
Beyond Gaussian Pyramid: Multi-skip Feature Stacking for Action Recognition

Zhenzhong Lan, Ming Lin, Xuanchong Li, Alexander G. Hauptmann, Bhiksha Raj

School of Computer Science, Carnegie Mellon University

lanzhzh, minglin, xcli, alex, bhiksha@cs.cmu.edu

Abstract

This is the supplementary material for the paper entitled ”Beyond Gaussian Pyramid: Multi-skip Feature Stacking for

Action Recognition”. The material gives the proof of theorem 1 and 2.

1. Proof

We present the proofs of the following two theorems.

Theorem 1. Given a fixed time skip τ , with probability at least 1− δ, the condition number β(PPT) is bounded by

β(PPT) ≤
(1 + c) exp(−γ1/τ) + ∆τ

exp(−γk/τ)−∆τ

(1)

β(PPT) ≥
(1 + c) exp(−γ1/τ)−∆τ

exp(−γk/τ) + ∆τ

. (2)

where

∆τ = 2

√

k
1

T
(1 + c) log(2k/δ) (3)

provided the number of feature points

T ≥
1

9(1 + c)
k log(2k/δ) . (4)

Theorem 2. With probability at least 1− δ, the condition number of PPT in the MIFS is bounded by

β(PPT) ≤

∑

i
Ti

T
2(1 + c) exp(−γ1/τi) + ∆τ

∑

i
Ti

T
2 exp(−γk/τi)−∆τ

. (5)

where

∆τ ≤ 2

√

k
1

∑

i Ti

(1 + c) log(2k/δ) . (6)

provided the number of feature points

T ≥
1

9(1 + c)
k log(2k/δ) . (7)

Our proofs are based on the following Matrix Bernstein’s Inequaltiy.

Lemma 1 (Matrix Bernstein’s Inequality). Let xi ∈ R
p×1, ‖xi‖

2
≤ B. S = x1x1

T + · · ·xnxn
T. Then with probability at

least 1− δ,

‖S − E{S}‖ ≤
√

2B ‖E{S}‖ log(2p/δ) +
B

3
log(2p/δ) . (8)
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1.1. Proof of Theorem 1

Proof. For the i-th row, j-th column of P ,

|Pi,j | =[αi(tj + τ)−αi(tj)] ≤ 2 (9)

‖Pj‖
2
≤4k (10)

E{P 2

i,j} ≤2(1 + c) exp(−γ/τ) (11)

E{P 2

i,j} ≥2 exp(−γ/τ) (12)

E{Pi,jPk,j} =0 i 6= k (13)

λmax{E{PjPj
T}} =

1

T
λmax{E{PPT}} ≤ 2(1 + c) exp(−γ1/τ) (14)

λmin{E{PjPj
T}} =

1

T
λmin{E{PPT}} ≥ 2 exp(−γk/τ) . (15)

By Matrix Bernstein’s inequality, with probability at least 1− δ, we have

4T∆τ ,
∥

∥PPT − E{PPT}
∥

∥ ≤
√

2× 4k × 2T (1 + c) exp(−γ1/τ) log(2k/δ) +
4k

3
log(2k/δ)

=4
√

kT (1 + c) exp(−γ1/τ) log(2k/δ) +
4

3
k log(2k/δ)

≤4
√

kT (1 + c) log(2k/δ) +
4

3
k log(2k/δ) (16)

When

T ≥
1

9(1 + c)
k log(2k/δ) (17)

we have

∆τ ≤ 2

√

k
1

T
(1 + c) log(2k/δ) (18)

Therefore, when T is large enough,

β(PPT) ≤
(1 + c) exp(−γ1/τ) + ∆τ

exp(−γk/τ)−∆τ

. (19)

A lower bound on β(PPT) could be given similarly by changing ∆τ to −∆τ .

1.2. Proof of Theorem 2

Proof. The proof is similar to Theorem 1, except that now we have Pi that is sampled from m different distributions. The

i-th component of Pi is sampled from iτ skip with probability Ti/
∑

j Tj = Ti/T , where T =
∑

j Tj is the total number of

features. Follow the proof of Theorem 1, we have:

|Pi,j | ≤2 (20)

‖Pj‖
2
≤4k (21)

E{P 2

i,j} ≤
∑

i

Ti

T
2(1 + c) exp(−γ/τi) (22)

E{P 2

i,j} ≥
∑

i

Ti

T
2 exp(−γ/τi) (23)

E{Pi,jPk,j} =0 i 6= k (24)

λmax{E{PjPj
T}} =

1

T
λmax{E{PPT}} ≤

∑

i

Ti

T
2(1 + c) exp(−γ1/τi) (25)

λmin{E{PjPj
T}} =

1

T
λmin{E{PPT}} ≥

∑

i

Ti

T
2 exp(−γk/τi) (26)



By Matrix Bernstein’s inequality, with probability at least 1− δ, we have

4T∆τ ,
∥

∥PPT − E{PPT}
∥

∥ ≤

√

2× 4k × [
∑

i

Ti2(1 + c) exp(−γ/τi)] log(2k/δ) +
4k

3
log(2k/δ)

=4

√

k[
∑

i

Ti(1 + c) exp(−γ/τi)] log(2k/δ) +
4

3
k log(2k/δ)

≤4
√

k(1 + c)T log(2k/δ) +
4

3
k log(2k/δ) (27)

When

T ≥
1

9(1 + c)
k log(2k/δ) (28)

we have

∆τ ≤2

√

k
1

T
(1 + c) log(2k/δ) (29)

β(PPT) ≤

∑

i
Ti

T
2(1 + c) exp(−γ1/τi) + ∆τ

∑

i
Ti

T
2 exp(−γk/τi)−∆τ

. (30)


