
Appendix

Contents
A . Proofs of the Generic Algorithms 10
B . Proofs of the Reduction 11
C . Termination with AC Solvers 13
D . Implementation with TRW-S 14

D.1. Algorithm Details 14
D.2. Properties of TRW-S 14
D.3. Efficient Message Passing 16

E . Detailed Experimental Evaluation 17

A. Proofs of the Generic Algorithms
Proposition 2.2 ”Let p be a strictly improving mapping.

Then any optimal solution x∗ of (1) must satisfy pv(x∗v) =
x∗v , v ∈ V“.

Proof. Let p be a strictly improving mapping and x∗ ∈
arg minx∈X 〈f, δ(x)〉 such that p(x) 6= x. Then from Def-
inition 2.1 follows 〈f, δ(p(x∗))〉 < 〈f, δ(x∗)〉, which con-
tradicts optimality of x∗.

Proposition 2.5 ”If mapping p is strictly Λ-improving
then it is strictly improving.“

Proof. From Definition 2.4 follows that for all µ ∈ Λ such
that [p]µ 6= µ there holds 〈f, [p]µ〉 < 〈f, µ〉. Since Λ ⊇M
it holds also for µ = δ(x) for all x ∈ X , which proves the
proposition.

Proposition 2.6: ”p ∈ Sf iff (∀v ∈ V ∀i ∈
O∗v) pv(i) = i”.

Proof. Let p ∈ Sf . Assume for contradiction that (∃v ∈
V ∃i ∈ O∗v) pv(i) 6= i. Since i ∈ O∗v there exists µ ∈ O∗
such that µv(i) > 0. It’s image µ′ = [p]µ has µv(i) =
0 due to pv(i) 6= i by evaluating the extension (3). This
contradicts to [p]µ = µ.

Now let (∀v ∈ V ∀i ∈ O∗v) pv(i) = i. Clearly, [p]µ = µ
holds for all µ on the support set given by (O∗v | v ∈ V),
hence forO∗. It remains to show that the value of minimum
in (6) is zero. For µ ∈ O∗ we have [p]µ = µ and the
objective in (6), 〈(I − [p])Tf, µ〉 = 〈f, µ− [p]µ〉 vanishes.

Proposition 2.7: ”Mapping p ∈ P2,y is strictly Λ-
improving for the cost vector f ∈ RI iff there holds
(∀v ∈ V) O∗v ∩ Yv = ∅”.

Proof. Follows by Definition 2.4 and Proposition 2.6.
Proposition 3.1: ”Algorithm 1 is polynomial and returns

a strictly Λ-improving mapping p ∈ Sf ∩ P2,y”.

Proof. Solving the verification LP in every iteration as well
as finding the support sets of all optimal solutions O∗v is
polynomial. These sets equal to the support set of any strict
relative interior optimal solution, i.e., a solution found by
an interior point method, see, e.g., [32].

At every iteration, if the algorithm has not terminated
yet, at least one of the sets Yv strictly shrinks in line 9.
Therefore the algorithm terminates in at most

∑
v(|Xv|−1)

iterations. On termination p ∈ Sf by Proposition (2.7).
Theorem 3.2: ”Mapping p returned by Algorithm 1 is

the maximum of Sf ∩ P2,y”.

Proof. Two following lemmas form a basis for the proof.

Lemma A.1 (special case of [26], Theorem 3(b)). Let q ∈
Sf ; p ≥ q and O∗ is the set of optimal relaxed labelings,
argminµ∈Λ〈(I−[p])>f, µ〉, i.e., as in line 5 of Algorithm 1.
Then (∀µ ∈ O∗) q(µ) = µ.

Additionally, if q ∈ P2,y and O∗v = {i ∈ Xv | (∃µ ∈
O∗) µv(i) > 0} then

(∀v ∈ V,∀i ∈ O∗v) qv(i) = i. (16)

Proof. We prove the additional part. It follows similarly
to Proposition 2.7. Assume for contradiction that (∃v ∈
V ∃i ∈ O∗v) qv(i) 6= i. Since i ∈ O∗v there exists µ ∈ O∗
such that µv(i) > 0. It’s image µ′ = [q]µ has µv(i) = 0
due to qv(i) 6= i by evaluating the extension (3). This con-
tradicts to [q]µ = µ, the direct statement of [26, Theorem
3(b)].

Lemma A.2. Algorithm 1 maintains invariant that (∀q ∈
Sf ∩ P2,y) p ≥ q.

