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Abstract

This supplementary material contains the proofs of all

theorems and some additional experimental results. We

keep the numbering of all the theorems as in the paper and

repeat the algorithms for the convenience of the reader.

Let Fm be an m-th order tensor, we recall from the paper

the notations (see Definition 3.2)

Fm(x1, . . . ,xm) =

n
∑

i1,...,im=1

Fm
i1...im

x1
i1
. . .xm

im
,

Sm(x) := Fm(x, . . . ,x), and the relation

S4(x) = 4F3(x,x,x)
n
∑

i=1

xi = 4S3(x)
n
∑

i=1

xi. (1)

For simplicity, the superscript in the multilinear form

can be omitted when there is no ambiguity. For ex-

ample, F(x,y, z, t) can be used interchangeably with

F4(x,y, z, t) as the number of variables is four, which al-

ready implies a fourth order tensor. Similarly, F(x,y, ·, ·)
is equivalent to F4(x,y, ·, ·), and so on. In the same way

for a third order tensor, F(x,y, z) can be used interchange-

ably with F3(x,y, z). We write F4(x,x,x, ·) to denote the

vector in R
n such that

F4(x,x,x, ·)l =

n
∑

i,j,k=1

F4
ijklxixjxk

for all 1 ≤ l ≤ n. We write F4(x,x, ·, ·) to denote the

matrix in R
n×n such that

F4(x,x, ·, ·)kl =

n
∑

i,j=1

F4
ijklxixj

for all 1 ≤ k, l ≤ n. For an m-th order symmetric tensor it

holds for any permutation σ of {1, . . . ,m}

Fm(x1, . . . ,xm) = Fm(xσ(1), . . . ,xσ(x)).

Note that if F4 is associated to a symmetric tensor, then

the position of the dots do not matter. For example, one

has F4(x,x,x, ·) = F4(x,x, ·,x) = F4(x, ·,x,x) =
F4(·,x,x,x). Similar properties hold for multilinear forms

of other orders.

1. Proofs

According to Section 2 in the paper, the third order hy-

pergraph matching problem is formulated as the maximiza-

tion of the following function:

S3(x) =

n
∑

i,j,k=1

F3
ijk xi xj xk. (2)

where F3 is a third order symmetric affinity tensor.

Lemma 3.1 Let S3 be defined as in Equation (2). If S3 is

not constantly zero, then S3 : Rn → R is not convex.

Proof: The Hessian HS3 of S3 satisfies

HS3(x)jk = 6

n
∑

i=1

F3
ijkxi, ∀1 ≤ j, k ≤ n, (3)

for every x ∈ R
n, i.e. HS3(x) = 6F3(x, ·, ·). Now, if S3 is

convex, then

0 ≤
〈

y, HS3(x)y
〉

= 6F3(x,y,y) ∀x,y ∈ R
n. (4)

It follows that

0 ≤ F(x,y,y) and 0 ≤ F(−x,y,y) = −F(x,y,y) (5)

for every x,y ∈ R
n. In particular, for x = y we get

0 = F(x,x,x) = S3(x) for every x ∈ R
n. ✷

The following lemma shows that even if we optimize the

multilinear form F4 instead of S4 we get ascent in S4.
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Lemma 3.2 Let F4 be a fourth order symmetric tensor. If

S4 : Rn → R is convex, then for all x,y, z, t ∈ R
n:

1. F4(x,x,y,y) ≤ max
u∈{x,y}

F4(u,u,u,u),

2. F4(x,y, z, t) ≤ max
u∈{x,y,z,t}

F4(u,u,u,u).

