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I. PROOF OF EQUATION (11)

First, we give the following lemma:

Lemma 1. Let P be an orthogonal projection, i.e., P2 =
P = PT , and all the elements are nonnegative. Then, P is

similar to a block-diagonal matrix by permuting the rows and

columns for the same indices.

Essentially, the proof of this lemma is based on the fact that

all the off-diagonal elements of I−P are non-positive and it

can be decomposed as I−P = V⊥V⊥T for a thin orthogonal

matrix V⊥. The only case that satisfies both conditions is

when P is similar to a block-diagonal matrix:

Proof. Since P is an orthogonal projection, it can be factorized

as P = VVT where V ∈ R
mr×mc is a thin orthogonal

matrix. Since P is nonnegative, the off-diagonal elements of

P′ = I − P = V⊥V⊥T will be non-positive, where V⊥ ∈
R

mr×(mr−mc) is an orthogonal matrix satisfying VTV⊥ = 0.

By applying QR-decomposition to V⊥T = QV′T , it becomes

P′ = V⊥V⊥T = V′QTQV′T = V′V′T , (S1)

where V′ is a lower-triangular matrix. Without loss of general-

ity, we assume that V′ has strictly positive diagonal elements.

Along with this proof, we will show a conceptual example of

V′ for mr = 7 and mc = 4 to help the readers’ understanding,

as follows:

V′ =




+ 0 0
? + 0
? ? +
? ? ?
? ? ?
? ? ?
? ? ?




. (S2)

Let us denote V′

:i and V′

j: as the ith column and jth row

vectors of V′, respectively. Then, all the elements in V′
1:

except V′
11 > 0 are zeros. Since V′

1:V
′T
j: = P′

1j ≤ 0 for

all j 6= 1, all the elements in V′
:1 except V′

11 must be non-

positive. We can similarly show that all the elements of V′

except the diagonal elements are non-positive, by observing

that V′

:i must have non-positive elements except for V′

ii. This

can be shown as in the following example:

V′V′T =




+ 0 0
–© + 0
–© –© +
–© –© –©
–© –© –©
–© –© –©
–© –© –©






+ –© –© –© –© –© –©
0 + –© –© –© –© –©
0 0 + –© –© –© –©


 ,

(S3)

where –© represents non-positive elements.

Thus, V′
j: only contains non-positive elements for j > m′

c,

where m′
c = mr − mc. However, the inner product of

nonnegative vectors is positive, which violates the assumption,

unless they are orthogonal in which case the inner product will

be zero. Hence, there can be no more than m′
c row vectors for

j > m′
c that have at least one strictly negative element, i.e.,

there will be at least mr − 2m′
c (= 2mc −mr) zero rows in

V′. Hence, we assume that V′

j: = 0 for j > m′
c+m′′

c without

loss of generality. Here, m′′
c (≤ m′

c) is the number of nonzero

rows V′

j: for j > m′
c. Now, (S3) becomes

V′V′T =




+ 0 0
–© + 0
–© –© +
–© –© –©
–© –© –©
–© –© –©
0 0 0






+ –© –© –© –© –© 0
0 + –© –© –© –© 0
0 0 + –© –© –© 0


 .

(S4)

Moreover, if V′
ji < 0 for some i and m′

c < j ≤ m′
c +m′′

c ,

V′

j′i = 0, for j′ 6= j,m′

c < j′ ≤ m′

c +m′′

c , (S5)

i.e., for each i, there can be only one element (j, i) for j ∈
(m′

c,m
′
c +m′′

c ] which is strictly negative. Thus, the columns

{i} can be partitioned into m′′
c disjoint sets, i.e.,

ij =
{
i
∣∣V′

ji < 0
}

for m′

c < j ≤ m′

c +m′′

c , (S6)

and ij ∩ ij′ = ∅ for j 6= j′. The following example shows
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this property:

V′V′T =




+ 0 0
–© + 0
–© –© +
0 − −
− 0 0
0 0 0
0 0 0







+ –© –© 0 − 0 0
0 + –© − 0 0 0
0 0 + − 0 0 0



 .

(S7)

Now, we will show that the indices of rows can also be

partitioned based on ij . To do this, we have to show that

{V′

ki} is partitioned based on i for 1 ≤ k ≤ m′
c, because

it is already partitioned for k > m′
c. Let j be the row index

satisfying m′
c ∈ ij , i.e., V′

jm′

c

< 0, and let i′ ∈ ij′ (V′

j′i′ < 0)

for some j′ 6= j, Then,

0 = V′T
:m′

c

V′

:i′ =

mr∑

k=1

V′

km′

c

V′

ki′ = V′

m′

c
m′

c

V′

m′

c
i′ , (S8)

because V′

km′

c

= 0 for k < m′
c and V′

km′

c

V′

ki′ = 0 for

k > m′
c. This means that V′

m′

c
i′ = 0 for any i′ ∈ ij′ , j

′ 6= j.