Proof. We prove by induction. The statement holds trivially
for the first iteration. Assume it is true for the current it-
eration t. Let pt denote the mapping p computed in line 3
on iteration t. Then for any q ∈ Sf ∩ P2,y holds pt ≥ q
and therefore Lemma A.1 applies. We show that line 9 only
prunes maps that are not in P2,y ∩ Sf as follows.

Let pt+1 be the mapping on the next iteration, i.e. com-
puted by line 3 after pruning line 9.

Assume for contradiction that ∃q ∈ P2,y ∩ Sf such that
pt+1 6≥ q. By negating the definition and expanding,

(∃v ∈ V) pt+1
v (Xv) 6= qv(Xv), (17a)

(∃v ∈ V ∃i ∈ Xv) i ∈ pt+1
v (Xv) ∧ i 6∈ qv(Xv), (17b)

(∃v ∈ V ∃i ∈ Xv) pt+1
v (i) = i ∧ qv(i) 6= i. (17c)

If i was pruned in line 9, i ∈ O∗v , then it must be that

10

qv(i) = i, which contradicts to (17c). Therefore

(∃v ∈ V ∃i ∈ Xv\O∗v) pt+1
v (i) = i ∧ qv(i) 6= i. (18)

However, in this case pt+1
v (i) = ptv(i) = i and pt ≥ q fails

to hold, which contradicts to the assumption of induction.
Therefore pt+1 ≥ q holds by induction on every iteration.

By Proposition 3.1 the algorithm terminates and returns
a map in Sf ∩ P2,y . By Lemma A.2 the returned map p
satisfies p ≥ q for all q ∈ Sf ∩ P2,y . Therefore q is the
element of Sf ∩ P2,y which is larger or equal to any other
element of this set. It is the maximum.

Proposition 4.2: ”Let Ov(ϕ) = O∗v for all v ∈ V . Then
fϕ is arc consistent”.

Proof. ConditionOv(ϕ) = O∗v implies that ϕ satisfies strict
complementarity with some primal optimal solution µ. The
strict complementarity implies that (∀i ∈ Xv) (fϕu (i) =
0 ⇒ µu(i) > 0). By feasibility of µ, there must hold
(∀v ∈ nb(u)) (∃j ∈ Xv) µuv(i, j) > 0. And by using com-
plementary slackness again, it must be that fϕuv(i, j) = 0.
Similarly, the second condition of arc consistency is veri-
fied. It follows that fϕ is arc consistent.

Proposition 4.3: ”Algorithm 2 terminates in a finite
number of iterations and delivers a strictly Λ-improving
mapping p ∈ Sf ∩ P2,y”.

Proof. Since O∗v ⊆ Ov(ϕ), Algorithm 2 prunes a super-
set of maps pruned by Algorithm 1. Algorithm 2 is finite,
because in case the termination condition in line 5 is not
satisfied at least one of the sets Yv shrinks in line (9).
Since O∗v ⊆ Ov(ϕ) from the stopping condition (∀v ∈
V) Ov(ϕ) ∩ Yv = ∅ follows (∀v ∈ V) O∗v ∩ Yv = ∅,
which is sufficient for p to be strictly Λ-improving accord-
ing to Proposition 2.7.

B. Proofs of the Reduction
In this section we prove the reduction Theorem 5.1 and

the correctness of heuristics (pruning of negative label-
ings and individual nodes) that are based on Lemma 5.2.
These theorems revisit the key elements on which Algo-
rithm 1 builds: the verification LP (2.7), Proposition 2.6 and
Lemma A.1, which either certifies p ∈ Sf or allows to make
pruning. A correct pruning can be done when we have a
guarantee to preserve all strictly improving maps q, assum-
ing q ≤ p. Therefore theorems in this section are formu-
lated for such pairs.

The proof chain considers adjustments to the cost vector
that preserve the set of mappings that are strictly improving
for the cost vector. These adjustments do not in general pre-
serve optimal solutions to the associated LP relaxation. In
that the reduction is different from an equivalent transfor-
mation.

Theorem B.1. Let q ≤ p. Then q ∈ Sf iff q ∈ Sg for
g = (I − [p])Tf .

