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1 Outline

In this supplementary material, we provide the proof of Lemma 3 and Theorem 3 described in the
paper. Note that Lemma 3 and Theorem 3 in the paper are renamed as Lemma 2 and Theorem 1 in
this supplementary material, respectively.

2 Bounds on the Expected Hamming Distance

Lemma 1 [1] For any u, v ∈ [−1, 1], Pt{sgn(u+ t) 6= sgn(v + t)} = |u− v|/2.

Lemma 2 (Lemma 2 in the paper)

Ew,v,b,t

[

I
h(X) 6=h(Y )

]

=
8

π2

∞
∑

m=1

1− κbi(mX −mY )

4m2 − 1
,

where h(X) , 1
2 (1 + sgn(cos(w⊤

Xv + b) + t)), w,v ∼ N (0, I), b ∼ Unif[0, 2π], and t ∼ Unif[−1, 1].

Proof. Using Lemma 1, we can show that Ew,v,b,t

[

I
h(X) 6=h(Y )

]

= 1
2Ew,v,b|cos(w⊤

Xv+b)−cos(w⊤
Y v+

b)|. By using a trigonometry identity,

1

2
Eb,w,v |cos(w⊤

Xv + b)− cos(w⊤
Y v + b)| = 2

π
Ew,v

∣

∣sin
(w

⊤(X − Y )v

2

)
∣

∣.

By [1], we use Fourier series of g(τ) = |sin(τ)|:

g(τ) =
4

π

∞
∑

m=1

1− cos(2mτ)

4m2 − 1
.

This formula leads to the following equation:

Ew,v,b,t

[

I
h(X) 6=h(Y )

]

=
8

π2

∞
∑

m=1

1− Ew,v

[

cos(mw
⊤(X − Y )v)

]

4m2 − 1

According to the proof of Lemma 1 described in the paper, we know that Ew,vcos(mw
⊤(X − Y )v) =

κbi(mX −mY ), which completes the proof. Q.E.D.

1

978-1-4673-6964-0/15/$31.00 ©2015 IEEE



3 Bounds on the Covariance by Bilinear Projections

Lemma 3 Given a datum as X ∈ Rd1×d2 and bilinear projections, w,v1,v2, are drawn from the
N (0, I), Ew,v1,v2

[

cos(mw
⊤
Xv1)cos(nw

⊤
Xv2)

]

= κbi(
√

(m2 + n2)X).

Proof.

Ew,v1,v2

[

cos(mw
⊤
Xv1)cos(nw

⊤
Xv2)

]

=

∫

[

∫

cos(mw
⊤
Xv1)p(v1)dv1

][

∫

cos(mw
⊤
Xv2)p(v2)dv2

]

p(w)dw

=

∫

κg(mw
⊤
X)κg(nw

⊤
X)p(w)dw (by Lemma 1 in the paper)

=

∫

1√
2π

exp(−1

2
(w⊤[I +m2

XX
⊤ + n2

XX
⊤]w))dw

= |I + (m2 + n2)XX
⊤|− 1

2 , κbi(
√

(m2 + n2)X).

Theorem 1 (Theorem 3 in the paper) Given the hash functions h1(·) and h2(·), the upper bound on the
covariance between the two bits is derived as

cov(·) ≤ (
64

π4
)
[

(

∞
∑

m=1

κg(vec(X − Y ))0.79m
2

4m2 − 1

)2 −
(

∞
∑

m=1

κg(vec(X − Y ))m
2

4m2 − 1

)2
]

,

where κg(·) is the Gaussian kernel and cov(·) is the covariance between two bits defined as

cov(·) = Ew,v1,v2,b1,b2,t1,t2

[

I
h1(X) 6=h1(Y )Ih2(X) 6=h2(Y )

]

− Ew,v1,b1,t1

[

I
h1(X) 6=h1(Y )

]

Ew,v2,b2,t2

[

I
h2(X) 6=h2(Y )

]

,

h1(X) = sgn
(

cos(w⊤
Xv1 + b1) + t1

)

,

h2(X) = sgn
(

cos(w⊤
Xv2 + b2) + t2

)

.

Proof. First, we want to derive the first term in the covariance in terms of κbi(·).

