Supplementary material for
Best of both worlds: human-machine collaboration for object annotation

Olga Russakovsky!

1. Introduction

We provide additional details about our principled
human-in-the-loop framework for efficiently detecting all
objects in an image.

Section 2 provides details about how user feedback is
used in calculating probabilities (referenced in Section 4.3
in main paper). We first show how each question posed to
users affects multiple probability estimates about the image.
We then discuss probability updates in some special cases:
in case of open-ended questions (such as asking the user to
draw a bounding box) and in case of computing the prob-
abilities of there being more class instances or new objects
in the image.

Section 3 discusses the procedure for probability calibra-
tion of the outputs of computer vision image classifiers and
object detectors (referenced in footnote S of main paper).

Section 4 talks about the design of user interfaces for
collecting human feedback (referenced in caption of Fig-
ure 3 of main paper). We show the interfaces themselves
in Figures 1-9.

Section 5 describes how we semi-automatically generate
sets of positive and negative examples for computing the
human error rates (referenced in footnote 7 of main paper).

2. Using user feedback in the human-in-the-
loop probabilistic framework

As discussed in Section 4.3 of the main paper, our set of
user inputs U/ contains multiple types of information. Our
goal is to estimate P(u;|E}) where u; is a user response to
some question a; and E} is a fact about the image related to
some other question ar (in particular Eqn. (6) of the main

paper).

Types of events E. Based on the tasks described in Table
1 of the main paper, we consider 5 types of E,{:

1. det(B, C) for whether box B is correct around an in-
stance of class C' (verify-box task)

*This work was done while Li-Jia Li was at Yahoo! Labs

978-1-4673-6964-0/15/$31.00 ©2015 IEEE

Li-Jia Li?
!Stanford University

Li Fei-Fei!
2Snapchat*

2. cls(C) for whether class C' is present in the image
(verify-image task)

3. moreinst(5, C') for whether there are more instances
of class C' besides those in boxes B (verify-cover and
draw-box tasks)

4. morecls(C) for whether there are more object classes
in the image C (for name-image task)

5. obj(B) for whether box B is a tight box around some
object (for verify-object and name-box tasks)

Computing the frue answer to a question. In order to
make a decision about whether the user made a mistake or
not in u;, we first need to determine the true answer to the
question a; given that event E happened. This is shown
in Table 1. An event E] sometimes determines the correct
answers to more than one question.

For example, consider the event E,CT of class C' not
present in the image (this is event “cls(C) = 0” in Table 1).
The true answer is then determined to be “no” to three
questions: (1) when asked if C is contained in the image
(verify-image), (2) when asked if C is contained in any box
B (verify-box), and (3) when asked if there are more in-
stances of class C in the image (verify-cover). For other
questions we have no information about the true answer
given the event E} .

Judging user input as correct, wrong or undecided
Having computed the true answers, we can now judge the
user input u; in response to a question a;. An answer is
judged as wrong if it doesn’t match the correct answer in
Table 1. An answer is judged as correct if it matches the
correct answer in Table 1 and the event corresponds pre-
cisely to the question, as shown by the shaded boxes in Ta-
ble 1. All other answers are judged as undecided.

To understand the extra layer of complication with judg-
ing correct answers, consider the influence of the question
“does box B contain an instance of class C” (verify-box) on
the probability of the object class C' being in the image. If

True answer to each question type a; given E}
Event B} Verify-box: is | Verify-image: is | Verify-cover: Name-image: Verify-object: is
box B for class | class C' in im- | are there more | name another | there an object in
C? age? instances of | object in image | box B? (sim-
class C besides | besides C'? ilarly for name-
in B’? (same for object)
draw-box)
det(B,C) =1
ifB¢nB -
det(B,C) =0
X - - - -
cls(C) =1
cls(C) =0
X X X - -
moreinst(5,C) =1
- ifB' CB - -
moreinst(B,C) = 0 . .
Xif B¢ B - Xif BCB - -
morecls(C) = 1
- - - ifC’'CC -
morecls(C) =0) .
- XifC ¢cC - XifC CC’ -
obj(B) =1
obj(B) =0
X - - - X

Table 1. For every event E (row) and question (column), the table reports what the true answer to the question if the event £ happened.
means “yes” is the true answer, X means “no” is the true answer, and — means that event £ provides no information about the true answer.
— is the default when not specified. Here every question is treated as a binary question: for example, for draw-box question, the answer of
drawing a box is simply “yes” and the answer of refusing to draw a box is “no”.

the answer to the question is “yes,” then this can only hap-
pen if class C'is in the image and is certain to be the wrong
answer otherwise. There is a direct influence. If the answer
is “no,” then it might be correct whether or not class C' is in
the image. To simplify the computation, we then judge the
answer as undecided.