Proof: First, we prove a characterization for the convexity

of S4. The gradient and the Hessian of S4 are given by

∇S4(x) = 4F4(x,x,x, ·), (6)

HS4(x) = 12F4(x,x, ·, ·), (7)

where we used the symmetry of F4. S4 is convex if and

only if HS4(x) is positive semi-definite for all x ∈ R
n

which is equivalent to

〈

y, HS4(x)y
〉

= 12F4(x,x,y,y) ≥ 0, ∀x,y ∈ R
n. (8)

1. By (8) and the multilinearity of F, we have

0 ≤ F(x− y,x− y,x+ y,x+ y) (9)

= F(x,x,x,x) + F(y,y,y,y)− 2F(x,x,y,y)

for every x,y ∈ R
n. It follows that

2F(x,x,y,y) ≤ F(x,x,x,x) + F(y,y,y,y)

≤ 2 max
u∈{x,y}

F4(u,u,u,u). (10)

for all x,y ∈ R
n.

2. Similarly, for all x,y, z, t ∈ R
n, we have

0 ≤ F(x+ y,x+ y, z− t, z− t)

= F(x,x, z, z) + F(x,x, t, t) + F(y,y, z, z)

+F(y,y, t, t) + 2F(x,y, z, z) (11)

+2F(x,y, t, t)− 2F(x,x, z, t)

−2F(y,y, z, t)− 4F(x,y, z, t).

Switching the variables from (x,y, z, t) to (z, t,x,y)

and applying the same inequality, we get

0 ≤ F(x− y,x− y, z+ t, z+ t)

= F(x,x, z, z) + F(x,x, t, t) + F(y,y, z, z)

+F(y,y, t, t)− 2F(x,y, z, z) (12)

−2F(x,y, t, t) + 2F(x,x, z, t)

+2F(y,y, z, t)− 4F(x,y, z, t).

Summing up inequalities (11) and (12) we obtain:

4F(x,y, z, t) ≤ F(x,x, z, z) + F(x,x, t, t) (13)

+F(y,y, z, z) + F(y,y, t, t).

Finally, applying the first result finishes the proof.

✷

The following theorem shows that the optimization of

the multilinear form F4(x,y, z, t) and the score function

S4(x) = F4(x,x,x,x) are equivalent in the sense that

there exists a globally optimal solution of the first problem

which is also a globally optimal solution of the second prob-

lem.

Theorem 3.3 Let F4 be a fourth order symmetric tensor

and suppose that S4 : Rn → R is convex. Then it holds for

any compact constraint set D ⊂ R
n,

max
x∈D

F4(x,x,x,x) = max
x,y∈D

F4(x,x,y,y) (14)

= max
x,y,z,t∈D

F4(x,y, z, t).

Proof: For any compact set D ⊂ R
n it holds:

max
x∈D

F4(x,x,x,x) ≤ max
x,y∈D

F4(x,x,y,y) (15)

≤ max
x,y,z,t∈D

F4(x,y, z, t).

However, the second inequality in Lemma 3.2 shows

F4(x,y, z, t) ≤ max
u∈{x,y,z,t}

F4(u,u,u,u) (16)

which leads to

max
x,y,z,t∈D

F4(x,y, z, t) ≤ max
x∈D

F4(x,x,x,x), (17)

and the proof is done. ✷

The following proposition shows that we can always make

S4 convex.

Proposition 3.4 Let F4 be a fourth order symmetric ten-

sor. Then for any α ≥ 3
∥

∥F4
∥

∥

2
, where

∥

∥F4
∥

∥

2
:=

√

∑n

i,j,k,l=1(F
4
ijkl)

2, the function

S4
α(x) := S4(x) + α ‖x‖

4
2 (18)

is convex on R
n, and for any x ∈ M ,

S4
α(x) = S4(x) + αn2

1. (19)

Proof: The gradient and the Hessian of S4
α can be com-

puted as:

∇S4
α(x) = 4F4(x,x,x, ·) + 4α ‖x‖

2
2 x, (20)

HS4
α(x) = 12F4(x,x, ·, ·) + 8αxxT + 4α ‖x‖

2
2 I, (21)



where I is the identity matrix. S4
α is convex if and only if

〈y, HS4
α(x)y〉 ≥ 0 ∀x,y ∈ R

n. (22)

