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In this supplemental materials, we provide more detailed analysis and results for the DASC descriptor.

€ In Section 1, we describe how Eq. (10) is derived from Eq. (9).

€ In Section 2, we provide additional experimental results to evaluate the accuracy and runtime ef“ciency of the DASC
descriptor when using the symmetric weight in Eq. (7) and the asymmetric weight in Eq. (9), respectively.

€ In Section 3, we show the multi-modal and multi-spectral dataset used in the sampling pattern learning for the patch-
wise receptive “eld pooling, and visualize the estimated sampling pattern.

€ In Section 4, we analyze the effect of two parameters (local support window size and feature dimension) used in the
DASC descriptor, and provide more results in three datasets; Middlebury stereo benchmark, multi-modal and multi-
spectral image pairs, and MPI SINTEL optical ”ow benchmark.

1. Derivation of Decomposition Eq. (10) from Eq. (9)

In this section, we describe the derivation of Eq. (10) from Eq. (9). By using an asymmetric weight� i,i � in adaptive
self-correlation��( i, j ), we can decompose the adaptive self-correlation into several weighted sum operations. This enables
us to further reduce the computational complexity required for computing the DASC descriptor.
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Fig. 5 shows patch-wise receptive �elds on learned sampling patterns used in our DASC descriptor. For an effective

visualization, we followed the practice used in [8]. We stacked all patch-wise receptive �elds learnt from the Middlebury

stereo benchmark [1], the multi-modal and multi-spectral benchmark [16, 3, 15, 9, 12], and the MPI SINTEL benchmark [5],

respectively. A set of histogram bins corresponding to the patch of each patch-wise receptive �eld are incremented by one,

and they are �nally normalized with the maximum value. The density of patch-wise receptive �elds tends to be concentrated

on the center. In many literature, it has been shown that such a center-biased density distribution pooling in the local feature

provides the robustness [2, 8].
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(a) Middlebury benchmark
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(b) Multi-spectral and Multi-modal
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(c) MPI SINTEL benchmark

Figure 5. Visualization of patch-wise receptive �elds of the DASC descriptor which are learned from Middlebury benchmark, multi-spectral

and multi-modal benchmark, and MPI SINTEL benchmark.



4. More Results

In this section, we “st analyze the effects of the support window size and the feature dimension in our DASC descriptor.
Then, we provide the additional results for our DASC descriptor and state-of-the-art descriptor-based methods and area-based
methods using the Middlebury stereo benchmark, the multi-modal and multi-spectral image pair benchmark, and the MPI
SINTEL optical ”ow benchmark.

4.1. Effects of Window Size and Feature Dimension

We analyze the effects of the support window sizeM and a feature dimensionL in our DASC descriptor on the Middlebury
stereo benchmark. We evaluate the performance by varyingM from 5 × 5 to 33 × 33 andL from 50 to 400, respectively.
It is worth noting that the computational complexity of our DASC descriptor is independent of the support window sizeM ,
since we extract the sampling patterns through the receptive “eld pooling from the support window. Instead, its complexity
linearly increases in proportional to the number of sampling patterns,i.e., the feature dimensionL .

Fig. 6 shows the stereo matching results obtained with varyingM . As expected, using small support windows degenerates
the matching quality. In our paper, we used31× 31as the support window size. Fig. 7 shows that the accuracy of the DASC
descriptor is saturated whenL is between150 � 200. Considering the trade-off between the accuracy and the runtime
ef“ciency, we set the feature dimensionL to 128.

(a)5 × 5 (b) 9 × 9 (c) 13 × 13 (d) 17 × 17 (e)21 × 21 (g) 31 × 31
Figure 6. Results of disparity estimation forDolls andWood1image pairs taken under exposure combination •0/1• by varying the support
window sizeM in the DASC descriptor. In our work, we usedN = 31 × 31 as the size of support window.

(a)50 dim. (b) 128 dim. (c) 150 dim. (d) 200 dim. (e)250 dim. (f) 400 dim.
Figure 7. Results of disparity estimation forDolls andWood1image pairs taken under exposure combination •0/1• by varying the descriptor
dimensionL in the DASC descriptor. In our work, we usedL = 128 as the length of descriptor dimension.



4.3. Multi-modal and Multi-spectral Image Pairs

In experiments, the multi-modal and multi-spectral image pairs consist of RGB-NIR images, �ash-no�ash images, images

taken under different exposures, and blurred-clean images.

� RGB-NIR image pairs: ep”1, ep”2, ep”3, ep”4, ep”5, ep”6, lion, myrgbnir, orchid, stereo3, and stereo4.

� Flash-no�ash image pairs: Dolls1, Dolls2, and Dolls3.

� Image pairs taken under different exposures: altar, BabyAtWindow, BabyOnGrass, balcony, books, ChristmasRider,
clouds, FeedingTime, ”ower, HighChair, LadyEating, lantern, mpi, PianoMan, room, SantasLittleHelper, street, and

window.

� Blurred-clean image pairs: avisar, books1, books2, cars1, cars2, children, face1, face2, ”owers, , numbers, and yemin.

In this supplementary materials, the results for bold image pairs are shown. Fig. 13, 14, 15, and 16 show the warped color

image and its corresponding 2-D �ow �elds for multi-modal and multi-spectral image pairs. For the results of objective

comparison, please refer to Table 2 in our paper.



Figure 13. Comparison of dense correspondence for RGB-NIR images including orchid, lion, and ep”6. (from top to bottom) Input image

pairs, RSNCC [16], BRIEF [6], DAISY [17], SIFT [13], LSS [14], DASC+RP, and DASC+LRP.



Figure 15. Comparison of dense correspondence for �ash-no�ash images including Dolls1, Dolls2, and Dolls3. (from top to bottom) Input

image pairs, RSNCC [16], BRIEF [6], DAISY [17], SIFT [13], LSS [14], DASC+RP, and DASC+LRP.



4.4. MPI SINTEL Optical Flow Benchmark

In MPI SINTEL optical ”ow benchmark, the dataset consists of two kind of rendering frames, namelyclean passand“nal
pass, each containing 12 sequences with over 500 frames in total [5]. Fig. 17 shows visual comparison on the MPI SINTEL
benchmark, where the warped color image and its corresponding 2-D ”ow “elds are depicted.

Figure 17. Visual comparison on the MPI Sintel benchmark. (from left to right) Input image 1 and 2, ”ow “eld estimation results of LDOF
[4] and LDOF with the DASC+LRP descriptor. Note that the histogram of oriented gradient (HOG) [7] is used in the original LDOF [4].