Proof. Let Q = [q], P = [p]. Because q ≤ p there holds
PQ = P . It implies (I−P)(I−Q) = (I−Q). Therefore,

〈g, (I −Q)µ〉 = 〈(I − P)Tf, (I −Q)µ〉 (19)
= 〈f, (I − P)(I −Q)µ〉 = 〈f, (I −Q)µ〉. (20)

Assume µ ∈ Λ is such that Qµ 6= µ. Then equality (19)
ensures that 〈g, (I −Q)µ〉 > 0 iff 〈f, (I −Q)µ〉 > 0. The
theorem follows from definition of Sf , Sg .

The reduction that we further build is based on the fol-
lowing result.

Theorem B.2 (Characterization [26]). Let P = [p], p
idempotent component-wise. Then

(∀µ ∈ Λ) 〈f, Pµ〉 ≤ 〈f, µ〉 (21)

iff exists reparametrization ϕ such that

PTfϕ ≤ fϕ. (22)

The reduction in Theorem 5.1 is proven in several steps.
The following theorem assumes arbitrary mapping q, not
necessarily in P2,y and take as input sets Uu that are subsets
of immovable labels. In the context of Theorem 5.1, we will
use Uu = Xu\Yu.

Theorem B.3 (Reduction 1). Let q : X → X component-
wise idempotent. Let Uu ⊆ {i ∈ Xu | qu(i) = i} for
u ∈ V . Let guv(i, j) = 0 for (i, j) ∈ Uu × Uv . Let ḡ be
defined by

ḡv = gv, v ∈ V; (23a)

guv(i, j) =


min
i′∈Uu

guv(i
′, j), i ∈ Uu, j /∈ Uv ,

min
j′∈Uv

guv(i, j
′), i /∈ Uu, j ∈ Uv ,

guv(i, j), otherwise.

(23b)

Then q ∈ Sg iff q ∈ Sḡ .

Proof. Note, unary components of g and ḡ are equal. We
will prove by separate pairwise components.

Direction⇐. Let us prove the following inequality:

(∀ij ∈ Xuv) guv(qu(i), qv(j))− ḡuv(qu(i), qv(j))

≤ guv(i, j)− ḡuv(i, j). (24)

We need to consider only cases where ḡuv(i, j) 6= guv(i, j).
Let i ∈ Uu and j /∈ Uv (the remaining case is symmetric).
In this case qu(i) = i. Substituting ḡ we have to prove

guv(i, qv(j))− min
i′∈Uu

guv(i
′, qv(j)) (25)

≤guv(i, j)− min
i′∈Uu

guv(i
′, j).

11

Clearly, LHS is zero by assumption about g. At the same
time RHS is non-negative since i ∈ Us. The inequality
holds. Inequality (24) implies (by multiplication of pairwise
inequalities and unary inequalities with respective compo-
nents of µ and summing) that

(∀µ ∈ Λ) 〈g,Qµ〉 − 〈ḡ, Qµ〉 ≤ 〈g, µ〉 − 〈ḡ, µ〉. (26)

Inequality (26) is equivalent to

〈ḡ, (I −Q)µ〉 ≤ 〈g, (I −Q)µ〉. (27)

Whenever the LHS of (27) is strictly positive then so is the
RHS and therefore from q ∈ Sḡ follows q ∈ Sg .

Direction ⇒. Assume q ∈ Sg . By Theorem B.2, there
exist dual multipliers ϕ such that for g′ := g − ATϕ the
following component-wise inequalities hold:

(∀u ∈ V, ∀i ∈ Xu) g′u(qu(i)) ≤ g′u(i); (28)
(∀uv ∈ E , ∀ij ∈ Xuv) g′uv(qu(i), qv(j)) ≤ g′uv(i, j).

Let us expand the pairwise inequality in the case i ∈ Uu,
j /∈ Uv . Let qv(j) = j∗. Using qu(i) = i we obtain

guv(i, j
∗)− ϕuv(i)− ϕvu(j∗) (29)

≤guv(i, j)− ϕuv(i)− ϕvu(j).

Terms ϕuv(i) cancel:

guv(i, j
∗)− ϕvu(j∗) ≤ guv(i, j)− ϕvu(j). (30)

We take min over i ∈ Uu of both sides:

min
i∈ Uu

guv(i, j
∗)− ϕvu(j∗) ≤ min

i∈ Uu
guv(i, j)− ϕvu(j).