This is equivalent to

12F4(x,x,y,y) + 8α 〈x,y〉
2
+ 4α ‖x‖

2
2 ‖y‖

2
2 ≥ 0 (23)

for every x,y ∈ R
n. By the Cauchy-Schwarz inequality we

have

∣

∣F4(x,x,y,y)
∣

∣ =

∣

∣

∣

∣

∣

∣

n
∑

i,j,k,l=1

F4
ijklxixjykyl

∣

∣

∣

∣

∣

∣

≤

√

√

√

√

n
∑

i,j,k,l=1

(

F4
ijkl

)2
n
∑

i,j,k,l=1

x2
ix

2
jy

2
ky

2
l

=
∥

∥F4
∥

∥

2
‖x‖

2
2 ‖y‖

2
2 , (24)

for every x,y ∈ R
n. It follows that for α ≥ 3

∥

∥F4
∥

∥

2
,

inequality (23) is true for any x,y ∈ R
n. Finally, the sec-

ond statement of the proposition follows from the fact that

‖x‖
2
2 = n1 for any x ∈ M . ✷

The following proposition shows that there exists a multi-

linear form associated to ‖x‖
4
2.

Proposition 3.5 The symmetric tensor G4 ∈ R
n×n×n×n

with corresponding symmetric multilinear form defined as

G4(x,y, z, t) =
〈x,y〉〈z, t〉+ 〈x, z〉〈y, t〉+ 〈x, t〉〈y, z〉

3

satisfies G4(x,x,x,x) = ‖x‖
4
2.

Proof: The proof requires two parts:

1. There exists a fourth order symmetric tensor G4 such

that its multilinear form is given as above.

2. The multilinear form associated to G4 satisfies

G4(x,x,x,x) = ‖x‖
4
2.

Let G4 ∈ R
n×n×n×n be defined as follow:

G4
ijkl =































1 if i = j = k = l,

1/3 if i = j 6= k = l,

1/3 if i = k 6= j = l,

1/3 if i = l 6= j = k,

0 else,

∀1 ≤ i, j, k, l ≤ n.

The multilinear form associated to G is then computed as

G4(x,y, z, t) =

n
∑

i,j,k,l=1

G4
ijklxiyjzktl

=
n
∑

i=1

xiyiziti +
1

3

n
∑

i,j=1
i 6=j

xiyizjtj

+
1

3

n
∑

i,j=1
i 6=j

xiyjzitj +
1

3

n
∑

i,j=1
i 6=j

xiyjzjti

=
1

3

(

〈x,y〉〈z, t〉+ 〈x, z〉〈y, t〉+ 〈x, t〉〈y, z〉
)

As a result, we have G4(x,x,x,x) = ‖x‖
4
2. ✷

Our first algorithm optimizes for x,y, z, t ∈ M the func-

tion:

F4
α(x,y, z, t) = F4(x,y, z, t) + αG4(x,y, z, t) (25)

and our second algorithm optimizes for x,y ∈ M the func-

tion:

F4
α(x,x,y,y) = F4(x,x,y,y) + αG4(x,x,y,y) (26)

Theorem 4.1 Let F4 be a fourth order symmetric tensor.

Then the following holds for Algorithm 1:

1. The sequence Fα(x
k,yk, zk, tk) for k = 1, 2, . . . is

strictly monotonically increasing or terminates.

2. The sequence of scores S4(um) for m = 1, 2, . . . is

strictly monotonically increasing or terminates. For

every m, um ∈ M is a valid assignment matrix.

3. The sequence of original third order scores S3(um)
for m = 1, 2, . . . is strictly monotonically increasing

or terminates.

4. The algorithm terminates after a finite number of iter-

ations.

Proof: From the definition of steps 1)− 4) in Algorithm 1,

we get

Fα,k := Fα(x
k,yk, zk, tk)

≤ Fα(x̃
k+1,yk, zk, tk)

≤ Fα(x̃
k+1, ỹk+1, z̃k, tk) (27)

≤ Fα(x̃
k+1, ỹk+1, z̃k+1, tk)

≤ Fα(x̃
k+1, ỹk+1, z̃k+1, t̃k+1) =: F̃α,k+1.