Likewise, we can easily show that V′

m′

c
i′′ < 0 for any i′′ ∈ ij .

This can be shown as in the following:

V′V′T =




+ 0 0
–© + 0
0 − +
0 − −
− 0 0
0 0 0
0 0 0






+ –© 0 0 − 0 0
0 + − − 0 0 0
0 0 + − 0 0 0


 .

(S9)

Similarly, we can show that V′

ii′ = 0 if

i ∈ ij, i
′ ∈ ij′ , for j′ 6= j,

V′

i′′i′ = 0, for i < i′′ ≤ m′

c,
(S10)

and otherwise V′

ii′ < 0. This recursively proves that V′

ii′ = 0
for i ∈ ij , i

′ ∈ ij′ , j
′ 6= j, which also proves that the indices

of rows can also be partitioned based on ij . Therefore, we can

define another m′
c disjoint sets, i.e.,

kj = ij ∪ {j} for m′

c < j ≤ m′

c +m′′

c , (S11)

and kj ∩ kj′ = ∅ for j 6= j′. Then, V′

ki can be nonzero only

if k ∈ kj , i ∈ ij . Finally, our example looks like

V′V′T =




+ 0 0
0 + 0
0 − +
0 − −
− 0 0
0 0 0
0 0 0






+ 0 0 0 − 0 0
0 + − − 0 0 0
0 0 + − 0 0 0


 .

(S12)

Since we have shown that the nonzero elements of V′ can

be partitioned into disjoint sets of rows and columns, V′

can be permuted1 into a block-diagonal matrix V′′, as in the

1Care should be taken that, in this case, the permutation can be applied to
different indices for rows and columns.

following example:

V′′ =




+ 0 0
− 0 0
0 + 0
0 − +
0 − −
0 0 0
0 0 0




. (S13)

Note that the size of each block matrix is N(kj) × N(ij) =
(N(ij) + 1)×N(ij). Hence, there must be a unit vector vj ,

which is orthogonal to V′′ and whose elements are nonzero

only for the row indices of the jth block of V′′, for each j.

Note that vjs are mutually orthogonal. For the above example,

there are four vjs which look like

v1 =




+
+
0
0
0
0
0




, v2 =




0
0
+
+
+
0
0




, v3 =




0
0
0
0
0
1
0




, v4 =




0
0
0
0
0
0
1




.

(S14)

Therefore, if we let V be a matrix formed with vj , then

VV
T

is block-diagonal, where the blocks are rank one with

eigenvalue one. Moreover, if we form Ṽ by permuting the

rows of V in the inverse order of the permutation from V′ to

V′′, then Ṽ and V must have the same span because of the

assumption. This concludes the proof.

This lemma leads to the following theorem:

Theorem 1. F′ is a normalized membership matrix iff it is

doubly stochastic and is an orthogonal projection.

Proof. F′ is an orthogonal projection because it is symmetric

and its eigenvalues are either zero or one. This proves the

only-if part.

Based on Lemma 1, if F′ is an orthogonal projection, F′ is

similar to a block-diagonal matrix F∗ by permutation2. Since

F∗ is also doubly stochastic, the row sums of F∗ are 1, i.e.,

F∗1 = 1. In order for this to be valid, every block F∗

k must

satisfy F∗

k1 = 1. Because F∗

k is rank one with eigenvalue one,

all of the elements of F∗

k must be equal to 1
nk

where nk is

the dimension of F∗

k. This proves the if part.

II. MOTION CLUSTERING FOR CMU MOTION CAPTURE

SEQUENCES

In the field of non-rigid structure from motion (NRSfM)

[S1], the non-rigid shape changes are often assumed to have

a low-rank basis, under an assumption that the changes in

the data sequence is simple enough. If this assumption does

not hold, then the data sequence can be divided into several

scenes, where each of them can be expressed by a low-rank

basis, as in [S1]. Hence, a complex non-rigid motion sequence

can also be a good example to show the effectiveness of a

2The elements of a doubly stochastic matrix are nonnegative.
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subspace clustering technique. Accordingly, we have applied

the proposed algorithm to some of the CMU motion capture

sequences3. Since these sequences have large numbers of

frames with redundant shapes, we reduced them by sampling

every mth frame so that the number of frames in each sequence

becomes less than 1500. Since only the non-rigid changes are

assumed to be low-rank in NRSfM, we excluded any rigid

motions in the data sets by using the generalized Procrustes

analysis (GPA) [S2], and normalized each data set so that

the mean-squared value of the elements becomes one. The

parameters of LRR and SSC have been set to λ = 0.05
and α = 2000, respectively, and those of MR were set as

λM = 0.02 and β = 0.5 for LRR, and λM = 10−8 and

β = 0.6 for SSC, respectively. The video results of the motion

clustering are provided as another supplementary material. An

objective evaluation is not possible because there is no ground

truth for these data sets, but we can confirm subjectively that

the results are good, based on the videos.
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