κT , and by differentiating the boundary condition ∇u(c(s)) · N = 0 in s, we find that
NTHu(x) · T = −usκ where κ is the signed curvature of c. Using the former two properties, we have

∇cu(x) = ∂s(Kαi
us)N +Kαi

usκT +Kαi
(NTHu ·N)N +Kαi

(NTHu · T )T

=
[
∂s(Kαi

us) +Kαi
(NTHu ·N)

]
N. (10)

Now note that uss = ∂s(∇u · T ) = TTHu · T + ∇u · κN = TTHu · T using that ∇u · N = 0. This implies that
∆u = uss +NTHu ·N . Using (10), we have that

∇cu(x) = [Kαi,sus +Kαi
∆u]N. (11)

Using∇u ·N = 0 on ∂R and u− αi∆u = Jj into (11) gives

∇cu(x) =

[
∇u · ∇yKαi(x, ·) +

1

αi
(u− Jj)Kαi(x, ·)

]
N. (12)
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Proposition 2 (Integrals of Descriptor Gradient). Let f ,g : R → RM and u be the Shape-Tailored Descriptor in R (as in
(2)). Then

Id[R,u, f ,g] := −
∫
∂R

∇cu(x)g(x) ds(x) +

∫
R

∇cu(x)f(x) dx =
(
tr[(Du)TDû] + (u− J)TA−1û

)
N (13)

where dx is the area measure, ds is the arclength measure, N is the outward normal to the boundary of R, tr denotes matrix
trace, and {

û(x)−A∆û(x) = f(x) x ∈ R
Dû(x)N = g(x) x ∈ ∂R

. (14)

Proof. Let u, f , g denote components of u, f , g. Then∫
∂R

∇cu(x)g(x) ds(x) =

∫
∂R

N

[
(Du)TDyKαi

(x, ·) +
1

αi
Kαi

(x, ·)(u− Jj)
]
g(x) ds(x) (15)

= N

[
∇y ·

∫
∂R

Kαi(x, ·)(Du)T g(x) ds(x) +
1

αi

∫
∂R

Kαi(x, ·)(u− Jj)g(x) ds(x)

]
(16)

= N

[
∇y · (Du)T

∫
∂R

Kαi
(x, ·)g(x) ds(x) +

1

αi
(u− Jj)

∫
∂R

Kαi
(x, ·)g(x) ds(x)

]
. (17)

Note that ∇y· indicates divergence with respect to the second argument of the kernel Kαi , and also that the arguments of
u,Du, Jj depend on the point of the curve that has been suppressed for ease of notation. We may follow a similar computation
to arrive at ∫

R

∇cu(x)f(x) dx = N

[
∇y · (Du)T

∫
R

Kαi
(x, ·)f(x) dx+

1

αi
(u− Jj)

∫
R

Kαi
(x, ·)f(x) dx

]
. (18)

Then by summing expressions, we arrive at

−
∫
∂R

∇cu(x)g(x) ds(x) +

∫
R

∇cu(x)f(x) dx = N

[
(Du)TDû+

1

αi
(u− Jj)û

]
(19)

where
û(y) = −

∫
∂R

Kαi(x, y)g(x) ds(x) +

∫
R

Kαi(x, y)f(x) dx, (20)

by symmetry of the Green’s function and Lemma 2. Writing (19) and (20) in vector form gives the result of this proposition.

Proposition 3 (Weighted Area Gradient). Let F : RM → R and u : R → RM be the Shape-Tailored Descriptor on R.
Define the weighted area functionals as AF =

∫
R
F (u(x)) dx. Then

∇cAF = (F ◦ u)N + Id[R,u, (∇F ) ◦ u,0] (21)

where Id is defined as in Proposition 2.

Proof. The gradient above can be derived by using the Chain-Rule. The gradient of the functional, assuming that the de-
scriptor does not vary with the curve, is added to the gradient of the functional with respect to the descriptor. The former
is obtained using classical results (e.g., [6]), and is the first term in (21). The latter is

∫
R
∇cu(x)∇F (u(x)) dx, which by

Proposition 2 results in the second term of (21).

2. Numerical Discretization
We show the discretization scheme for the PDE{

u(x)− α∆u(x) = f(x) x ∈ R
∇u(x) ·N = g(x) x ∈ ∂R

, (22)
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where N is the outward normal. Note that this is the type of equations that are satisfied by the descriptors u,v and the
functions û, v̂. We assume that R = {x ∈ Ω : Ψ(x) ≤ 0} where Ψ : Ω → R is the level set function. We use central
differences to discretize the Laplacian:

∆u(x) =
∑
y∈Nx

(u(y)− u(x)) =
∑

y∈Nx∩R
(u(y)− u(x)) +

∑
y∈Nx∩Rc

(u(y)− u(x)) (23)

where Nx is a 4-neighbor of x. Note that u(y) for y ∈ Rc is not defined, but using a discretization of the boundary condition,
we have that u(y)− u(x) = g(x) for y ∈ Nx ∩Rc and x ∈ R. Thus, we have

∆u(x) =
∑

y∈Nx∩R
(u(y)− u(x)) +

∑
y∈Nx∩Rc

g(x). (24)

Therefore, the final discretization of the PDE is

(1 + α|Nx ∩R|)u(x)−
∑

y∈Nx∩R
u(y) = f(x) + |Nx ∩Rc|g(x), x ∈ R (25)

where |Nx ∩ R| is the number of pixels in Nx ∩ R. This is now in the form where standard linear solvers (e.g., conjugate
gradient, multigrid) may be applied.

Note that in narrowband level set methods, the speed function must be extended into the narrowband (1-pixel dilation of
R), and this requires that u, û be extended into the narrowband. Therefore, we show how u defined in (22) can be extended
to the narrowband. This can be accomplished by discretizing the boundary condition, which yields

u(y) = u(x) + g(x), y ∈ Nx ∩Rc (26)

and x ∈ Ny ∩R is such that x is the point with closest distance to a zero crossing of the level set function Ψ.

3. More Results from Experiments on Real Texture Dataset
The next figures show more results of segmentation on the Real Texture Segmentation Dataset.
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image ground truth Hist [5] Entropy [3] CB [4] gPb [1] non STLD STLD (ours)

Figure 1. Sample Results on the Real Texture Dataset. Segmentation boundaries are displayed for various methods.
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image ground truth Hist [5] Entropy [3] CB [4] gPb [1] non STLD STLD (ours)

Figure 2. Sample Results on the Real Texture Dataset. Segmentation boundaries are displayed for various methods.
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image ground truth Hist [5] Entropy [3] CB [4] gPb [1] non STLD STLD (ours)

Figure 3. Sample Results on the Real Texture Dataset. Segmentation boundaries are displayed for various methods.
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image ground truth Hist [5] Entropy [3] CB [4] gPb [1] non STLD STLD (ours)

Figure 4. Sample Results on the Real Texture Dataset. Segmentation boundaries are displayed for various methods.
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image ground truth Hist [5] Entropy [3] CB [4] gPb [1] non STLD STLD (ours)

Figure 5. Sample Results on the Real Texture Dataset. Segmentation boundaries are displayed for various methods.
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