

Beyond Gaussian Pyramid: Multi-skip Feature Stacking for Action Recognition

Zhenzhong Lan, Ming Lin, Xuanchong Li, Alexander G. Hauptmann, Bhiksha Raj

School of Computer Science, Carnegie Mellon University

lanzhzh, minglin, xcli, alex, bhiksha@cs.cmu.edu

Abstract

This is the supplementary material for the paper entitled "Beyond Gaussian Pyramid: Multi-skip Feature Stacking for Action Recognition". The material gives the proof of theorem 1 and 2.

1. Proof

We present the proofs of the following two theorems.

Theorem 1. *Given a fixed time skip τ , with probability at least $1 - \delta$, the condition number $\beta(PP^T)$ is bounded by*

$$\beta(PP^T) \leq \frac{(1+c)\exp(-\gamma_1/\tau) + \Delta_\tau}{\exp(-\gamma_k/\tau) - \Delta_\tau} \quad (1)$$

$$\beta(PP^T) \geq \frac{(1+c)\exp(-\gamma_1/\tau) - \Delta_\tau}{\exp(-\gamma_k/\tau) + \Delta_\tau}. \quad (2)$$

where

$$\Delta_\tau = 2\sqrt{k\frac{1}{T}(1+c)\log(2k/\delta)} \quad (3)$$

provided the number of feature points

$$T \geq \frac{1}{9(1+c)}k\log(2k/\delta). \quad (4)$$

Theorem 2. *With probability at least $1 - \delta$, the condition number of PP^T in the MIFS is bounded by*

$$\beta(PP^T) \leq \frac{\sum_i \frac{T_i}{T} 2(1+c)\exp(-\gamma_1/\tau_i) + \Delta_\tau}{\sum_i \frac{T_i}{T} 2\exp(-\gamma_k/\tau_i) - \Delta_\tau}. \quad (5)$$

where

$$\Delta_\tau \leq 2\sqrt{k\frac{1}{\sum_i T_i}(1+c)\log(2k/\delta)}. \quad (6)$$

provided the number of feature points

$$T \geq \frac{1}{9(1+c)}k\log(2k/\delta). \quad (7)$$

Our proofs are based on the following Matrix Bernstein's Inequality.

Lemma 1 (Matrix Bernstein's Inequality). *Let $\mathbf{x}_i \in \mathbb{R}^{p \times 1}$, $\|\mathbf{x}_i\|^2 \leq B$. $S = \mathbf{x}_1\mathbf{x}_1^T + \cdots + \mathbf{x}_n\mathbf{x}_n^T$. Then with probability at least $1 - \delta$,*

$$\|S - \mathbb{E}\{S\}\| \leq \sqrt{2B\|\mathbb{E}\{S\}\|\log(2p/\delta)} + \frac{B}{3}\log(2p/\delta). \quad (8)$$

1.1. Proof of Theorem 1

Proof. For the i -th row, j -th column of P ,

$$|P_{i,j}| = [\alpha_i(t_j + \tau) - \alpha_i(t_j)] \leq 2 \quad (9)$$

$$\|P_j\|^2 \leq 4k \quad (10)$$

$$\mathbb{E}\{P_{i,j}^2\} \leq 2(1+c) \exp(-\gamma/\tau) \quad (11)$$

$$\mathbb{E}\{P_{i,j}^2\} \geq 2 \exp(-\gamma/\tau) \quad (12)$$

$$\mathbb{E}\{P_{i,j}P_{k,j}\} = 0 \quad i \neq k \quad (13)$$

$$\lambda_{\max}\{\mathbb{E}\{P_jP_j^T\}\} = \frac{1}{T}\lambda_{\max}\{\mathbb{E}\{PP^T\}\} \leq 2(1+c) \exp(-\gamma_1/\tau) \quad (14)$$

$$\lambda_{\min}\{\mathbb{E}\{P_jP_j^T\}\} = \frac{1}{T}\lambda_{\min}\{\mathbb{E}\{PP^T\}\} \geq 2 \exp(-\gamma_k/\tau). \quad (15)$$