User input accuracy probabilities. Finally, after the an-
swers are all judged as correct, wrong or undecided, we in-
corporate them back into the probability computation.

Every user input u; is obtained in response to a question.
Each input u, is then associated with a probability 3; which
depends on the average user accuracy rate for this type of
question. Let E} correspond to the answer “no” and F!
correspond to “yes”. Similarly, let u; = 1 if user says “yes”
and u; = 0 if user says “no”. Then f; = P(u; = j|E})
for j € {0,1}. The accuracy probabilities 3; are shown in
Table 2 of the main paper.

We can then compute P(u;|E}) = ; if answer u; is
correct, P(u;|E}) = 1 — B, if answer u; is wrong , and use
the prior from Eqn. (5) of the main paper otherwise..

2.1. Special cases

Here we briefly note some exceptions to the computation
described above.

More instances computation. Recall that computing
complicated events such as P(moreinst(53, C)|I) (Eqn. (8)
of main paper) relies on additionally on detection probabil-
ities P(det(B, C)|I) as well as image classification proba-
bilities P(cls(C)|I) (Section 4.3.1 of the main paper). To
effectively utilize all user input I/ in this computation, we
break up the set U/ into U7, which is the set of user input di-
rectly relevant to moreinst(5, C') and Uz, which is all other
input. Then have

P(moreinst(B, C)|I,U)
o P(moreinst(B, C)|I,Us) P(U;|moreinst(B,C)) (1)

Uy consists of all user input obtained from verify-cover
or draw-box tasks that we can judge based on the event
moreinst(B, C') (Table 1). Us is all other user input. We
use P(det(B,C) = 1|I,Us) and P(cls(B,C) = 1|I,Us)
in this computation, which allows us to successfully incor-
porate the entire set of user input U = Uy U Us.

The computation for P(morecls(C)) is similar.

New object computation. The computation for
P(newobj(B)|I,U) also requires breaking up U into
two parts, but in a slightly different way. Generalizing Eqn.
(9) of the main paper we have

P(newobj(B)|I,U) =P(obj(B)|I,U;)x

11— P(det(B, O)|1,1)) (2)
C

with 4 is all input from verify-object or name-object tasks
related to box obj(B) (Table 1) and Uy = U — U,. This is
to ensure that the independence assumption is not violated.

Open-ended questions For open-ended question such as
draw-box we have to consider both the probability that the
user draws a box when there is one and that the drawn box
is indeed a good box around an object instance. The latter is
noted in Equation (7) of the main paper as P (E|uT), where
u. is the fact that user drew the box at time T and E is fact
that the box is correct. We stated that this is computed from
user error rates which is true but somewhat subtle: com-
puting this error rate directly would be influenced by the
distribution of positive and negative images shown to the
user (positive images being the ones that indeed contain an
unannotated instance). To avoid this problem we add an ex-
tra variable pos corresponding to the fact that the image is
positive, so an unannotated box indeed existed in the image.
Then P(E|u;) = P(EA,pos|uTA). So

P(E|uT) o< P(E|uf7pos)P(uﬂpos)P(pos) 3)

Now P(E|uT, pos) can be estimated as the probability that
a bounding box that the user drew on a positive image is in-
deed correct (reported in caption of Table 2 of the main pa-
per), P(u|pos) is the true positive accuracy for the draw-
box task (reported in Table 2 of the main paper), and P (pos)
is the current estimate of the image being positive.

3. Details about probability calibration

In order to use computer vision models in our frame-
work, we need to obtain accurate probability estimates from
the models. The output of object detectors and image clas-
sifiers = is commonly converted to a probability by fitting a
2-parameter sigmoid

1
1+ exp(arz + ap)

P “)
to the CNN output on the ILSVRC vall set [!]. We bin
the detections from all classes into 20 bins in increments of
5% confidence, and compute the error between the expected
probability produced by the model (2.5%, 7.5%, 12.5%,
etc.) and the actual fraction of positive examples in that bin.
The average absolute probability error is 8.7% on ILSVRC

val2 set due to the model being overconfident on the high-
scoring examples. To compensate, we learn the 3rd param-
eter ag € [0, 1] with

as

= 5
1+ exp(a1z + ag))

p

to allow the model to automatically estimate its level of con-
fidence. This reduced the error down to 5.2%. More accu-
rate models such as [2] can also be used.