(31)

Finnaly we can subtract ϕuv(i) from both sides to obtain

ḡϕuv(i, j
∗) ≤ ḡϕuv(i, j). (32)

The case when i /∈ Uu, j ∈ Uv is symmetric. In the re-
maining cases, ḡϕuv(i, j) = ḡ(i, j) − ϕuv(i) − ϕvu(j) =
g(i, j)−ϕuv(i)−ϕvu(j) = gϕ(i, j). In total, ḡϕ satisfies all
component-wise inequalities as g′ in (28). By Theorem B.2,

(∀µ ∈ Λ) 〈ḡ, Qµ〉 ≤ 〈ḡ, µ〉. (33)

We have shown that 〈ḡ, (I −Q)µ〉 ≥ 0. It remains to prove
that the inequality holds strictly when Qµ 6= µ. It can be
shownthat for q ∈ Sg at least one of unary inequalities (28)
from the support of µ holds strictly and therefore inequal-
ity (33) is also strict.

Theorem B.4 (Reduction 2). Let q : X → X component-
wise idempotent. Let ḡ = g −∆+ and ∆+ ∈ RI has zero
unary components and pairwise components as follows:

∆+
uv(i, j) = max

{
0, guv(i, j) + guv(qu(i), qv(j)) (34)

− guv(i, qv(j))− guv(qu(i), j)
}
.

Then q ∈ Sg iff q ∈ Sḡ .

Proof. Note, unary components of g and ḡ are equal. We
will prove by separate pairwise components.

Direction ⇐. Let us prove the inequality (24). It is
equivalent to

∆+
uv(qu(i), qv(j)) ≤ ∆+

uv(i, j). (35)

Consider the following cases:
• qu(i) = i or qv(j) = j: In this case ∆+

uv(i, j) = 0 =
∆+
uv(qu(i), qv(j)) by substitution.

• qu(i) 6= i, qv(j) 6= j: By idempotency, it must be
that qu(qu(i)) = qu(i) and qv(qv(j)) = qv(j). It fol-
lows that ∆+

uv(qu(i), qv(j)) = 0 and ∆+
uv(i, j) ≥ 0 by

definition.
Inequality (24) implies (by multiplication of pairwise in-
equalities and unary inequalities with respective compo-
nents of µ and summing) that

(∀µ ∈ Λ) 〈g,Qµ〉 − 〈ḡ, Qµ〉 ≤ 〈g, µ〉 − 〈ḡ, µ〉. (36)

Note, cost vector ḡ satisfying (36) is called auxiliary for g
in [15, 23]. Inequality (36) is equivalent to

〈ḡ, (I −Q)µ〉 ≤ 〈g, (I −Q)µ〉. (37)

Whenever the LHS of (37) is strictly positive then so is the
RHS and therefore from q ∈ Sḡ follows q ∈ Sg .

Direction ⇒. Assume q ∈ Sg . By Theorem B.2, there
exist dual multipliers ϕ such that for g′ := g − ATϕ the
following component-wise inequalities hold:

(∀u ∈ V, ∀i ∈ Xu) g′u(qu(i)) ≤ g′u(i); (38)
(∀uv ∈ E , ∀ij ∈ Xuv) g′uv(qu(i), qv(j)) ≤ g′uv(i, j).

Let ḡ′ := ḡ−ATϕ = g−∆+−ATϕ = g′−∆+. Let us show
that component-wise inequalities (38) hold for ḡ′. Clearly
they hold for unary components and for pairwise compo-
nents where ∆+

uv(i, j) = 0. Let uv ∈ E and ∆+
uv(i, j) > 0.

Let i′ = qu(i) and j′ = qu(j). It must be that i′ 6= i
and j′ 6= j. Let us denote a = g′uv(i

′, j′), b = g′uv(i
′, j),

c = g′uv(i, j
′) and d = g′uv(i

′, j). By idempotency of q,
there holds 0 = ∆+

uv(i
′, j) = ∆+

uv(i, j
′) = ∆+

uv(i
′, j′). Let

d̄ := g′uv(i, j)−∆+
uv(i, j) = d−(a+d−b−c) = b+c−a.

From (38) we have that a ≤ b, c, d. It follows that 2a ≤ b+c
or a ≤ b+ c− a = d̄. We proved that ḡ′uv(qu(i), qv(j)) ≤
ḡ′uv(i, j). In total, ḡ′ satisfies all component-wise inequali-
ties, same as g′ in (28). By Theorem B.2,

(∀µ ∈ Λ) 〈ḡ, Qµ〉 ≤ 〈ḡ, µ〉. (39)

We have shown that 〈ḡ, (I − Q)µ〉 ≥ 0. The inequality
holds strictly when Qµ 6= µ. In this case for q ∈ Sg at least
one of unary inequalities (38) from the support of µ holds
strictly and therefore inequality (39) is also strict.

