
Supplementary material for

Best of both worlds: human-machine collaboration for object annotation

Olga Russakovsky1 Li-Jia Li2 Li Fei-Fei1

1Stanford University 2Snapchat∗

1. Introduction

We provide additional details about our principled

human-in-the-loop framework for efficiently detecting all

objects in an image.

Section 2 provides details about how user feedback is

used in calculating probabilities (referenced in Section 4.3

in main paper). We first show how each question posed to

users affects multiple probability estimates about the image.

We then discuss probability updates in some special cases:

in case of open-ended questions (such as asking the user to

draw a bounding box) and in case of computing the prob-

abilities of there being more class instances or new objects

in the image.

Section 3 discusses the procedure for probability calibra-

tion of the outputs of computer vision image classifiers and

object detectors (referenced in footnote 5 of main paper).

Section 4 talks about the design of user interfaces for

collecting human feedback (referenced in caption of Fig-

ure 3 of main paper). We show the interfaces themselves

in Figures 1-9.

Section 5 describes how we semi-automatically generate

sets of positive and negative examples for computing the

human error rates (referenced in footnote 7 of main paper).

2. Using user feedback in the human-in-the-

loop probabilistic framework

As discussed in Section 4.3 of the main paper, our set of

user inputs U contains multiple types of information. Our

goal is to estimate P (ut|E
T
k) where ut is a user response to

some question at and ET
k is a fact about the image related to

some other question aT (in particular Eqn. (6) of the main

paper).

Types of events ET
k . Based on the tasks described in Table

1 of the main paper, we consider 5 types of ET
k :

1. det(B,C) for whether box B is correct around an in-

stance of class C (verify-box task)

∗This work was done while Li-Jia Li was at Yahoo! Labs

2. cls(C) for whether class C is present in the image

(verify-image task)

3. moreinst(B, C) for whether there are more instances

of class C besides those in boxes B (verify-cover and

draw-box tasks)

4. morecls(C) for whether there are more object classes

in the image C (for name-image task)

5. obj(B) for whether box B is a tight box around some

object (for verify-object and name-box tasks)

Computing the true answer to a question. In order to

make a decision about whether the user made a mistake or

not in ut, we first need to determine the true answer to the

question at given that event ET
k happened. This is shown

in Table 1. An event ET
k sometimes determines the correct

answers to more than one question.

For example, consider the event ET
k of class C not

present in the image (this is event “cls(C) = 0” in Table 1).

The true answer is then determined to be “no” to three

questions: (1) when asked if C is contained in the image

(verify-image), (2) when asked if C is contained in any box

B (verify-box), and (3) when asked if there are more in-

stances of class C in the image (verify-cover). For other

questions we have no information about the true answer

given the event ET
k .

Judging user input as correct, wrong or undecided

Having computed the true answers, we can now judge the

user input ut in response to a question at. An answer is

judged as wrong if it doesn’t match the correct answer in

Table 1. An answer is judged as correct if it matches the

correct answer in Table 1 and the event corresponds pre-

cisely to the question, as shown by the shaded boxes in Ta-

ble 1. All other answers are judged as undecided.

To understand the extra layer of complication with judg-

ing correct answers, consider the influence of the question

“does box B contain an instance of class C” (verify-box) on

the probability of the object class C being in the image. If

1

978-1-4673-6964-0/15/$31.00 ©2015 IEEE

True answer to each question type at given ET
k

Event ET
k Verify-box: is

box B for class

C?

Verify-image: is

class C in im-

age?

Verify-cover:

are there more

instances of

class C besides

in B′? (same for

draw-box)

Name-image:

name another

object in image

besides C′?

Verify-object: is

there an object in

box B? (sim-

ilarly for name-

object)

det(B,C) = 1
✓ ✓ ✓ if B /∈ B′ – ✓

det(B,C) = 0
✗ – – – –

cls(C) = 1
– ✓ – – –

cls(C) = 0
✗ ✗ ✗ – –

moreinst(B, C) = 1
– ✓ ✓ if B′ ⊆ B – –

moreinst(B, C) = 0
✗ if B /∈ B – ✗ if B ⊆ B′ – –

morecls(C) = 1
– – – ✓ if C′ ⊆ C –

morecls(C) = 0
– ✗ if C /∈ C – ✗ if C ⊆ C′ –

obj(B) = 1
– – – – ✓

obj(B) = 0
✗ – – – ✗

Table 1. For every event E (row) and question (column), the table reports what the true answer to the question if the event E happened. ✓

means “yes” is the true answer, ✗ means “no” is the true answer, and – means that event E provides no information about the true answer.

– is the default when not specified. Here every question is treated as a binary question: for example, for draw-box question, the answer of

drawing a box is simply “yes” and the answer of refusing to draw a box is “no”.

the answer to the question is “yes,” then this can only hap-

pen if class C is in the image and is certain to be the wrong

answer otherwise. There is a direct influence. If the answer

is “no,” then it might be correct whether or not class C is in

the image. To simplify the computation, we then judge the

answer as undecided.

