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Abstract

This is the supplementary material for the paper entitled ”Beyond Gaussian Pyramid: Multi-skip Feature Stacking for

Action Recognition”. The material gives the proof of theorem I and 2.

1. Proof

We present the proofs of the following two theorems.

Theorem 1. Given a fixed time skip T, with probability at least 1 — 6, the condition number 3(PP7T) is bounded by
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Theorem 2. With probability at least 1 — 8, the condition number of PPT in the MIFS is bounded by
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Our proofs are based on the following Matrix Bernstein’s Inequaltiy.
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Lemma 1 (Matrix Bernstein’s Inequality). Let x; € RPX1, HXZHQ < B. S=x1x1" + - -x,%,". Then with probability at

least 1 — 6,

IS —E{S}| < /2B |[E{S}| log(2p/3) + glog(Qp/fS) :

978-1-4673-6964-0/15/$31.00 ©2015 IEEE

®)



1.1. Proof of Theorem 1
Proof. For the i-th row, j-th column of P,
|l =le(t; +7) — ait))] < 2
1P| <4k
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E{Pfg} >2exp(—7/7)
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Amax{E{PijT}} :f/\max{E{PPT}} < 2(1 4 ¢)exp(—1/7)
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Amin{E{P; P;"}} :T/\min{E{PPT}} > 2exp(—k/T) .

By Matrix Bernstein’s inequality, with probability at least 1 — §, we have
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we have
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Therefore, when 7' is large enough,
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A lower bound on 3(PPT) could be given similarly by changing A, to —A .
1.2. Proof of Theorem 2
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Proof. The proof is similar to Theorem 1, except that now we have P; that is sampled from m different distributions. The
i-th component of P; is sampled from 7 skip with probability 7;/ >, T = T; /T, where T' = } . T} is the total number of

features. Follow the proof of Theorem 1, we have:
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By Matrix Bernstein’s inequality, with probability at least 1 — §, we have

ATA, 2 ||PPT —E{PP"}|| g\/z x 4k x [Z Ti2(1 + ¢) exp(—v/7:)] log(2k/5) + % log(2k/6)

=4 \/k[z Ti(1 + ¢) exp(—y/7:)] log(2k/5) + %klog(Qk/é)

<4\/k(1 + ¢)T log(2k/5) + %klog(zk/é) (27)
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