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1. Proof of Theorem 1

We apply PAC-Bayesian theory to prove a generalization

bound for the case of sequential task solving. For more de-

tails on it see [1, 6, 9].

Assume that the learner observes a sequence of tasks in

a fixed order, t1, ..., tn, with corresponding training sets,

S1, ..., Sn, where Si = {(xi
1, y

i
1), ..., (x

i
mi

, yimi
)} consists

of mi i.i.d. samples from a task-specific data distribution

Di. We assume that all tasks share the same input space

X and output space Y and that the learner uses the same

loss function l : Y × Y → [0, 1] and hypothesis set

H ⊂ {h : X → Y} for solving these tasks. The learner

solves only one task at a time by using some arbitrary but

fixed deterministic algorithm A that produces a posterior

distribution Qi over H based on training data Si and some

prior knowledge Pi, which is also expressed in form of

probability distribution over the hypothesis set. Moreover,

we assume that the solution Qi plays the role of a prior for

the next task, i.e. Pi+1 = Qi (P1 is just some fixed distri-

bution, Q0). For making predictions for task ti the learner

uses the Gibbs predictor, associated with the corresponding

posterior distribution Qi. For an input x ∈ X this random-

ized predictor samples h ∈ H according to Qi and returns

h(x). The goal of the learner is to perform well on all tasks,

t1, ..., tn, i.e. to minimize the average expected error of the

Gibbs classifiers defined by Q1, . . . , Qn:

er =
1

n

n∑

i=1

eri(Qi(Qi−1, Si)) =

1

n

n∑

i=1

E(x,y)∼Di
Eh∼Qi

l(h(x), y). (1)

Since the data distributions of the tasks t1, ..., tn are un-

known, one can not directly compute (1). However, it can

be approximated by the empirical error based on the ob-

served data:

êr =
1

n

n∑

i=1

êri(Qi(Qi−1, Si)) =

1

n

n∑

i=1

1

mi

mi∑

j=1

Eh∼Qi
l(h(xi

j), y
i
j). (2)

The following theorem provides an upper bound on the dif-

ference between the two quantities (1) and (2):

Theorem 2. For any fixed distribution Q0, learning algo-

rithm A and any δ > 0 the following inequality holds with

probability at least 1 − δ (over sampling the training sets

S1, ..., Sn):

er ≤ êr+
1

n
√
m̄

KL
(
Q1 × · · · ×Qn||Q0 × · · · ×Qn−1

)

+
1

8
√
m̄
− log δ

n
√
m̄
, (3)

where Qi = A(Qi−1, Si) is a posterior distribution for

the task ti learned by A based on Qi−1 and Si, m̄ =(
1
n

∑n

i=1
1
mi

)−1

is the harmonic mean of the sample sizes

and KL denotes Kullback-Leibler divergence.

Proof. First we use Donsker-Varadhan’s variational

formula [10] to change the expectation over pos-

teriors (Q1, ..., Qn) to the expectation over priors

(Q0, Q1, ..., Qn−1):

er−êr ≤ 1

λ

(
KL
(
Q1 × · · · ×Qn||Q0 × · · · ×Qn−1

)

+ log E
h1∼Q0

... E
hn∼Qn−1

exp
(λ
n

n∑

i=1

(eri(hi)− êri(hi))
))

,

(4)

where eri(h) is the expected loss of a hypothesis h com-

puted with respect to the data distribution of task ti and

êri(h) is the corresponding empirical loss, computed on Si.

This inequality holds for any λ > 0.
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Note, that Qi may depend on S1, ..., Si, but does not de-

pend on Si+1, ..., Sn. Therefore:

E
S1···Sn

E
h1∼Q0

... E
hn∼Qn−1

exp

(
λ

n

n∑

i=1

(eri(hi)− êri(hi))

)
=

E
h1∼Q0

E
S1

exp

(
λ

n
(er1(h1)− êr1(h1))

)
· · ·

E
hn∼Qn−1

E
Sn

exp

(
λ

n
(ern(hn)− êrn(hn))

)
. (5)

We fix hn ∈ H . Then we can rewrite the last term of (5)

in the following way:

exp

(
λ

n
(ern(hn)− êrn(hn))

)
=

mn∏

j=1

exp

(
λ

nmn

(
ern(hn)− l(hn(x

n
j ), y

n
j )
))

. (6)