User input accuracy probabilities. Finally, after the an-

swers are all judged as correct, wrong or undecided, we in-

corporate them back into the probability computation.

Every user input ut is obtained in response to a question.

Each input ut is then associated with a probability βt which

depends on the average user accuracy rate for this type of

question. Let Et
0

correspond to the answer “no” and Et
1

correspond to “yes”. Similarly, let ut = 1 if user says “yes”

and ut = 0 if user says “no”. Then βt = P (ut = j|Et
j)

for j ∈ {0, 1}. The accuracy probabilities βt are shown in

Table 2 of the main paper.

We can then compute P (ut|E
t
j) = βt if answer ut is

correct, P (ut|E
t
j) = 1− βt if answer ut is wrong , and use

the prior from Eqn. (5) of the main paper otherwise..

2.1. Special cases

Here we briefly note some exceptions to the computation

described above.

More instances computation. Recall that computing

complicated events such as P (moreinst(B, C)|I) (Eqn. (8)

of main paper) relies on additionally on detection probabil-

ities P (det(B,C)|I) as well as image classification proba-

bilities P (cls(C)|I) (Section 4.3.1 of the main paper). To

effectively utilize all user input U in this computation, we

break up the set U into U1, which is the set of user input di-

rectly relevant to moreinst(B, C) and U2, which is all other

input. Then have

P (moreinst(B, C)|I,U)

∝ P (moreinst(B, C)|I,U2)P (U1|moreinst(B, C)) (1)

U1 consists of all user input obtained from verify-cover

or draw-box tasks that we can judge based on the event

moreinst(B, C) (Table 1). U2 is all other user input. We

use P (det(B,C) = 1|I,U2) and P (cls(B,C) = 1|I,U2)
in this computation, which allows us to successfully incor-

porate the entire set of user input U = U1 ∪ U2.

The computation for P (morecls(C)) is similar.

New object computation. The computation for

P (newobj(B)|I,U) also requires breaking up U into

two parts, but in a slightly different way. Generalizing Eqn.

(9) of the main paper we have

P (newobj(B)|I,U) =P (obj(B)|I,U1)×
∏

C

(1− P (det(B,C)|I,U2)) (2)

with U1 is all input from verify-object or name-object tasks

related to box obj(B) (Table 1) and U2 = U − U1. This is

to ensure that the independence assumption is not violated.

Open-ended questions For open-ended question such as

draw-box we have to consider both the probability that the

user draws a box when there is one and that the drawn box

is indeed a good box around an object instance. The latter is

noted in Equation (7) of the main paper as P (Ê|u
T̂
), where

u
T̂

is the fact that user drew the box at time T̂ and Ê is fact

that the box is correct. We stated that this is computed from

user error rates which is true but somewhat subtle: com-

puting this error rate directly would be influenced by the

distribution of positive and negative images shown to the

user (positive images being the ones that indeed contain an

unannotated instance). To avoid this problem we add an ex-

tra variable pos corresponding to the fact that the image is

positive, so an unannotated box indeed existed in the image.

Then P (Ê|u
T̂
) = P (Ê, pos|u

T̂
). So

P (Ê|u
T̂
) ∝ P (Ê|u

T̂
, pos)P (u

T̂
|pos)P (pos) (3)

Now P (Ê|u
T̂
, pos) can be estimated as the probability that

a bounding box that the user drew on a positive image is in-

deed correct (reported in caption of Table 2 of the main pa-

per), P (u
T̂
|pos) is the true positive accuracy for the draw-

box task (reported in Table 2 of the main paper), and P (pos)
is the current estimate of the image being positive.

3. Details about probability calibration

In order to use computer vision models in our frame-

work, we need to obtain accurate probability estimates from

the models. The output of object detectors and image clas-

sifiers x is commonly converted to a probability by fitting a

2-parameter sigmoid

p =
1

1 + exp(a1x+ a2)
(4)

to the CNN output on the ILSVRC val1 set [1]. We bin

the detections from all classes into 20 bins in increments of

5% confidence, and compute the error between the expected

probability produced by the model (2.5%, 7.5%, 12.5%,

etc.) and the actual fraction of positive examples in that bin.

The average absolute probability error is 8.7% on ILSVRC

val2 set due to the model being overconfident on the high-

scoring examples. To compensate, we learn the 3rd param-

eter a3 ∈ [0, 1] with

p =
a3

1 + exp(a1x+ a2)
(5)

to allow the model to automatically estimate its level of con-

fidence. This reduced the error down to 5.2%. More accu-

rate models such as [2] can also be used.

4. Human annotation design and observations

UI overview. Figure 1 shows a zoomed-out view of the

annotation interface. The general instructions at the bottom

of the page (shown in Figure 2) discuss what is considered

a good bounding box (with examples) and what types of

objects should be annotated. These instructions are shown

to workers at beginning of the work and are always avail-

able for reference at the bottom of the page. Each type of

task has a separate interface with brief specific instructions,

shown in Figures 3-9.