4. Human annotation design and observations

UI overview. Figure 1 shows a zoomed-out view of the
annotation interface. The general instructions at the bottom
of the page (shown in Figure 2) discuss what is considered
a good bounding box (with examples) and what types of
objects should be annotated. These instructions are shown
to workers at beginning of the work and are always avail-
able for reference at the bottom of the page. Each type of
task has a separate interface with brief specific instructions,
shown in Figures 3-9.

Quality control. The questions are presented to users in
batches of 20-25 questions. Each batch contains 4-5 “gold
standard” questions. These are questions which were veri-
fied by trusted subjects (previously unfamiliar with our UT)
who deemed that the correct answer should be “obvious” to
a careful annotator. When deployed, the annotation UI pre-
vents users from submitting their work if they incorrectly
answer more than 1 gold standard question.

The UI also had additional sanity checks built in. First,
it prevents users from drawing a bounding box around an
object instance if it is too close to a known bounding box.
Second, it requires that users spend at least 1 second on each
question. In our in-house experiments with trusted workers,
this was the minimum amount of time necessary to answer a
question correctly. This control was implemented since the
interface has keyboard shortcuts (1 and 2 to answer “yes”
or “no”, and left and right arrows to move between ques-
tions) which makes it possible for spammers to potentially
blindly answer all 20 questions in just a few seconds (if all
questions are binary).

Cost. On Amazon Mechanical Turk we pay workers 10
cents to answer 20 questions. Since on average it takes 7.69
seconds to answer a question (Table 2 in main paper) this
comes out to $2.34 per hour.

To simulate the real use case (where different types of
questions are automatically generated by our system out
of order) we assigned a random selection of tasks to each
batch. This slowed down the worker responses since it re-
quired reading multiple sets of instructions. Some workers
even complained to us via email about this.' One interesting

Cost (seconds)
Task — -
Positive response | Negative response

Verify-image 5.64 4.88
Verify-box 6.22 5.45
Verify-cover 7.47 7.63
Draw-box 12.34 8.67
Verify-object 6.08 5.21
Name-object 12.19 7.09
Name-image 12.53 7.67

Table 2. Cost of each task (in median human time) broken down by
positive versus negative responses. On average, positive responses
take longer than negative ones. One interesting potential extension
to our human-machine object annotation framework would be to
incorporate this fact.

extension to our current human-machine object annotation
framework would be to consider the reduced human cost if
asking multiple questions of the same type consecutively.
Finally, we observed that for many types of questions
answering positively took longer than answering negatively
(especially for the open-ended questions). Table 2 docu-
ments this. Another potential extension in our framework
would be to incorporate this fact when making decisions
about the optimal next question to ask the annotators.

5. Generating positive and negative examples
for computing human error rates

In order to estimate human error rates, we perturb the an-
notations from ILSVRC detection vall set to obtain a rep-
resentative positive and negative examples.

For most tasks, this is straight-forward. For example, for
verify-box task (“is B a good box around an instance of
class C'?”) we generate the positive set by sampling ground
truth boxes for this class and perturbing them to between 0.7
and 1 IOU. We generate the negative set by sampling boxes
between 0 and 0.5 IOU, as well as boxes corresponding to
other object classes.

However, the negative sets of verify-object (“is there an
object in box B?”), name-object (“name the object in box
B”) and name-image (‘“name another object in this image”)
tasks can’t be generated automatically: there are only 200
classes labeled in ILSVRC, and so any randomly generated
region or image from ILSVRC might accidentally contain
some other object class beyond the annotated 200. Thus, we
sampled some likely negative candidates from ILSVRC and
asked 4 AMT workers to determine if there is an additional

Given that the random selection of questions was necessary in our
setting, we attempted to at least simplify the process for the labeler as much
as possible by arranging the question types in logical order, roughly from
“easiest” to “hardest”: verify-image, name-image, verify-box, draw-box,
verify-cover, verify-object, name-object. This is to help the annotators to
slowly familiarize themselves with the questions; this was proven effective
in our in-house annotation experiments.

object in there. If 3 or more workers said that the box does
not contain an object, we manually verified it to confirm and
then included it in the negative set.

The likely negative candidates for verify-object and
name-object were simply random regions on the image that
had overlap less than 0.3 with any annotated box. The likely
negative candidates for name-image were generated by se-
lecting images where the annotated bounding boxes cover
more than 90% of the image area.

References

[1] J. C. Platt. Probabilistic outputs for support vector machines
and comparisons to regularized likelihood methods. In Ad-
vances in large margin classifiers, 1999. 3

[2] W. Scheirer, N. Kumar, P. N. Belhumeur, and T. E. Boult.
Multi-attribute spaces: Calibration for attribute fusion and
similarity search. In Computer Vision and Pattern Recogni-
tion (CVPR), 2012. 3

" Piaasavead thetaskinstrictions In detall st lesst ance before doing these tasks.

