
A Stable Multi-Scale Kernel for Topological

Machine Learning

Supplementary material

Jan Reininghaus1 Stefan Huber1 Ulrich Bauer1,2 Roland Kwitt3

1IST Austria, 2TU München, 3University of Salzburg

This supplementary material contains additional technical details and illustrations.

1 Indefiniteness of dW,p

It is tempting to try to employ the Wasserstein distance for constructing a kernel on persistence
diagrams. For instance, in Euclidean space, k(x, y) = −‖x− y‖2, x, y ∈ Rn is conditionally positive
definite and can be used within SVMs. Hence, the question arises if k(x, y) = −dW,p(x, y), x, y ∈ D
can be used as well.

In the following, we demonstrate (via counterexamples) that neither −dW,p nor
exp(−ξdW,p(·, ·)) – for different choices of p – are (conditionally) positive definite. Thus, they
cannot be employed in kernel-based learning techniques.

First, we briefly repeat some definitions to establish the terminology; this is done to avoid
potential confusion, w.r.t. references [2, 1, 5]), about what is referred to as (conditionally) posi-
tive/negative definiteness in the context of kernel functions.

Definition 1. A symmetric matrix A ∈ Rn×n is called positive definite (p.d.) if c>Ac ≥ 0 for
all c ∈ Rn. A symmetric matrix A ∈ Rn×n is called negative definite (n.d.) if c>Ac ≤ 0 for all
c ∈ Rn.

Note that in literature on linear algebra the notion of definiteness as introduced above is typically
known as semidefiniteness. For the sake of brevity, in the kernel literature the prefix “semi” is
typically dropped.

Definition 2. A symmetric matrix A ∈ Rn×n is called conditionally positive definite (c.p.d.) if
ctAc ≥ 0 for all c = (c1, . . . , cn) ∈ Rn s.t.

∑
i ci = 0. A symmetric matrix A ∈ Rn×n is called

conditionally negative definite (c.n.d.) if c>Ac ≤ 0 for all c = (c1, . . . , cn) ∈ Rn s.t.
∑
i ci = 0.

Definition 3. Given a set X , a function k : X ×X → R is a positive definite kernel if there exists
a Hilbert space H and a map Φ: X → H such that k(x, y) = 〈Φ(x),Φ(y)〉H.

Typically a positive definite kernel is simply called kernel. Roughly speaking, the utility of p.d.
kernels comes from the fact that they enable the “kernel-trick”, i.e., the use of algorithms that can be
formulated in terms of dot products in an implicit feature space [5]. However, as shown by Schölkopf
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in [4], this “kernel-trick” also works for distances, leading to the larger class of c.p.d. kernels (see
Definition 4), which can be used in kernel-based algorithms that are translation-invariant (e.g .,
SVMs or kernel PCA).

Definition 4. A function k : X × X → R is (conditionally) positive (negative, resp.) definite
kernel if and only if k is symmetric and for every finite subset {x1, . . . , xm} ⊆ X the Gram matrix
(k(xi, xj))

m,m
i,j=1,1 is (conditionally) positive (negative, resp.) definite.

To demonstrate that a function is not c.p.d. or c.n.d., resp., we can look at the eigenvalues of
the corresponding Gram matrices. In fact, it is known that a matrix A is p.d. if and only if all
its eigenvalues are nonnegative. The following lemmas from [1] give similar, but weaker results for
(nonnegative) c.n.d. matrices, which will be useful to us.

Lemma 1 (see Lemma 4.1.4 of [1]). If A is a c.n.d. matrix, then A has at most one positive
eigenvalue.

Corollary 1 (see Corollary 4.1.5 of [1]). Let A be a nonnegative, nonzero matrix that is c.n.d.
Then A has exactly one positive eigenvalue.

The following theorem establishes a relation between c.n.d. and p.d. kernels.

Theorem 2 (see Chapter 2, §2, Theorem 2.2 of [2]). Let X be a nonempty set and let k : X×X → R
be symmetric. Then k is a conditionally negative definite kernel if and only if exp(−ξk(·, ·)) is a
positive definite kernel for all ξ > 0.

In the MATLAB code (test negative type simple.m) attached to the supplementary mate-
rial, we generate simple examples for which the Gram matrix A = (dW,p(xi, xj))

m,m
i,j=1,1 – for various

choices of p – has at least two positive and two negative eigenvalue. Thus, it is neither (c.)n.d.
nor (c.)p.d. according to Corollary 1. Consequently, the function exp(−dW,p) is not p.d. either, by
virtue of Theorem 2. To run the Matlab code, simply execute:

1 load options cvpr15.mat; % this will load a variable 'options'
2 test negative type simple(options);

This will generate a short summary of the eigenvalue computations for a selection of values for p,
including p = ∞ (bottleneck distance). The output of the Matlab script can also be found in
test negative type simple output.pdf.

