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1. Sampling a quadrillateral

In Section 4.1 of the main paper, we describe the

quadrilateral-based sampling algorithm. Here, we further

show in Figure 1 an example of how a quadrillateral is

sampled from vanishing lines. First, from all the detected

horizontal vanishing directions, we randomly select one of

them; and among all the vanishing lines belonging to the

selected horizontal vanishing direction, we randomly select

a pair of them, such as the line segments in magenta in Fig-

ure 1. Also, from all the vanishing lines belonging to the

unique vertical vanishing direction, we randomly select a

pair of them, such as the line segments in red in Figure 1.

(Note that vanishing lines located within the region occu-

pied by already-selected quads are not sampled.) The four

line segments delineate a quadrilateral as is shown by the

yellow shape in Figure 1. The orientation nsi of this quad

is equal to the cross-product of the horizontal vanishing di-

rection represented by the magenta line segments, and the

vertical vanishing direction represented by the red line seg-

ments. Figure 1 also shows the hybrid score of the quadri-

lateral.

2. Surface layout estimation

In Section 5.2 of the main paper, we evaluate the perfor-

mance of our algorithm on estimating surface layout labels

on the Geometric Context dataset [2]. Here, we include a

few more success cases in Figure 2, as well as some failure

cases in Figure 3.

In rows 1 and 2 of Figure 2, our algorithm recovers fa-

cade planes that the other methods fail to identify. In row

3 of Figure 2, the benefit of using plane-based reasoning

by our algorithm is evident: it neither over-segments the

facades as the segment-based approach usually does (col-

umn 2), nor ignores the detailed layout of the facades as the

block-based approach tend to do (column 3). We can also

see that the surface layout estimation directly obtained from

orientation maps is usually quite noisy (e.g., row 1, column
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Figure 1. Example of a randomly sampled quadrilateral.

6 in Figure 2). Our quadrilateral-based sampling algorithm

helps inhibit such noise and leads to a better result (e.g., row

1, column 5 in Figure 2). While inter-planar geometric con-

straints in our approach effectively regularize plane depths

(as we have seen in Section 5.1 of the main paper), it has a

smaller effect on correcting mistakes in plane orientations,

except for some cases such as the one shown in row 4 of

Figure 13 in the main paper. Therefore, we only see a mod-

est improvement on surface layout accuracy after the CRF

is applied, as is shown in Figure 12 of the main paper.

Several of our failure cases are shown in Figure 3. The

case in the first row fails because our approach discovers

small non-Manhattan facade structures not included in the

ground truth. It also failed to identify the garage in the

distance. In the second row, our method again detects a

fine structure not included in the ground truth, while mis-

labeling a left-facing region due to the deceiving vanishing

lines from the rooftop. In the third row, our method also

mis-labeled the left-facing part of a foreground structure

due to strong noise in vanishing lines.

To get a better insight into the comparison between our
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Figure 2. Additional success cases of surface layout estimation. From left to right: Ground truth; Hoiem et al. [3]; Gupta et al. [1]; Ours;

Ours w/o CRF; Orientation map from the line-sweeping algorithm [4]. Surface layout color code: Magenta – planar right; Cyan – planar

left; red – planar center; green – non-planar porous; yellow – non-planar solid; blue – sky; grey – support.

Figure 3. Failure cases of surface layout estimation. From left to right: Ground truth; Hoiem et al. [3]; Gupta et al. [1]; Ours; Ours w/o

CRF; Orientation map from the line-sweeping algorithm [4]. Surface layout color code: Magenta – planar right; Cyan – planar left; red –

planar center; green – non-planar porous; yellow – non-planar solid; blue – sky; grey – support.

algorithm and the state-of-the-art approaches, we compute,

for each image, the accuracy gain of our algorithm over

the segment-based approach [3] and the block-based ap-

proach [1], respectively, and plot the histogram of accuracy

gain over the test images.

The histograms for comparisons with the two state-of-

the-art approaches are shown in Figures 4 and 5, respec-

tively. In each figure, typical examples are shown for pos-

itive, neutral, and negative accuracy gains, respectively. In

both figures, we can see that our algorithm achieves good

surface classification accuracy where vanishing lines are

correctly detected and grouped. However, in image regions

where missing or distracting vanishing lines dominate, the

accuracy of our algorithm deteriorates, because vanishing

lines play an important role in proposing and evaluating

quadrilateral samples. A poor semantic segmentation result



Figure 4. Histogram of accuracy gain of our algorithm over the

segment-based approach in [3]. Typical examples corresponding

to three different ranges of accuracy gain are also displayed, where

the first row is the ground truth, the second row is the result of [3],

the third row is our result, and the fourth row shows the vanishing

lines. The color code is the same as in Figure 2.

would also significantly undermine the surface classifica-

tion accuracy of our algorithm, as is shown in the leftmost

example in Figure 5.