Previous (et amow) | 4/ 22 Next fright amow)

Figure 1. Overview of our annotation layout. A close-up of the instructions is in Figure 2. Only one type of task is shown here; closeups of
each of the seven types are in Figures 3-9).

Figure 2. General instructions for our human annotation tasks.

Is this object present in the image:

Yes No

Instructions:

Please decide if the specified object is present in the image:
» Say 'Yes'if the specified object is present, even if other objects are also present in the image.
» Say 'Yes' even if the specified object is small or in the background (be careful!).
« Say 'No' if the object is too small to be recognized.
e Say 'No' if the object doesn't precisely fit the question (e.g., if asked about 'trumpets' but there are
only 'trombones' in the image)

Figure 3. User interface for verify-image task. The correct answer is “no.”

guitar

Yes, it is a good box No, it is not a good box

Instructions:

Please decide if the provided box is a good bounding box around a single instance of the specified object.
See the examples below to learn what is considered a good bounding box.

Figure 4. User interface for verify-box task. The correct answer is “yes.”

Is there a good box around EVERY instance of:

dumbbell

Yes, every instance is covered No, not every instance is covered

Instructions:

Please check if there is a good blue bounding box around every instance of the specified object.
See the examples below to learn what is considered a good bounding box.

Ignore any bad blue boxes, if any.

Say 'Yes' if every instance of the object has a good box around it.

Say 'Yes' if there are no instances of this object in the image.

Say 'No' if at least one instance of the object does not have a good box.

Figure 5. User interface for verify-cover task. The correct answer is “no.”

chair

Click here if no other box can be drawn

Instructions:

Please draw a tight bounding box around one new instance of the specified object class. See the examples below to learn what is considered a
good bounding box.

If there are yellow boxes on the image:

= Your box should not be around an object instance that already has a good yellow bounding box around it.

« The system will not let you draw a box too close to an existing box by giving a ‘'Too close to existing box' error. You will not be able to
submit unless you fix this error.

« Some yellow boxes may be incorrect; simply ignore them.

Click the 'Click here if no box can be drawn’ button if:

1. The object is not present in the image, or

2. The object is present but all instances are already correctly annotated by yellow boxes, or

3. The only remaining unannotated instances are so close to existing yellow boxes that the system will not let you draw a box around them
by giving a 'Too close to existing box' error.

Figure 6. User interface for draw-box task. The correct answer is “no other box can be drawn.”

Is this a good box around AN object?

Yes, it is a good box No, it is not a good box

Instructions:

Please decide if the provided box is a good bounding box around a single instance of some object (for
example, it is a good bounding box around one cat, or one person, or one screwdriver, or one instance of
any other object). See the examples below to learn what is considered a good bounding box.

Figure 7. User interface for verify-object task. The correct answer is “yes.”

Name the object in the blue box (only if the box is good!):

Click here if not a good box

Instructions:
First, please see the examples below to learn what is considered a good bounding box around an object.

« [f you believe the blue box is not a good box around any object, you can click the 'Click here if not a good box' button.
If the blue box is good, please type in the name of the object within it:

+ In general, the most 'basic’ word that comes to mind is good: for example, 'chair’, 'car’, 'dog’ are all good annotations
= As you type, the box may autocomplete to offer some suggestions.

+ Do not be too vague: 'object’ or ‘thing' are not good annotations.

+ Do not be too specific (unless you're sure): better to say 'cat' than to incorrectly label a 'Persian cat' as a 'Burmese cat’
+ Do not enter profanity -- your work will be rejected.

Figure 8. User interface for name-object task. The correct answer is “not a good box.”

Please read the task instructions in detail at least once before doing these tasks.

Name another object in the image:

Current objects: chair; person

Click here if no other objects

Instructions:

Please write the name of any object that is in the image but is not listed.
Please avoid synonyms of the listed objects
s In general, the most 'basic’ word that comes to mind is good: for example, 'chair’, 'car’, 'dog’ are all good annotations
+ Do not be too vague: 'object’ or 'thing’ are not good annotations.
« Do not be too specific (unless you're sure): better to say 'cat' than to incorrectly mention a 'Persian cat' instead of a ‘Burmese cat'
« Do not enter profanity -- your work will be rejected.
« You will not be able to submit if you repeat one of the existing words

Figure 9. User interface for name-image task. The correct answer is, for example, “umbrella.”