Remark. While our simple counterexamples suggest that typical kernel constructions using dW,p
for different p (including p =∞) do not lead to (c.)p.d. kernels, a formal assessment of this question
remains an open research question.

2 Plots of the feature map Φσ

Given a persistence diagram D, we consider the solution u : Ω × R≥0 → R, (x, t) 7→ u(x, t) of the
following partial differential equation

∆xu = ∂tu in Ω× R>0,

u = 0 on ∂Ω× R≥0,

u =
∑
p∈D

δp on Ω× {0}.
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To solve the partial differential equation, we extend the domain from Ω to R2 and consider for
each p ∈ D a Dirac delta δp and a Dirac delta −δp, as illustrated in Fig. 1 (left). By convolving∑
p∈D δp − δp with a Gaussian kernel, see Fig. 1 (right), we obtain a solution u : R2 × R≥0 →

R, (x, t) 7→ u(x, t) for the following partial differential equation:

∆xu = ∂tu in R2 × R>0,

u =
∑
p∈D

δp − δp on R2 × {0}.

Restricting the solution u to Ω× R≥0, we then obtain the following solution u : Ω× R≥0 → R,

u(x, t) =
1

4πt

∑
p∈D

e−
‖x−p‖2

4t − e−
‖x−p‖2

4t (1)

for the original partial differential equation and t > 0. This yields the feature map Φσ : D → L2(Ω):

Φσ(D) : Ω→ R, x 7→ 1

4πσ

∑
p∈D

e−
‖x−p‖2

4σ − e−
‖x−p‖2

4σ . (2)

δp

p
p

δp

Figure 1: Solving the partial differential equation: First (left), we extend the domain from Ω to R2 and
consider for each p ∈ D a Dirac delta δp (red) and a Dirac delta −δp (blue). Next (right), we convolve∑
p∈D δp − δp with a Gaussian kernel.

In Fig. 2, we illustrate the effect of an increasing scale σ on the feature map Φσ(D). Note that
in the right plot the influence of the low-persistence point close to the diagonal basically vanishes.
This effect is essentially due to the Dirichlet boundary condition and is responsible for gaining
stability for our persistence scale-space kernel kσ.

3 Closed-form solution for kσ

For two persistence diagrams F and G, the persistence scale-space kernel kσ(F,G) is defined as
〈Φσ(F ),Φσ(G)〉L2(Ω), which is

kσ(F,G) =

∫
Ω

Φσ(F ) Φσ(G) dx.
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Figure 2: An illustration of the feature map Φσ(D) as a function in L2(Ω) at growing scales σ (from left
to right).

By extending its domain from Ω to R2, we see that Φσ(D)(x) = −Φσ(D)(x) for all x ∈ R2. Hence,
Φσ(F )(x) · Φσ(G)(x) = Φσ(F )(x) · Φσ(G)(x) for all x ∈ R2, and we obtain

kσ(F,G) =
1

2

∫
R2

Φσ(F ) Φσ(G) dx

=
1

2

1

(4πσ)2

∫
R2

∑
p∈F

e−
‖x−p‖2

4σ − e−
‖x−p‖2

4σ

 ·
∑
q∈G

e−
‖x−q‖2

4σ − e−
‖x−q‖2

4σ

 dx

=
1

2

1

(4πσ)2

∑
p∈F
q∈G

∫
R2

(
e−
‖x−p‖2

4σ − e−
‖x−p‖2

4σ

)
·
(
e−
‖x−q‖2

4σ − e−
‖x−q‖2

4σ

)
dx

=
1

(4πσ)2

∑
p∈F
q∈G

∫
R2

e−
‖x−p‖2+‖x−q‖2

4σ − e−
‖x−p‖2+‖x−q‖2

4σ dx.

We calculate the integrals as follows:∫
R2

e−
‖x−p‖2+‖x−q‖2

4σ dx =

∫
R2

e−
‖x−(p−q)‖2+‖x‖2

4σ dx

=

∫
R

∫
R
e−

(x1−‖p−q‖)
2+x22 + x21+x22
4σ dx1 dx2

=

∫
R
e−

x22
2σ dx2 ·

∫
R
e−

(x1−‖p−q‖)
2+x21

4σ dx1

=
√

2πσ ·
∫
R
e−

(x1−‖p−q‖)
2+x21

4σ dx1

=
√

2πσ ·
∫
R
e−

(2x1−‖p−q‖)
2+‖p−q‖2

8σ dx1

=
√

2πσ e−
‖p−q‖2

8σ ·
∫
R
e−

(2x1−‖p−q‖)
2

8σ dx1

=
√

2πσ e−
‖p−q‖2

8σ ·
∫
R
e−

x21
2σ dx1

= 2πσ e−
‖p−q‖2

8σ .
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In the first step, we applied a coordinate transform that moves x− q to x. In the second step, we
performed a rotation such that p− q lands on the positive x1-axis at distance ‖p− q‖ to the origin
and we applied Fubini’s theorem. We finally obtain the closed-form expression for the kernel kσ as:

kσ(F,G) =
1

(4πσ)2
2πσ

∑
p∈F
q∈G

e−
‖p−q‖2

8σ − e−
‖p−q‖2

8σ

=
1

8πσ

∑
p∈F
q∈G

e−
‖p−q‖2

8σ − e−
‖p−q‖2

8σ .
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4 Additional retrieval results on SHREC 2014