Quality control. The questions are presented to users in

batches of 20-25 questions. Each batch contains 4-5 “gold

standard” questions. These are questions which were veri-

fied by trusted subjects (previously unfamiliar with our UI)

who deemed that the correct answer should be “obvious” to

a careful annotator. When deployed, the annotation UI pre-

vents users from submitting their work if they incorrectly

answer more than 1 gold standard question.

The UI also had additional sanity checks built in. First,

it prevents users from drawing a bounding box around an

object instance if it is too close to a known bounding box.

Second, it requires that users spend at least 1 second on each

question. In our in-house experiments with trusted workers,

this was the minimum amount of time necessary to answer a

question correctly. This control was implemented since the

interface has keyboard shortcuts (1 and 2 to answer “yes”

or “no”, and left and right arrows to move between ques-

tions) which makes it possible for spammers to potentially

blindly answer all 20 questions in just a few seconds (if all

questions are binary).

Cost. On Amazon Mechanical Turk we pay workers 10

cents to answer 20 questions. Since on average it takes 7.69

seconds to answer a question (Table 2 in main paper) this

comes out to $2.34 per hour.

To simulate the real use case (where different types of

questions are automatically generated by our system out

of order) we assigned a random selection of tasks to each

batch. This slowed down the worker responses since it re-

quired reading multiple sets of instructions. Some workers

even complained to us via email about this.1One interesting

Task
Cost (seconds)

Positive response Negative response

Verify-image 5.64 4.88

Verify-box 6.22 5.45

Verify-cover 7.47 7.63

Draw-box 12.34 8.67

Verify-object 6.08 5.21

Name-object 12.19 7.09

Name-image 12.53 7.67
Table 2. Cost of each task (in median human time) broken down by

positive versus negative responses. On average, positive responses

take longer than negative ones. One interesting potential extension

to our human-machine object annotation framework would be to

incorporate this fact.

extension to our current human-machine object annotation

framework would be to consider the reduced human cost if

asking multiple questions of the same type consecutively.

Finally, we observed that for many types of questions

answering positively took longer than answering negatively

(especially for the open-ended questions). Table 2 docu-

ments this. Another potential extension in our framework

would be to incorporate this fact when making decisions

about the optimal next question to ask the annotators.

5. Generating positive and negative examples

for computing human error rates

In order to estimate human error rates, we perturb the an-

notations from ILSVRC detection val1 set to obtain a rep-

resentative positive and negative examples.

For most tasks, this is straight-forward. For example, for

verify-box task (“is B a good box around an instance of

class C?”) we generate the positive set by sampling ground

truth boxes for this class and perturbing them to between 0.7
and 1 IOU. We generate the negative set by sampling boxes

between 0 and 0.5 IOU, as well as boxes corresponding to

other object classes.

However, the negative sets of verify-object (“is there an

object in box B?”), name-object (“name the object in box

B”) and name-image (“name another object in this image”)

tasks can’t be generated automatically: there are only 200

classes labeled in ILSVRC, and so any randomly generated

region or image from ILSVRC might accidentally contain

some other object class beyond the annotated 200. Thus, we

sampled some likely negative candidates from ILSVRC and

asked 4 AMT workers to determine if there is an additional

1Given that the random selection of questions was necessary in our

setting, we attempted to at least simplify the process for the labeler as much

as possible by arranging the question types in logical order, roughly from

“easiest” to “hardest”: verify-image, name-image, verify-box, draw-box,

verify-cover, verify-object, name-object. This is to help the annotators to

slowly familiarize themselves with the questions; this was proven effective

in our in-house annotation experiments.

object in there. If 3 or more workers said that the box does

not contain an object, we manually verified it to confirm and

then included it in the negative set.

The likely negative candidates for verify-object and

name-object were simply random regions on the image that

had overlap less than 0.3 with any annotated box. The likely

negative candidates for name-image were generated by se-

lecting images where the annotated bounding boxes cover

more than 90% of the image area.

References

[1] J. C. Platt. Probabilistic outputs for support vector machines

and comparisons to regularized likelihood methods. In Ad-

vances in large margin classifiers, 1999. 3

[2] W. Scheirer, N. Kumar, P. N. Belhumeur, and T. E. Boult.

Multi-attribute spaces: Calibration for attribute fusion and

similarity search. In Computer Vision and Pattern Recogni-

tion (CVPR), 2012. 3

Figure 1. Overview of our annotation layout. A close-up of the instructions is in Figure 2. Only one type of task is shown here; closeups of

each of the seven types are in Figures 3-9).

Figure 2. General instructions for our human annotation tasks.

Figure 3. User interface for verify-image task. The correct answer is “no.”

Figure 4. User interface for verify-box task. The correct answer is “yes.”

Figure 5. User interface for verify-cover task. The correct answer is “no.”

Figure 6. User interface for draw-box task. The correct answer is “no other box can be drawn.”

Figure 7. User interface for verify-object task. The correct answer is “yes.”

Figure 8. User interface for name-object task. The correct answer is “not a good box.”

Figure 9. User interface for name-image task. The correct answer is, for example, “umbrella.”