Either F̃α,k+1 > Fα,k in which case

xk+1 = x̃k+1,yk+1 = ỹk+1, zk+1 = z̃k+1, tk+1 = t̃k+1



Algorithm 1: BCAGM

Input: Lifted affinity tensor F4, α = 3
∥

∥F4
∥

∥

2
,

(x0,y0, z0, t0) ∈ M ×M ×M ×M, k = 0, m = 0
Output: x∗ ∈ M
Repeat

1. x̃k+1 = argmaxx∈M Fα(x,y
k, zk, tk)

2. ỹk+1 = argmaxy∈M Fα(x̃
k+1,y, zk, tk)

3. z̃k+1 = argmaxz∈M Fα(x̃
k+1, ỹk+1, z, tk)

4. t̃k+1 = argmaxt∈M Fα(x̃
k+1, ỹk+1, z̃k+1, t)

5. if Fα(x̃
k+1, ỹk+1, z̃k+1, t̃k+1) = Fα(x

k,yk, zk, tk)
then

– um+1 = argmax
u∈{x̃k+1,ỹk+1,z̃k+1,t̃k+1}

Fα(u,u,u,u)

– if Fα(u
m+1,um+1,um+1,um+1) =

Fα(x̃
k+1, ỹk+1, z̃k+1, t̃k+1) then return

– xk+1 = yk+1 = zk+1 = tk+1 = um+1

– m = m+ 1

else xk+1 = x̃k+1, yk+1 = ỹk+1, zk+1 = z̃k+1,

tk+1 = t̃k+1

end

6. k = k + 1

and

Fα(x
k+1,yk+1, zk+1, tk+1) > Fα(x

k,yk, zk, tk),

or F̃α,k+1 = Fα,k and the algorithm enters step 5. Since,

by Proposition 3.4, S4
α is convex for the chosen value of α,

applying Lemma 3.2 we get

F̃α,k+1 ≤ max
v∈{x̃k+1,ỹk+1,z̃k+1,t̃k+1}

Fα(v,v,v,v)

= Fα(u
m+1,um+1,um+1,um+1) (28)

= S4
α(u

m+1).

If the inequality is an equality, then the termination condi-

tion of the algorithm is met. Otherwise, we get

F̃α,k+1 < Fα(u
m+1,um+1,um+1,um+1) (29)

= S4
α(u

m+1) = Fα(x
k+1,yk+1, zk+1, tk+1).

This proves the first statement of the theorem.

From

S4
α(u

m+1) = Fα(u
m+1,um+1,um+1,um+1)

= Fα(x
k+1,yk+1, zk+1, tk+1) (30)

it follows that S4
α(u

m),m = 1, 2, . . . is a subsequence of

Fα(x
k,yk, zk, tk), k = 1, 2, . . . and thus it holds either

S4
α(u

m) = S4
α(u

m+1) in which case the algorithm ter-

minates or S4
α(u

m) < S4
α(u

m+1). However, by Equation

(19), the additional term which has been added to S4 to get

a convex function is constant on M , that is

S4
α(x) = S4(x) + αn2

1 ∀x ∈ M.

It follows that either S4(um) = S4(um+1) and the algo-

rithm terminates or S4(um) < S4(um+1) which proves the

second part of the theorem.

By Equation (1), we have S4(x) = 4n1 S
3(x) for any

x ∈ M . Thus the statements made for S4 directly translate

into corresponding statements for the original third order

score S3. This proves the penultimate statement.

Finally, the algorithm yields a strictly monotonically

increasing sequence S4(um),m = 1, 2, . . . or it terminates.