Since the data points in Sn are i.i.d., all terms in this product

are independent and take values between
λ(ern(hn)−1)

nmn

and
λ ern(hn)

nmn

. Therefore, by Hoeffding’s lemma [4], we obtain

that the last term of (5) is bounded by a constant:

E
hn∼Qn−1

E
Sn

exp

(
λ

n
(ern(hn)−êrn(hn))

)
≤ exp

(
λ2

8n2mn

)

We repeat the same procedure for all other tasks and ob-

tain that:

E
S1...Sn

E
h1∼Q0

... E
hn∼Qn−1

exp

(
λ

n

n∑

i=1

(eri(hi)−êri(hi))

)
≤

exp

(
λ2

8nm̄

)
, (7)

where m̄ =
(

1
n

∑n

i=1
1
mi

)−1

. Therefore, by Markov’s in-

equality, with probability at least 1− δ:

E
h1∼Q0

... E
hn∼Qn−1

exp

(
λ

n

n∑

i=1

(eri(hi)− êri(hi))

)
≤

1

δ
exp

(
λ2

8nm̄

)
. (8)

By combining (8) with (4) we get:

er ≤ êr+
1

λ
KL
(
Q1 × · · · ×Qn||Q0 × · · · ×Qn−1

)

+
λ

8nm̄
− 1

λ
log δ. (9)

By setting λ = n
√
m̄ we obtain the final result.

Theorem 2 holds only for tasks that are given to the

learner in an arbitrary but fixed order, which must be chosen

before observing the sample sets S1, . . . , Sn. We can, how-

ever, extend it to hold uniformly for all orders of tasks: for

each possible task order, π ∈ Sn, where Sn is the symmetric

group, we use (3) with confidence parameter δ/n!. We then

combine all inequalities (of which there are n! many) using

the union bound, thereby obtaining the following general-

ization:

Theorem 3. For any fixed distribution Q0, any learning

algorithm A and any δ > 0 with probability at least 1 − δ
(over sampling the training sets S1, ..., Sn) the following

inequality holds uniformly for any order π ∈ Sn:

er ≤ êr +
1

8
√
m̄

+
log n√

m̄
− log δ

n
√
m̄
+ (10)

1

n
√
m̄

KL
(
Qπ(1) × · · · ×Qπ(n)||Q0 × · · · ×Qπ(n−1)

)
,

where Qπ(i) = A(Qπ(i−1), Sπ(i)), m̄ =
(

1
n

∑n

i=1
1
mi

)−1

and π(0) = 0.

Theorem 1 is an instantiation of Theorem 3 for the spe-

cial case of binary classification using linear predictors. As-

sume Y = {+1,−1}, X ∈ R
d, and let H be a set of lin-

ear predictors {sign〈w, x〉}, where w ∈ R
d is a weight

vector. We also assume that the learner uses 0/1 loss,

l(y1, y2) = Jy1 6= y2K. In this case the expected error of

the Gibbs predictor is at least half the expected error of

the corresponding majority vote predictor [8]. Therefore,

by multiplying the right hand side of (10) by a factor of 2,

one obtains a generalization bound for deterministic major-

ity vote classifier.

The case of linear predictors can be captured by the

PAC-Bayesian setting if prior and posterior distributions are

Gaussian [3]. More formally, assume that Qi = N (wi, Id)
for i = 0, ..., n, i.e. Gaussian distributions with unit vari-

ance that differ only by the value of their mean vectors. Due

to the symmetry of the Gaussian distribution, the predictor

defined by wi is equivalent to the majority vote predictor

corresponding to distribution Qi. Hence one can use the

result of Theorem 3 in the case of deterministic linear pre-

dictors. We also assume that the learner uses an algorithm,

A, that for every task ti returns wi based on the mean vector

of the used prior distribution and training data Si.

By computing the complexity term from (10) we obtain:

KL(Qπ(1)×· · ·×Qπ(n)||Q0×· · ·×Qπ(n−1))=
n∑

i=1

KL(Qπ(i)||Qπ(i−1))=

n∑

i=1

||wπ(i) − wπ(i−1)||2
2

, (11)

where π(0) = 0, w0 = 0 and wπ(i) = A(wπ(i−1), Sπ(i)).
Note that the loss of the Gibbs classifier defined by Qi



on a point (x, y) is given by Φ̄
(

yxTwi

||x||

)
, where Φ̄(z) =

1
2

(
1− erf

(
z√
2

))
and erf(z) = 2√

π

∫ z

0
e−t2dt is the

Gauss error function [2, 7]. Together with (11) it gives us

the result of Theorem 1.