Ew,v1,v2,b1,b2,t1,t2

[

I
h1(X) 6=h1(Y )

I
h2(X) 6=h2(Y )

]

=
1

4
Ew,v1,v2,b1,b2

[

|cos(w⊤
Xv1 + b1)− cos(w⊤

Y v1 + b1)||cos(w
⊤
Xv2 + b2)− cos(w⊤

Y v2 + b2)|
]

(∵ Lemma 1)

=
4

π2
Ew,v1,v2

[

|sin(
w

⊤(X − Y )v1

2
)sin(

w
⊤(X − Y )v2

2
)|
]

= (
64

π4
)

∞
∑

m,n=1

Ew,v1,v2

[(1− cos(mw
⊤(X − Y )v1)

4m2 − 1

)(1− cos(nw⊤(X − Y )v2)

4n2 − 1

)]

Using the Lemma 2, the first term in the covariance can be represented in terms of κbi(·):

Ew,v1,b1,b2,t1,t2

[

I
h1(X) 6=h1(Y )Ih2(X) 6=h2(Y )

]

= (
64

π4
)

∞
∑

m,n=1

1

4m2 − 1

1

4n2 − 1

(

1− κbi(mX −mY )− κbi(nX − nY ) + κbi(
√

(m2 + n2)(X − Y ))
)

The second term in the covariance is also represented in terms of κbi(·):

Ew,v1,b1,t1

[

I
h1(X) 6=h1(Y )

]

Ew,v2,b2,t2

[

I
h2(X) 6=h2(Y )

]

= (
64

π4
)

∞
∑

m,n=1

1

4m2 − 1

1

4n2 − 1

(

1− κbi(m(X − Y ))− κbi(n(X − Y )) + κbi(m(X − Y ))κbi(n(X − Y ))
)

2



Therefore, the covariance between two bits is computed as

cov(·) = (
64

π4
)

∞
∑

m,n=1

1

4m2 − 1

1

4n2 − 1

[

κbi(
√

(m2 + n2)(X − Y ))− κbi(m(X − Y ))κbi(n(X − Y ))
]

≤ (
64

π4
)

∞
∑

m,n=1

1

4m2 − 1

1

4n2 − 1

[

κg(vec(
√

(m2 + n2)(X − Y )))0.79 − κg(vec(mX −mY ))κg(vec(nX − nY ))
]

= (
64

π4
)

∞
∑

m,n=1

1

4m2 − 1

1

4n2 − 1

[

κg(vec(X − Y ))0.79(m
2+n2) − κg(vec(X − Y ))m

2

κg(vec(X − Y ))n
2]

= (
64

π4
)
[(

∞
∑

m=1

κg(vec(X − Y ))0.79m
2

4m2 − 1

)2
−

(

∞
∑

m=1

κg(vec(X − Y ))m
2

4m2 − 1

)2]
,

where the second inequality is given by Lemma 1 in the paper (κg(vec(X − Y )) ≤ κbi(X − Y ) ≤
κg(vec(X − Y ))0.79) and the third equality is given by κg(vec(mX −mY )) = κg(vec(X − Y ))m

2

. The
lower bound can be derived in a similar way.

Corollary 1 Given the hash functions h1(·) and h2(·), the lower bound on the covariance between the
two bits is derived as

cov(·) ≥ (
64

π4
)
[

(

∞
∑

m=1

κg(vec(X − Y ))m
2

4m2 − 1

)2 −
(

∞
∑

m=1

κg(vec(X − Y ))0.79m
2

4m2 − 1

)2
]

,

where κg(·) is the Gaussian kernel and cov(·) is the covariance between two bits defined as

cov(·) = Ew,v1,v2,b1,b2,t1,t2

[

I
h1(X) 6=h1(Y )Ih2(X) 6=h2(Y )

]

− Ew,v1,b1,t1

[

I
h1(X) 6=h1(Y )

]

Ew,v2,b2,t2

[

I
h2(X) 6=h2(Y )

]

,

h1(X) = sgn
(

cos(w⊤
Xv1 + b1) + t1

)

,

h2(X) = sgn
(

cos(w⊤
Xv2 + b2) + t2

)

.
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