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1 Introduction

This supplementary material is organized as follows. Sec. 2.1 and Sec. 2.2 present proofs
for the Eq. 4 in the paper in the case of max and average pooling operator, respectively.
Sec. 2.3 substantiates variance statements associated with Eq. 6 and Eq. 7 in the Section
3.3. Sec. 3 shows numerical details for Fig. 4 and Fig. 5 in the paper. Last, Sec. 4
shows examples of object instances in JHUIT-50 dataset. Additionally, it shows a subset
of training and testing samples to illustrate the experiment setting applied in JHUIT-50.

2 Proofs of Three Theorems

2.1 Theorem 1

First, we prove the following theorem to substantiate the derivation of Eq. 4 in the paper
when a max pooling operator is applied.

Theorem 1. Given N random variables X1, X2, ..., XN , E(maxiXi) ≥ maxiE(Xi) and

Var(maxiXi) ≤
∑

iVar(Xi).

Proof: The first conclusion E(maxiXi) ≥ maxiE(Xi) directly follows from Jensen’s in-
equality. Therefore, we focus on the proof for the second conclusion Var(maxiXi) ≤
∑

iVar(Xi).
To begin, we show that given two independent random variables U ,V that have the

same distribution (i.e., P (U) = P (V )), E(U − V )2 = 2Var(U) holds with the fact that
E(X2) = E(Y 2) and E(XY ) = E(X)E(Y ) = [E(X)]2:

E(X − Y )2 = E(X2 − 2XY + Y 2) = 2(E(X2)− E(X)2) = 2Var(X) (1)

Next, given N random variables X1, X2, ..., XN where each Xi has distribution P (Xi),
there always exists another N random variables Y1, Y2, ..., YN subject to P (Yi) = P (Xi)
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and Yi is independent from Xi (i.e., P (Xi, Yi) = P (Xi)P (Yi)). Suppose γ ≥ 0, we de-
note an event A as (maxiXi − maxi Yi)

2 > γ for random variables maxiXi and maxi Yi.
Note that maxiXi is independent from maxi Yi. Additionally, we define another N events
B1, B2, ..., BN where each Bi represents (Xi − Yi)

2 > γ and 1 ≤ i ≤ N . As a result, when
A occurs, at least Bk ∈ {B1, ..., BN} is true where k = argimaxXi. Thus, the following
result can be deduced with the union bound:

P ((max
i

Xi −max
i

Yi)
2 > γ) = P (A) ≤ P (∪N

i=1
Bi) ≤

∑

i

P (Bi) =
∑

i

P ((Xi − Yi)
2 > γ)

(2)
Finally, based on Eq. 1, the Var(maxiXi) ≤

∑

iVar(Xi) is proved as follows:

Var(max
i

Xi) =
1

2
E(max

i
Xi −max

i
Yi)

2 =
1

2

∫

P ((max
i

Xi −max
i

Yi)
2 > γ)dγ

≤ 1

2

N
∑

i=1

∫

P ((Xi − Yi)
2 > γ)dγ

=
N
∑

i=1

1

2
E((Xi − Yi)

2)

=

N
∑

i=1

Var(Xi)

(3)

Therefore, we have Var(maxiXi) ≤
∑N

i=1
Var(Xi). Note that this theorem allows

X1, X2, ..., XN to be dependent from each other.

2.2 Theorem 2

Second, we prove the following theorem to demonstrate the derivation of Eq. 4 in the
paper when the average pooling operator is applied.

Theorem 2. Given N random variables X1, X2, ..., XN , Var( 1

N

∑

iXi) ≤
∑

iVar(Xi).

Proof: Given N random variables X1, X2, ..., XN where each Xi has distribution P (Xi),
there always exists another N random variables Y1, Y2, ..., YN subject to P (Yi) = P (Xi)
and Yi is independent from Xi (i.e., P (Xi, Yi) = P (Xi)P (Yi)). Suppose γ ≥ 0, we denote
an event A as ( 1

N

∑

iXi − 1

N

∑

i Yi)
2 > γ for random variables 1

N

∑

iXi and 1

N

∑

i Yi.
Furthermore, we define another N events B1, B2, ..., BN where each Bi represents (Xi −
Yi)