2. Learning with multiple subsequences

Assume that, as in the case of learning in a fixed order

described in Theorem 2, n tasks t1, ..., tn are processed one

after another from t1 till tn. We extend the sequential learn-

ing scenario by allowing the learner to not transfer informa-

tion between some of the subsequent task. Specifically, if

the posterior distribution Qi obtained for task ti is not in-

formative with respect to the next task, ti+1, the learner may

use original, fixed distribution Q0 as a prior for ti+1 instead

of Qi. Such scenario can be described by introducing the

set of flags bi ∈ {0, 1} for i = 2, ..., n, where bi = 1 means

that information from task ti−1 is transferred to the task ti,
in other words Qi−1 is used as a prior for solving ti, while

bi = 0 denotes that there is no transfer from ti−1 to ti and

Q0 is used as a prior Pi.

In the same manner, as we proved Theorem 2, we can

prove the following generalization bound for the case of se-

quential learning with ability to not transfer information be-

tween subsequent tasks:

Theorem 4. For any fixed distribution Q0, set of flags bi ∈
{0, 1} for i = 2, ..., n, learning algorithm A and any δ > 0
the following inequality holds with probability at least 1−δ
(over sampling the training sets S1, ..., Sn):

er ≤ êr+
1

n
√
m̄

KL
(
Q1 × · · · ×Qn||P1 × · · · × Pn

)

+
1

8
√
m̄
− log δ

n
√
m̄
, (12)

where:

Pi =

{
Q0 if i = 1 or bi = 0

Qi−1 if bi = 1

Qi = A(Pi, Si)

m̄ =

(
1

n

n∑

i=1

1

mi

)−1

.

The result of Theorem 4 holds for any, but fixed in ad-

vance order of tasks and set of flags bi. Now, we can ex-

tend it to hold uniformly for all possible partitions of tasks

in subsequences and orders of tasks in each group. First,

note that there are n! ≤ nn possible full orderings of n
tasks. Second, there are 2n−1 possible ways to define flags

bi for each task. Therefore there are less than nn2n−1 pos-

sible partitions of tasks into groups and orderings inside

each group. We now let the confidence parameter to be

δ/((2n)n) and combine inequalities for all possible par-

titions and orderings (of which there are less than (2n)n

many) using the union bound argument. Thereby we obtain

the following result:

Theorem 5. For any fixed distribution Q0, learning algo-

rithm A and any δ > 0 with probability at least 1− δ (over

sampling the training sets S1, ..., Sn) the following inequal-

ity holds uniformly for all orders π ∈ S and all set of flags

{b2, ..., bn} ∈ {0, 1}n−1:

er ≤ êr +
1

8
√
m̄

+
log 2n√

m̄
− log δ

n
√
m̄
+ (13)

1

n
√
m̄

KL
(
Qπ(1) × · · · ×Qπ(n)||Pπ(1) × · · · × Pπ(n)

)
,

where:

Pπ(i) =

{
Q0 if i = 1 or bi = 0

Qπ(i−1) if bi = 1

Qπ(i) = A(Pπ(i), Sπ(i))

m̄ =

(
1

n

n∑

i=1

1

mi

)−1

.

We can formulate the instantiation of Theorem 5 for the

case of linear predictors and 0/1 loss using Gaussian dis-

tributions as we did for proving Theorem 1 based on Theo-

rem 3. As a result, we obtain the following generalization

bound:

Theorem 6. For any deterministic learning algorithm A
and any δ > 0, the following holds with probability at least

1 − δ over sampling the training sets S1, ..., Sn uniformly

for any order π in the symmetric group Sn and any set of

flags {b2, ..., bn} ∈ {0, 1}n−1:

1

2n

n∑

i=1

E
(x,y)∼Di

Jy 6= sign〈wi, x〉K ≤

1

n

n∑

i=1

[
1

mπ(i)

mπ(i)∑

j=1

Φ̄

(
y
π(i)
j 〈wπ(i), x

π(i)
j 〉

||xπ(i)
j ||

)
+

||wπ(i)−biwπ(i−1)||2
2
√
m̄

]
+

1

8
√
m̄
− log δ

n
√
m̄

+
log 2n√

m̄
,

(14)



where:

wπ(i) =

{
A(0, Sπ(i)) if i = 1 or bi = 0

A(wπ(i−1), Sπ(i)) otherwise

Φ̄(z) =
1

2

(
1− erf

(
z√
2

))

erf(z) =
2√
π

∫ z

0

e−t2dt

m̄ =

(
1

n

n∑

i=1

1

mi

)−1

.