By Matrix Bernstein's inequality, with probability at least $1 - \delta$, we have

$$\begin{aligned} 4T\Delta_\tau &\triangleq \|PP^T - \mathbb{E}\{PP^T\}\| \leq \sqrt{2 \times 4k \times 2T(1+c) \exp(-\gamma_1/\tau) \log(2k/\delta)} + \frac{4k}{3} \log(2k/\delta) \\ &= 4\sqrt{kT(1+c) \exp(-\gamma_1/\tau) \log(2k/\delta)} + \frac{4}{3}k \log(2k/\delta) \\ &\leq 4\sqrt{kT(1+c) \log(2k/\delta)} + \frac{4}{3}k \log(2k/\delta) \end{aligned} \quad (16)$$

When

$$T \geq \frac{1}{9(1+c)}k \log(2k/\delta) \quad (17)$$

we have

$$\Delta_\tau \leq 2\sqrt{k\frac{1}{T}(1+c) \log(2k/\delta)} \quad (18)$$

Therefore, when T is large enough,

$$\beta(PP^T) \leq \frac{(1+c) \exp(-\gamma_1/\tau) + \Delta_\tau}{\exp(-\gamma_k/\tau) - \Delta_\tau}. \quad (19)$$

A lower bound on $\beta(PP^T)$ could be given similarly by changing Δ_τ to $-\Delta_\tau$. \square

1.2. Proof of Theorem 2

Proof. The proof is similar to Theorem 1, except that now we have P_i that is sampled from m different distributions. The i -th component of P_i is sampled from $i\tau$ skip with probability $T_i/\sum_j T_j = T_i/T$, where $T = \sum_j T_j$ is the total number of features. Follow the proof of Theorem 1, we have:

$$|P_{i,j}| \leq 2 \quad (20)$$

$$\|P_j\|^2 \leq 4k \quad (21)$$

$$\mathbb{E}\{P_{i,j}^2\} \leq \sum_i \frac{T_i}{T} 2(1+c) \exp(-\gamma/\tau_i) \quad (22)$$

$$\mathbb{E}\{P_{i,j}^2\} \geq \sum_i \frac{T_i}{T} 2 \exp(-\gamma/\tau_i) \quad (23)$$

$$\mathbb{E}\{P_{i,j}P_{k,j}\} = 0 \quad i \neq k \quad (24)$$

$$\lambda_{\max}\{\mathbb{E}\{P_jP_j^T\}\} = \frac{1}{T}\lambda_{\max}\{\mathbb{E}\{PP^T\}\} \leq \sum_i \frac{T_i}{T} 2(1+c) \exp(-\gamma_1/\tau_i) \quad (25)$$

$$\lambda_{\min}\{\mathbb{E}\{P_jP_j^T\}\} = \frac{1}{T}\lambda_{\min}\{\mathbb{E}\{PP^T\}\} \geq \sum_i \frac{T_i}{T} 2 \exp(-\gamma_k/\tau_i) \quad (26)$$

By Matrix Bernstein's inequality, with probability at least $1 - \delta$, we have

$$\begin{aligned}
4T\Delta_\tau &\triangleq \|PP^T - \mathbb{E}\{PP^T\}\| \leq \sqrt{2 \times 4k \times [\sum_i T_i 2(1+c) \exp(-\gamma/\tau_i) \log(2k/\delta) + \frac{4k}{3} \log(2k/\delta)]} \\
&= 4\sqrt{k[\sum_i T_i (1+c) \exp(-\gamma/\tau_i) \log(2k/\delta) + \frac{4}{3}k \log(2k/\delta)]} \\
&\leq 4\sqrt{k(1+c)T \log(2k/\delta)} + \frac{4}{3}k \log(2k/\delta)
\end{aligned} \tag{27}$$

When

$$T \geq \frac{1}{9(1+c)} k \log(2k/\delta) \tag{28}$$

we have

$$\Delta_\tau \leq 2\sqrt{k \frac{1}{T} (1+c) \log(2k/\delta)} \tag{29}$$

$$\beta(PP^T) \leq \frac{\sum_i \frac{T_i}{T} 2(1+c) \exp(-\gamma_1/\tau_i) + \Delta_\tau}{\sum_i \frac{T_i}{T} 2 \exp(-\gamma_k/\tau_i) - \Delta_\tau} \tag{30}$$

□