2 > γ and 1 ≤ i ≤ N .
Next, we prove by contradiction that if A is true, at least one Bi is true. Specifically,

we assume that when A is true, all Bi are false (i.e., |Xi − Yi| ≤
√
γ for 1 ≤ i ≤ N). Then,

with the triangle inequality, we get the following result:

2



∣

∣

∣

∣

∣

1

N

∑

i

Xi −
1

N

∑

i

Yi

∣

∣

∣

∣

∣

≤ 1

N

N
∑

i=1

|Xi − Yi| ≤
√
γ (4)

As a consequence, if allBi are false, (
1

N

∑

iXi− 1

N

∑

i Yi)
2 ≤ γ follows, which contradicts

that A is true. Therefore, this shows that at least one Bi needs to be true if A occurs.
With the union bound, we can get:

P ((
1

N

∑

i

Xi−
1

N

∑

i

Yi)
2 > γ) = P (A) ≤ P (∪N

i=1
Bi) ≤

∑

i

P (Bi) =
∑

i

P ((Xi−Yi)
2 > γ)

(5)
Finally, analogous to Eq. 3, we can get Var( 1

N

∑

iXi) ≤
∑

iVar(Xi) by using Eq. 5.
Note that this theorem allows X1, X2, ..., XN to be dependent.

2.3 Theorem 3

The following theorem is used to explain the 3rd statement in the paper. That is, Var(xpjk) ∝
Var(dk|sj , op) and Var(xpjk) ∝ Var(sj |dk, op).
Theorem 3. Given two independent random variables X and Y , Var(XY ) are positively

proportional to Var(X) and Var(Y ). That is, Var(XY ) ∝ Var(X) and Var(XY ) ∝ Var(Y )
if P (X,Y ) = P (X)P (Y ).

Proof: We know that, for any two independent variables X and Y , E(XY ) = E(X)E(Y )
and E(X2Y 2) = E(X2)E(Y 2). Therefore, Var(XY ) ∝ Var(X) and Var(XY ) ∝ Var(Y )
follow from:

Var(XY ) = E[(XY )2]− [E(XY )]2

= E(X)2E(Y )2 − [E(X)]2[E(Y )]2

= [E(X)]2Var(Y ) + [E(Y )]2Var(X) + Var(X)Var(Y )

(6)

Next, we use above theorem to substantiate the variance statement associated with
Eq. 6 and Eq. 7 in the Section 3.3 in the paper. We already define x

p
jk = (sj , dk)|op

as the activation strength of dk at sj given object op in the paper. Therefore, xpjk can

be decomposed into the following two forms: x
p
jk = u

p
jkv

p
j and x

p
jk = w

p
jkq

p
k, where u

p
jk =

(dk|sj , op), vpj = (sj |op) and w
p
jk = (sj |dk, op), qpk = (dk|op). More specifically, upjk is the

activation score of dk at sj and v
p
j is a 0-1 variable indicating whether object op occupies

sj . Also, w
p
jk is a 0-1 variable indicating whether response value dk at sj from the kth filter

(we abuse the notation dk to indicate the continuous response value of the kth filter) and
q
p
k = dk|op represents the response value dk of the kth filter given op. It is clear that u

p
jk

is independent from v
p
j and w

p
jk is independent from q

p
k. With Theorem 3, we can derive

Var(xpjk) ∝ Var(dk|sj , op) and Var(xpjk) ∝ Var(sj |dk, op).
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LAB XYZ

