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1. Clean Middleburry dataset

Table 1. Upsampling of clean middleburry dataset
Tsukuba Venus Teddy Cones

2× 4× 8× 2× 4× 8× 2× 4× 8× 2× 4× 8×
Park et al. [1] 6.61 9.75 15.1 1.27 1.8 2.99 3.73 4.89 7.15 4.00 5.64 7.73
Ferstl et al. [2] 7.20 10.3 17.20 2.15 2.52 4.04 2.71 3.3 5.39 3.50 4.45 7.14

Kiechle et al. [3] 3.48 5.95 10.9 0.8 1.17 1.76 1.28 2.94 2.76 1.7 4.17 5.11
Li et al. [4] 8.29 11.9 15.84 2.29 3.55 5.76 2.78 4.92 7.24 3.24 6.34 8.9

Ours(w. nAGDP) 2.31 5.56 5.67 0.53 1.14 1.68 0.83 1.80 2.19 0.92 2.13 2.37
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Table 1 shows comparisons of our results with those from Park et al. [1], Ferstl et al. [2] and Kiechle et al. [3], and Li et

al. [4] on the Clean Middlebury dataset. We use the standard RMSE (RMSE(θ) =

√
E((θ̂ − θ)2) where θ̂ is the upsampled

result and θ is ground-truth) as the error metric. Our results are shown to have the lowest errors. The upsampled results and
error maps of ×8 upsampling for Cones, Teddy, Tsukuba, and Venus are shown from Figure 2 to Figure 5, respectively.

We note that the reported numbers from [2, 3] for Noisy Middlebury data are different from the results we obtained from
their codes. Upon careful inspection, we found that their error metric was different from ours. We report their error metrics
and part of their corresponding codes in Figure 1. Ferstl et al. [2] computed the average of absolute error1 and Kiechle et
al. [3] normalized the RMSE values by a scaling factor2.

1Source code can be downloaded from https://rvlab.icg.tugraz.at/project_page/project_tofusion/project_
tofsuperresolution.html

2Source code can be downloaded from http://www.gol.ei.tum.de/index.php?id=6&L=1
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Average of absolute errors

(a) Part of the original source codes from Ferstl et al. [2]

RMSE is normalized 
by scaling factors

(b) Part of the original source codes from Kiechle et al. [3]

Figure 1. Error metrics used in Ferstl et al. [2] and Kiechle et al. [3].
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Figure 2. ×8 upsampling for Cones.
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Figure 3. ×8 upsampling for Teddy.
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Figure 4. ×8 upsampling for Tsukuba.
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Figure 5. ×8 upsampling for Venus.
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(a) RGB (b) RAW (c) Intel (d) Ours

Figure 6. Intel ToF depth camera on Face data.

2. ToF face data
We tested our method on ToF face data captured by the Intel Creative Interactive Gesture Camera3. The high quality

training data is obtained through Kinect Fusion. We measure the SNR of the ToF camera, and add noise synthetically to
generate the low quality training examples. In Figure 6, we show the RAW depth maps from the ToF camera, the recovered
depth maps using the embedded API provided by Intel, and our recovered depth. As can be seen in the results, the embedded
method from Intel API cannot fully remove depth noise, while our method can recover more accurate depth maps for facial
structure.

3http://click.intel.com/creative-interactive-gesture-camera-developer-kit.html
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3. Kinect scene dataset
We experimented with multi-scale sparse recovery on depth completion with various public RGB-D datasets: Sturm et

al. [5] (Figure 7 to Figure 9), Janoch et al. [6] (Figure 10 to Figure 13), Silberman et al. [7] (Figure 14), and Yang et al. [8]
(Figure 15 and Figure 16). We also compared our results with results from the other methods: Park et al. [1], Ferstl et al. [2],
Kiechle et al. [3], and Li et al. [4].