Since there is only a finite number of possible assignment

matrices, the sequence has to terminate after a finite number

of steps. ✷

We prove below Theorem 4.2 for Algorithm 2 as pre-

sented in the paper. Assume Ψ is a sub-algorithm which de-

livers monotonic ascent for the quadratic assignment prob-

lem (QAP)

max
x∈M

〈x, Ax〉 = max
x∈M

n
∑

i,j=1

Aijxixj , (31)

Theorem 4.2 Let F4 be a fourth order symmetric tensor

and let Ψ be an algorithm for the QAP which yields mono-

tonic ascent. Then the following holds for Algorithm 2:

1. The sequence Fα(x
k,xk,yk,yk) for k = 1, 2, . . . is

strictly monotonically increasing or terminates.

2. The sequence of scores S4(um) for m = 1, 2, . . . is

strictly monotonically increasing or terminates. For

every m, um ∈ M is a valid assignment matrix.

3. The sequence of original third order scores S3(um)
for m = 1, 2, . . . is strictly monotonically increasing

or terminates.

4. The algorithm terminates after a finite number of iter-

ations.

Proof: From the definition of steps 1)− 2) in Algorithm 2,

we get

Fα,k := Fα(x
k,xk,yk,yk)

≤ Fα(x̃
k+1, x̃k+1,yk,yk) (32)

≤ Fα(x̃
k+1, x̃k+1, ỹk+1, ỹk+1) =: F̃α,k+1.



Algorithm 2: BCAGM-Ψ

Input: Lifted affinity tensor F4, α = 3
∥

∥F4
∥

∥

2
,

(x0,y0) ∈ M ×M, k = 0, m = 0,

z = Ψ(A,xk) is an algorithm for the QAP in (31)

which provides monotonic ascent, that is

〈z, Az〉 ≥
〈

xk, Axk
〉

Output: x∗ ∈ M
Repeat

1. x̃k+1 = Ψ
(

Fα(·, ·,y
k,yk), xk

)

2. ỹk+1 = Ψ
(

Fα(x̃
k+1, x̃k+1, ·, ·),yk

)

3. if Fα(x̃
k+1, x̃k+1, ỹk+1, ỹk+1) = Fα(x

k,xk,yk,yk)
then

– um+1 = argmax
u∈{x̃k+1,ỹk+1}

Fα(u,u,u,u)

– if Fα(x̃
k+1, x̃k+1, ỹk+1, ỹk+1) =

Fα(u
m+1,um+1,um+1,um+1) then return

– xk+1 = yk+1 = um+1

– m = m+ 1

else xk+1 = x̃k+1, yk+1 = ỹk+1.

end

4. k = k + 1

Either F̃α,k+1 > Fα,k in which case

xk+1 = x̃k+1, yk+1 = ỹk+1

and

Fα(x
k+1,xk+1,yk+1,yk+1) > Fα(x

k,xk,yk,yk),

or F̃α,k+1 = Fα,k and the algorithm enters step 3. Since,

by Proposition 3.4, S4
α is convex for the chosen value of α,

applying Lemma 3.2 we get

F̃α,k+1 ≤ max
v∈{x̃k+1,ỹk+1}

Fα(v,v,v,v)

= Fα(u
m+1,um+1,um+1,um+1) (33)

= S4
α(u

m+1).

If the inequality is an equality, then the termination condi-

tion of the algorithm is met. Otherwise, we get

F̃α,k+1 < Fα(u
m+1,um+1,um+1,um+1) (34)

= S4
α(u

m+1) = Fα(x
k+1,xk+1,yk+1,yk+1).

This proves the first statement of the theorem.

From

S4
α(u

m+1) = Fα(u
m+1,um+1,um+1,um+1)

= Fα(x
k+1,xk+1,yk+1,yk+1) (35)

it follows that S4
α(u

m),m = 1, 2, . . . is a subsequence of

Fα(x
k,xk,yk,yk), k = 1, 2, . . . and thus it holds either

S4
α(u

m) = S4
α(u

m+1) in which case the algorithm termi-

nates or S4
α(u

m) < S4
α(u

m+1). However, by Equation

(19), the additional term which has been added to S4 to get

a convex function is constant on M , that is

S4
α(x) = S4(x) + αn2

1 ∀x ∈ M.