0.02 0.03 0.04 0.05 0.06 0.02 0.03 0.04 0.05 0.06

Level 1 0.089 0.14 0.18 0.23 0.28 0.08 0.14 0.18 0.23 0.28

Level 2 3.39 3.95 4.27 4.56 4.82 4.32 4.78 5.17 5.50 5.75

Level 3 9.90 11.07 11.56 12.10 12.47 16.58 17.61 18.27 18.80 19.19

Level 4 16.82 18.25 18.89 19.48 19.95 35.24 36.66 37.39 38.12 38.60

Level 5 17.75 19.81 20.80 21.96 22.74 59.86 61.79 62.60 63.35 63.99

Level 6 30.68 33.62 34.94 36.30 37.14 90.73 93.06 93.91 94.85 95.67

Level 7 45.20 48.99 50.63 52.29 53.43 126.93 129.57 130.44 131.49 132.50

Level 8 60.32 64.98 67.08 69.10 70.40 168.81 171.89 172.73 173.96 175.27

Level 9 78.96 84.32 86.72 89.15 90.62 216.09 219.60 220.39 221.71 223.32

Level 10 98.46 105.06 107.90 110.70 112.31 267.47 271.46 272.23 273.58 275.49

Level 11 126.16 133.65 137.07 140.18 141.90 324.44 328.84 329.44 330.97 333.31

Level 12 153.96 162.35 166.03 169.50 171.49 386.29 391.07 391.71 393.27 395.96

Level 13 187.82 197.22 201.35 205.16 207.16 451.51 456.66 457.17 458.84 461.95

Level 14 216.85 227.20 231.88 235.93 238.06 523.35 528.83 529.27 531.03 534.57

Level 15 258.93 270.36 275.35 280.00 282.34 598.42 604.30 604.54 606.42 610.50

Level 16 297.64 310.05 315.54 320.25 322.67 677.49 683.68 683.80 685.79 690.22

Level 17 345.52 358.67 364.51 369.58 372.07 761.99 768.55 768.47 770.50 775.61

Level 18 387.43 401.68 408.00 413.48 416.09 851.02 857.95 857.61 859.83 865.53

Level 19 439.75 455.11 461.85 467.63 470.32 942.83 950.14 949.66 951.84 958.09

Level 20 487.78 504.04 511.32 517.36 520.26 1038.0 1045.6 1044.9 1047.2 1054.2

Table 1: The numerical results of the variances in different filter scales, pooling levels and
domains for Fig. 4 in the paper. The second row indicates the radius (scale) of CSHOT
filters in meter.

3 Experiment Details

In this section, we provide detailed numerical results for two plots within Fig. 4 and Fig.
5 in the paper.

Table 1 reports the invariance scores in different filter scales, pooling levels and domains
(LAB and XYZ) for Fig. 4 in the paper, and Table 2 shows testing accuracies and average
distances at each pooling level (no stacking) for Fig. 5 in the paper. Notice that the
accuracies of level 5 and 6 between single scale filters (’S’) and multi-scale filters (’M’) in
Table 2 are the same because multi-scale architecture (’M’) adopts the same filter scale
(0.03m) used in single-scale one (’S’) at both level 5 and 6. The filter scales of multi-scale
architecture (’M’) at each level have already explained in the footnote of page 7 in the
paper.
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Level
1

Level
2

Level
3

Level
4

Level
5

Level
6

Level
7

Level
8

acc-XYZ-S 57.70 40.79 34.81 31.82 30.20 28.91 27.61 26.92

acc-LAB-S 57.70 76.22 78.93 79.55 81.15 81.47 83.89 84.35

acc-XYZ-M 62.40 45.73 36.79 33.62 30.20 28.91 26.78 25.25

acc-LAB-M 62.40 77.90 79.60 80.55 81.15 81.47 85.40 85.53

dist-XYZ-M 4571.41 7404.71 7412.93 7328.98 7760.25 7872.22 8099.94 8153.55

dist-LAB-M 4571.41 3090.88 2541.10 2282.32 2130.28 2034.07 1947.46 1861.19

Table 2: The numerical results for Fig. 5 in the paper. The first four rows show the testing
accuracies (%) of different variants of proposed method on BigBIRD dataset from level-1
to level-8. The last two rows show the average distances (Eq. 5 in the paper) between all
object classes in color and spatial domains from level-1 to level-8.

4 IT-50 Dataset

In this section, Fig. 1 first shows 50 object examples in our IT-50 dataset. Each object
example shown in Fig. 1 belongs to a different object instance class. Next, Fig. 2 depicts a
subset of the training and testing samples of the object ’drill flat’. Training sequences are
captured under three fixed viewing angles (30, 45 and 60 degrees) and testing sequences
are collected under random view points of the camera. We also provide object masks
that segment objects from the background. These masks are automatically generated by
ground segmentation and depth filtering, which basically follows the same procedures used
for BigBIRD dataset.

5



Figure 1: The examples of 50 industrial objects in IT-50 dataset. Each object shown here
belongs to a different object instance.
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Figure 2: A subset of training and testing samples from the object ’drill flat’. The first
three rows in the top block enclosed by a red rectangle show some training samples under
viewing angles of 30, 45 and 60 degrees, respectively. The bottom block enclosed by a blue
rectangle shows a subset of testing samples captured under random view points.
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