Algorithm 2 MultiSeqMT: Sequential Learning with Mul-

tiple Subsequences

1: Input S1, . . . , Sn {training sets}
2: T ← {1, 2, . . . , n} {indices of yet unused tasks}
3: P ← {0} {ws of the last tasks in the existing subseq.}
4: for i = 1 to n do

5: for all w̃ ∈ P do

6: k(w̃)← steps 5-8 of Algorithm 1 with

substituting wπ(i−1) by w̃ in (4)

7: end for

8: w∗ ← minimizer of (4) w.r.t. w̃ with substituting

wπ(i−1) by w̃ and k by k(w̃)
9: wk(w∗) ← solution of (2) using Sk(w∗) and

w∗ instead of w̃
10: T ← T \ {k(w∗)}
11: P ← P ∪ {wk(w∗)}
12: if w∗ 6= 0 then

13: P ← P \ {w∗}
14: end if

15: end for

16: Return w1, . . . , wn
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Chimpanzee Giant panda Leopard Persian cat Hippopotamus Raccoon Rat Seal

IndSVM 26.34± 0.31 24.12± 0.58 20.60± 0.27 25.90± 0.45 29.60± 0.49 31.07± 0.36 39.66± 0.66 28.98± 0.30
MergedSVM 22.81± 0.31 19.08± 0.47 20.65± 0.35 24.02± 0.44 28.31± 0.48 29.40± 0.57 36.66± 0.62 27.60± 0.33
MT 24.16± 0.35 20.12± 0.45 19.71± 0.33 23.99± 0.40 27.94± 0.52 29.25± 0.43 37.41± 0.60 27.65± 0.29
SeqMT(ours) 23.86± 0.33 19.33± 0.52 19.36± 0.29 23.81± 0.40 27.83± 0.46 29.04± 0.37 36.34± 0.57 27.04± 0.22
Max 24.56± 0.37 20.66± 0.49 20.63± 0.32 25.28± 0.34 29.59± 0.49 30.38± 0.51 38.03± 0.58 28.27± 0.37
Error 24.47± 0.42 20.02± 0.58 19.97± 0.27 24.84± 0.46 29.07± 0.55 29.75± 0.31 38.00± 0.54 28.27± 0.38
Reg 23.94± 0.32 19.44± 0.50 19.36± 0.29 23.81± 0.40 27.83± 0.46 29.04± 0.37 36.34± 0.57 27.04± 0.22
Random 24.18± 0.37 20.44± 0.46 20.06± 0.33 24.41± 0.37 28.66± 0.55 29.95± 0.48 37.40± 0.66 27.84± 0.27
Semantic 23.62± 0.32 19.07± 0.51 19.67± 0.30 24.03± 0.37 28.67± 0.47 29.00± 0.43 37.23± 0.54 28.09± 0.36
Best 23.35± 0.38 19.07± 0.51 19.22± 0.30 23.69± 0.46 27.79± 0.33 28.82± 0.46 36.57± 0.63 27.46± 0.37
Worst 24.89± 0.40 21.18± 0.48 20.58± 0.32 25.20± 0.39 29.19± 0.47 30.32± 0.51 38.74± 0.65 28.16± 0.28

Table 1. Sequential learning of tasks from easiest to hardest in the AwA dataset. For each class and method, the numbers are average error

rate and standard error of the mean over 20 repeats.

Attribute/Class Athletic Boots Clogs Flats Heels Pumps Rain Boots Sneakers Stiletto Wedding

Pointy at the front 2 6 3 5 10 9 4 1 8 7

Open 3 2 8 5 7 6 1 4 9 10

Bright in color 6 1 2 8 4 3 10 7 9 5

Covered with ornaments 4 9 6 5 8 7 1 3 10 2

Shiny 2 9 4 3 6 5 8 1 10 7

High at the heel 4 6 5 1 9 8 3 2 10 7

Long on the leg 7 9 2 3 6 5 10 8 4 1

Formal 3 6 4 7 9 8 1 2 5 10

Sporty 10 5 6 7 4 3 8 9 1 2

Feminine 1 6 4 5 10 9 3 2 8 7

Table 2. Ordering of classes with respect to attributes in the Shoes dataset [5]. Cells, coloured in blue , represent classes that were used as

negative examples and the ones coloured in yellow represent the ones used as positive examples for the corresponding attribute.