Since we used Park et al. [1] as initialization at the coarsest level, we compare ours with Park et al. [1]. The method
by Kiechle et al. [3] is the latest RGB-D dictionary learning based approach for depth recovery. However, different from
ours, they utilize only single-scale modeling, and without any mechanism to filter out irrelevant RGB features. Li et al. [4]
utilizes joint dictionary of target depth, raw depth, and RGB, similar to ours. However, their target depth was generated from
Yang et al. [9], which leads to bias in the solutions. Also, as in [3], they only used a single-scale dictionary without robust
measurement for structural correlation between RGB and depth maps. The method of Ferstl et al. [2] is used as another
comparison for RGB-D based depth recovery.

In each figure, we show RGB input, RAW depth input, Park et al. [1], Ferstl et al. [2], Kiechle et al.[3], Li et al. [4], and
Ours in this order.

4. Computation time comparison
We compare the computation times for our method on Figure 8 (640× 480) with other state-of-the-art methods. For Ours,

we show measured time with and without the multi-scale approach. The testing environment was Matlab 2013a, with Intel
i7-4790 CPU @ 3.60 GHz and 16 GB RAM.

Method Ferstl et al. Kiechle et al. Park et al. Li et al. Ours Ours
[2] [3] [1] [4] (Single) (Multi)

Time(sec.) 140 450 4 700 200 300
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Figure 7. Comparison results with Kinect RGB-D data

(a) RGB (b) RAW

(c) Park et al. [1] (d) Ferstl et al. [2] (e) Kiechle et al. [3]

(e) Li et al. [4] (f) Ours
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Figure 8. Comparison results with Kinect RGB-D data

(a) RGB (b) RAW

(c) Park et al. [1] (d) Ferstl et al. [2] (e) Kiechle et al. [3]

(e) Li et al. [4] (f) Ours
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Figure 9. Comparison results with Kinect RGB-D data

(a) RGB (b) RAW

(c) Park et al. [1] (d) Ferstl et al. [2] (e) Kiechle et al. [3]

(e) Li et al. [4] (f) Ours
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Figure 10. Compare results with Kinect RGB-D data

(a) RGB (b) RAW

(c) Park et al. [1] (d) Ferstl et al. [2] (e) Kiechle et al. [3]

(e) Li et al. [4] (f) Ours
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Figure 11. Comparison results with Kinect RGB-D data

(a) RGB (b) RAW

(c) Park et al. [1] (d) Ferstl et al. [2] (e) Kiechle et al. [3]

(e) Li et al. [4] (f) Ours
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Figure 12. Comparison results with Kinect RGB-D data

(a) RGB (b) RAW

(c) Park et al. [1] (d) Ferstl et al. [2] (e) Kiechle et al. [3]

(e) Li et al. [4] (f) Ours
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Figure 13. Comparison results with Kinect RGB-D data

(a) RGB (b) RAW

(c) Park et al. [1] (d) Ferstl et al. [2] (e) Kiechle et al. [3]

(e) Li et al. [4] (f) Ours
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Figure 14. Comparison results with Kinect RGB-D data

(a) RGB (b) RAW

(c) Park et al. [1] (d) Ferstl et al. [2] (e) Kiechle et al. [3]

(e) Li et al. [4] (f) Ours
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Figure 15. Comparison results with Kinect RGB-D data

(a) RGB (b) RAW

(c) Park et al. [1] (d) Ferstl et al. [2] (e) Kiechle et al. [3]

(e) Li et al. [4] (f) Ours
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Figure 16. Comparison results with Kinect RGB-D data

(a) RGB (b) RAW

(c) Park et al. [1] (d) Kiechle et al. [3]

(e) Li et al. [4] (f) Ours
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5. Videos
We provide three videos for additional qualitative comparisons. One is a Kinect face depth recovery comparison with

Kiechle et al. [3]. The other two (one for face depth map and one for scene depth map) are recovery results using the
Intel ToF depth map (Intel Creative Gesture Camera). We compared our results with the embedded API provided by Intel.
Although our results are not perfectly clean, they indeed surpass previous state-of-the-art methods. For the real-world ToF
examples (ToF 3D scenes), there exists substantial non-uniform noise that is not fully removed after downsampling. This is
a reason why the refined results are not entirely planar. Including an additional level in the multiscale processing might have
helped to lessen this noise. Also, adding a prior that favors planar surfaces would help to reduce such distortions.
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