While our approach does not perform significantly bet-

ter than the state-of-the-art algorithms in terms of coarse

surface layout classification, our approach is able to gener-

ate a quantitative, continuous 3D layout of the facade scene,

which is beyond the capability of competing methods. Sev-

eral examples are shown in Figure 6.

Figure 5. Histogram of accuracy gain of our algorithm over the

block-based approach in [1]. Typical examples corresponding to

three different ranges of accuracy gain are also displayed, where

the first row is the ground truth, the second row is the result of [1],

the third row is our result, and the fourth row shows the vanish-

ing lines – except for the leftmost image which shows semantic

segmentation, where the “building”region is indicated by the red

shade. The color code of surface layout is the same as in Figure 2.

3. Depth map estimation

In Section 5.3 of the main paper, we present the quan-

titative results of depth map estimation on the Make3D

dataset [6, 5]. Here, we further show some qualitative re-

sults of depth map estimation in Figure 7. We could see

that our method makes better depth estimation in facade

regions than Liu’s super-pixel based approach [5]. Also,

as our method does not require training using ground-truth



Figure 6. 3D facade layout estimation by our method on images from the Geometric Context dataset [2]. Left to right: 1) Original image

overlaid with color shades representing quads from distinctive facade planes. Quads from the same distinctive facade plane share the

same color. 2) Depth distribution of candidate distinctive facade planes before running the CRF inference. 3) Best locations of candidate

distinctive facade planes before running the CRF inference. 4) Optimal locations of valid distinctive facade planes after running the CRF

inference. The viewing boundary is marked with black lines, and the coarser grid spacing is 10m.

depth maps, it does not try to fit blindly to the defects of

the ground truth such as the “infinity holes”at windows in

row 2 of Figure 7 (although it might negatively affect the

final quantitative number). Depth estimation of ground re-

gion by our method is also better due to the 3D stage we

have established using the facades. The benefit of imposing

inter-planar geometric constraints could be seen in rows 5

and 6 of Figure 7. In row 5, the depth of the second-floor

camera-facing facade is correctly estimated after CRF in-

ference, while in row 6, two misaligned left-facing facades

in column 5 are correctly aligned after CRF inference in

column 4.

In row 6, however, our method fails to identify the struc-

ture closest to the camera as it did not regard it as a facade

region. Also, our method is not designed to estimate the

depth of trees or foreground objects, and the make-shift al-

gorithm described in the main paper only provides a very

rough estimation. Liu’s algorithm [5], nevertheless, is ef-

fective at estimating the depth of those regions. Please see

row 4 of Figure 7 for an example.

Note that, unlike Liu’s algorithm [5], our approach does

not require being trained on the ground-truth depth maps

of any specific dataset, and therefore would generalize bet-

ter. Even on the Make3D dataset [6, 5] that Liu’s algo-

rithm [5] is specifically trained upon, our approach still

achieves comparable results. Moreover, the output of our

approach is beyond a depth map – it is a higher-level in-

terpretation of building facades with mutually constrained

planes, as is shown in Figure 8. The reason why inter-

planar interactions do not play a significant role here is that

facade planes in this dataset are relatively simple and have

clearly visible ground contact lines in the image. As a re-

sult, cues from an individual facade plane are already suffi-

ciently informative in locating it in 3D (please see the peaky



Figure 7. Qualitative comparisons of depth map estimation. Left

to right: Original image; Ground truth; Liu [5]; Ours; Ours w/o

CRF. Depth value increases from blue to red. The color code is

scaled according to the ground-truth depth map.

distributions in the second column of Figure 8). However,

when ambiguity is high (e.g., the green facade plane in the

first row of Figure 8), inter-planar interactions are critical

in forcing facade planes into more geometrically plausible

locations.
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Figure 8. 3D facade layout estimation by our method on images from the Make3D dataset [6, 5]. Left to right: 1) Original image overlaid

with color shades representing quads from distinctive facade planes. Quads from the same distinctive facade plane share the same color.

2) Depth distribution of candidate distinctive facade planes before running the CRF inference. 3) Best locations of candidate distinctive

facade planes before running the CRF inference. 4) Optimal locations of valid distinctive facade planes after running the CRF inference.

The viewing boundary is marked with black lines, and the coarser grid spacing is 10m.