It follows that either S4(um) = S4(um+1) and the algo-

rithm terminates or S4(um) < S4(um+1) which proves the

second part of the theorem.

By Equation (1), we have S4(x) = 4n1 S
3(x) for any

x ∈ M . Thus the statements made for S4 directly translate

into corresponding statements for the original third order

score S3. This proves the penultimate statement.

Finally, the algorithm yields a strictly monotonically

increasing sequence S4(um),m = 1, 2, . . . or it terminates.

Since there is only a finite number of possible assignment

matrices, the sequence has to terminate after a finite number

of steps. ✷

2. Additional Experiments

We provide below additional experimental results on the

synthetic and CMU House dataset. The running time of all

the algorithms is reported along with accuracy and match-

ing score.

2.1. Synthetic Dataset

In this experiment, further results on the outlier and de-

formation settings are provided. The same has been done

for the experiments in the paper. Figure 1 shows additional

results in the outlier setting, where the number of outliers

was varied from 0 to 200. The number of inliers was fixed

to 10 while σ and scale were set to different values. It is in-

teresting to see that when there is no deformation and scal-

ing, our algorithms together with RRWHM [3] and MPM

[1] achieve an almost perfect result. However, our algo-

rithms outperform all other higher order approaches when

deformation and scaling are slightly present. Compared to

second order methods, our algorithms can take advantage

of higher order features, therefore, achieve superior perfor-

mance when transformations such as scaling are present.

Figure 2 shows further results in the deformation setting,

where the number of inliers was set to 30 and 40 accord-

ingly, and no other form of noise was used. As we show

the runtime for all the experiments, the result for 20 inliers

points is repeated from the paper as well. One can observe

from Figure 2 that our algorithms always stay competitive

with other state-of-the-art higher order methods, in particu-

lar RRWHM [3], even when the deformation is significant.
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(a) nin = 10, σ = 0, scale = 1
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Figure 1: Matching point sets in R
2 (outliers test): The top row shows average accuracy while the middle row shows the

average matching score and the bottom row shows average running time. The number of outliers was varied from 0 to 200
with the interval 10. (a) Increasing number of outliers without deformation and scaling. (b) Increasing number of outliers

with slight deformation and small scaling. (c) Increasing number of outliers with slight deformation and large scaling. (Best

viewed in color.)

2.2. CMU House Dataset

This section presents further results on the CMU house

dataset. In particular, we evaluate GM algorithms on two

tasks where we match 15 points to 30 points and 25 points

to 30 points in two corresponding images. For each task, we

match all the possible image pairs and compute the average

result for each baseline as done in the paper. The results

in Figure 3 show that our algorithms achieve competitive or

better results than other methods for all the baselines.

2.3. Car/Motorbike Dataset

Figure 4 shows the running time of higher order methods

on the Car and Motorbike dataset.

2.4. Runtime

From all the runtime plots, one observes that our algo-

rithms have competitive running time compared to the other

methods. In particular, BCAGM is always among the meth-

ods with lowest running time. Compared to other third or-

der approaches, Figures 2, 3, 4 show that our algorithms are

much faster than TM [2] and HGM [4], while staying quite
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Figure 2: Matching point sets in R
2 (deformation test): The top row shows average accuracy while the middle row shows

average objective score and the bottom row shows average running time. (a) 20 inliers (b) 30 inliers (c) 40 inliers (Best

viewed in color.)

competitive with RRWHM.
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Figure 3: CMU house dataset: The top row shows average matching accuracy while the middle row shows average objective

score and the bottom row shows average running time. (Best viewed in color.)
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Figure 4: Car and Motorbike dataset: Running time of the third order methods. The accuracy and matching score can be

found in the paper. (Best viewed in color.)