HKS ti dkL dkσ ∆ dkL dkσ ∆
t1 59.9 71.3 +11.4 26.0 21.4 −4.6
t2 75.1 76.0 +0.9 23.8 22.7 −1.1
t3 49.6 64.8 +15.2 19.1 20.7 +1.6
t4 59.4 77.5 +18.1 23.5 26.1 +2.6
t5 68.1 75.2 +7.1 22.7 27.4 +4.7
t6 50.0 55.2 +5.2 18.9 26.2 +7.3
t7 47.6 53.6 +6.0 27.4 31.8 +4.4
t8 53.1 62.4 +9.3 45.3 39.8 −5.5
t9 51.2 56.3 +5.1 24.4 30.3 +5.9
t10 39.6 49.7 +10.1 2.5 21.8 +19.3

Top-3 [3] 83.2 – 76.4 – 76.0 54.1 – 47.2 – 45.1

Table 1: T1 retrieval performance. Left: SHREC 2014 (synthetic); Right: SHREC 2014 (real).

HKS ti dkL dkσ ∆ dkL dkσ ∆
t1 87.7 91.4 +3.7 41.5 34.6 −6.9
t2 91.1 95.1 +4.0 40.8 37.1 −3.7
t3 70.4 83.4 +13.0 36.5 36.8 +0.3
t4 77.7 93.6 +15.9 39.8 43.4 +3.6
t5 90.8 92.3 +1.5 35.1 41.8 +6.7
t6 73.9 75.4 +1.5 31.6 40.2 +8.6
t7 70.6 74.4 +3.8 38.6 47.6 +9.0
t8 73.3 79.3 +6.0 56.5 57.6 +1.1
t9 72.7 76.2 +3.5 31.8 42.5 +10.7
t10 57.8 66.6 +8.8 4.8 31.0 +26.2

Top-3 [3] 98.7 – 97.1 – 94.9 74.2 – 65.9 – 65.7

Table 2: T2 retrieval performance. Left: SHREC 2014 (synthetic); Right: SHREC 2014 (real).

HKS ti dkL dkσ ∆ dkL dkσ ∆
t1 60.6 65.3 +4.7 25.4 22.8 −2.6
t2 65.0 67.4 +2.4 25.0 23.4 −1.6
t3 48.4 58.8 +10.4 24.0 24.0 +0.0
t4 55.2 67.6 +12.4 25.3 27.4 +2.1
t5 63.7 66.2 +2.5 21.6 25.2 +3.6
t6 51.0 52.7 +1.7 20.7 23.7 +3.0
t7 48.4 51.7 +3.3 22.5 27.5 +5.0
t8 51.1 56.5 +5.4 30.2 33.2 +3.0
t9 50.4 53.2 +2.8 15.8 25.3 +9.5
t10 39.8 46.7 +6.9 3.6 19.0 +15.4

Top-3 [3] 70.6 – 69.1 – 65.9 38.7 – 35.6 – 35.4

Table 3: EM retrieval performance. Left: SHREC 2014 (synthetic); Right: SHREC 2014 (real).

HKS ti dkL dkσ ∆ dkL dkσ ∆
t1 81.3 91.5 +10.2 53.0 49.6 −3.4
t2 92.1 93.4 +1.3 51.1 51.3 +0.2
t3 80.3 89.3 +9.0 47.7 48.4 +0.7
t4 85.0 93.8 +8.8 52.7 55.5 +2.8
t5 89.0 93.2 +4.2 51.2 55.5 +4.3
t6 78.6 82.5 +3.9 48.1 54.2 +6.1
t7 77.2 81.6 +4.4 55.7 60.5 +4.8
t8 80.4 86.3 +5.9 72.8 68.3 −4.5
t9 79.7 83.9 +4.2 50.4 61.0 +10.6
t10 70.8 78.9 +8.1 27.7 51.3 +23.6

Top-3 [3] 97.7 – 93.8 – 92.7 78.1 – 71.7 – 71.2

Table 4: DCG retrieval performance. Left: SHREC 2014 (synthetic); Right: SHREC 2014 (real).
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