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Supplementary material of ”Superpixel

Segmentation using Linear Spectral Clustering”

APPENDIX A

DETAILED PROOF OF THEOREM 1

Theorem 1: Optimization of the objective functions of weighted K-means and normalized cuts are mathematically

equivalent if both equations (1) and (2) hold.

∀ p, q ∈ V, w(p)φ(p) · w(q)φ(q) = W (p, q) (1)

∀ p ∈ V, w(p) =
∑
q∈V

W (p, q) (2)

Proof: This objective function of weighted k-means can be rewritten in the following form.

Fk−m=

K∑
k=1

∑
p∈πk

w(p)‖φ(p)−
∑

q∈πk
w(q)φ(q)∑

q∈πk
w(q)

‖2

=

K∑
k=1

∑
p∈πk

w(p)

(
‖φ(p)‖2 − 2φ(p) ·

∑
q∈πk

w(q)φ(q)∑
q∈πk

w(q)
+ ‖

∑
q∈πk

w(q)φ(q)∑
q∈πq

w(q)
‖2
)

=

K∑
k=1

∑
p∈πk

w(p)‖φ(p)‖2 −
K∑
k=1

(
2
∑
p∈πk

w(p)φ(p) ·
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q∈πk
w(q)φ(q)∑

q∈πk
w(q)

−
∑
p∈πk

w(p)‖
∑

q∈πk
w(q)φ(q)∑

q∈πk
w(q)

‖2
)

=

K∑
k=1

∑
p∈πk

w(p)‖φ(p)‖2 −
K∑
k=1

(
2
‖
∑

p∈πk
w(p)φ(p)‖p∑

p∈πk
w(p)

−
‖
∑
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w(p)φ(p)‖2∑
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w(p)

)

=

K∑
k=1

∑
p∈πk

w(p)‖φ(p)‖2 −
K∑
k=1

‖
∑

p∈πk
w(p)φ(p)‖2∑

p∈πk
w(p)

=

K∑
k=1

∑
p∈πk

w(p)‖φ(p)‖2 −
K∑
k=1

∑
p∈πk

∑
q∈πk

w(p)φ(p) · w(q)φ(q)∑
p∈πk

w(p)
(3)

In equation (3), C =
∑K
k=1

∑
p∈πk

w(p)‖φ(p)‖2 is a constant independent of the clustering result. Given

equations (1) and (2), we have equation (4), from which it can be easily observed that minimizing Fk−m is strictly

equivalent to maximizing FNcuts.

Fk−m = C −
K∑
k=1

∑
p∈πk

∑
q∈πk

W (p, q)∑
p∈πk

∑
q∈V W (p, q)

= C −K × FNcuts (4)

In conclusion, we have proved that by choosing the weighted inner products in the feature space to be equal to the

similarity measurement in the input space and by choosing the weight of each point equal to the total weight of

November 19, 2014 DRAFT



2

edges connecting the corresponding node to the all nodes in the graph, the objective function of weighted k-means

and normalized cut are mathematically equivalent.

APPENDIX B

KERNEL FUNCTION AND POSITIVITY CONDITION

In this section, we will briefly explain why it is necessary to approximate the similarity function Ŵ (p, q) drawn

from Euclidean distance using fourier transform by showing that Ŵ (p, q) is not a kernel function. Equation (8) in

our paper demonstrates that the similarity function W (p, q) must be a kernel function which satisfies the positivity

condition. Detailed explanation can be found in [1]. Theorem 2 gives the sufficient and necessary condition for a

symmetric function to be a kernel function [1].

Theorem 2: Let X be a finite input space with K(x, z) a symmetric function on X . Then K(x, z) is a kernel

function if and only if the matrix

K = (K(xi, zj))ni,j=1 (5)

is positive semi-definite.

Since Ŵ (p, q) can be rewriten as a nonnegative linear combination of a number of instances of a simple

functions g(p, q) = 1 − (p − q)2, to verify that Ŵ (p, q) is not a kernel function, we need only to prove that

function g(p, q) violates the condition proposed in Theorem 2. We prove that g(p, q) is not a kernel function

using a specific example. Given vector X = (0, 0.5, 1), the corresponding kernel matrix K = (g(Xi,Xj))
n
i,j=1

defined by function g(p, q) and vector X is shown in equation (6)

K =


1 3

4 0

3
4 1 3

4

0 3
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1
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−
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1
√
2 1



1− 3

√
2

4 0 0

0 1 0

0 0 1 + 3
√
2

4




1 −
√
2 1

−
√
2 0

√
2

1
√
2 1

 (6)

The negative eigenvalue 1− 3
√
2

4 indicates that K is not positive semi-definite and therefore g(p, q) is not a kernel

function. As such, Ŵ (p, q) can not be used directly as the similarity function in LSC. To solve this problem, we

use fourier transform to approximate g(p, q) in our method. Fig.1 shows more superpixel segmentation examples

using the proposed LSC algorithm.
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Fig. 1. Images segmented into 400 superpixels using the proposed LSC algorithm.
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