12

Remark. Note, taking into account that gvu(i′, j′) = 0 for
i′ ∈ Xv\Yv , j′ ∈ Xu\Yu, the reduction that we obtained
in all cases can be interpreted as forcing the mixed discrete
derivative

gvu(i, j′) + gvu(i′, j)− gvu(i, j)− gvu(i′, j′) (40)

to be non-negative. The cost vector ḡ is therefore a (par-
tial) submodular truncation of g. One can notice certain
similarity with construction of auxiliary problems by Kov-
tun [15], where full submodularity is enforced. We essen-
tially proved that a part of Kovtun’s construction of con-
structing an auxiliary problem is optimal.

Theorem B.5. Let q, p ∈ P2,y , q ≤ p. Let ḡ be defined
by (13). Then q ∈ Sf iff q ∈ Sḡ .

Proof. Let g = (I − P)Tf . By Theorem B.1, q ∈ Sf iff
q ∈ Sg . We need to consider only pairwise terms. Let uv ∈
E . Since q ≤ p, if pu(i) = i then necessarily qu(i) = i.
Let p be defined using sets Yu as in (8). The reduction ḡ
in (13) will be composed of reductions by Theorem B.3 and
Theorem B.4.

From g = (I − P)Tf we have that for i ∈ Xu\Yu and
j ∈ Xv\Yv guv(i, j) = 0. Conditions of Theorem B.3 are
satisfied with Us = Xu\Yu. We obtain part of the reduc-
tion (13) for cases when i /∈ Yu or j /∈ Yv . Let us denote the
reduced vector ḡ′. Applying Theorem B.4 to it, we obtain ḡ
as defined in (13).

We are ready to show the statements claimed in §5.
Theorem 5.1 (Reduction). The theorem formulated in §5
states that mapping q ≤ p is in Sf iff q(O∗v) = O∗v .

Proof. By Theorem B.5, q ∈ Sf iff q ∈ Sḡ , where ḡ is
defined by (13). There holds characterization q ∈ Sḡ iff
qu(O∗u) = O∗u, where O∗u is defined by (12).
Lemma 5.2: “ Let q ∈ Sf ∩P2,y , q ≤ p, Q = [q]. Let Λ′ ⊆
Λ and Q(Λ′) ⊆ Λ′. Let ḡ be defined by (13) (depends on p)
and letO∗ = argminµ∈Λ′〈ḡ, µ〉. Then (∀v ∈ V) qv(O∗v) =
O∗v . ”

Proof. Note, unlike Theorem 5.1, this lemma states a neces-
sary condition only. Let µ ∈ O∗. Assume for contradiction
that Qµ 6= µ. In this case, by Theorem 5.1, we have that
〈ḡ, Qµ〉 < 〈ḡ, µ〉. Since µ ∈ Λ′ and Q(Λ′) ⊆ Λ there
holds Qµ ∈ Λ′. It follows that Qµ is a feasible solution
of a better cost than µ which contradicts optimality of µ. It
must be therefore that Qµ = µ. The claim q(O∗v) = O∗v
follows.

We have achieved the following. Suppose that we solve
the verification LP with the reduced cost vector ḡ. If there
holds pv(O∗v) = O∗v for all v, then p ∈ Sf by Theo-
rem 5.1. In the opposite case, Theorem 5.1 asserts that for
all strictly relaxed-improving mappings q ≤ p there must
hold qv(O∗v) = O∗v . Therefore the reduced verification LP
is valid to be used in the step 5 of Algorithm 1.

A practical aspect of the reduction is that, e.g., TRW-S
is able to find a labeling with a negative cost much faster
since we have decreased many edge costs. Additionally,
minimization over polytope Λx with reduced g is a purely
submodular problem (recall that yv ∈ Xv\Yv). We thus can
solve it with a regular minimum cut and not QPBO mini-
mum cut.

C. Termination with AC Solvers
For completeness, we give two theorems when the solver

is applied to the verification problem with and without re-
duction. Both results apply when the solver has found an
arc consistent solution. The theorem with reduction allows
to obtain somewhat stronger guarantees. The guarantees are
necessary in order to show that our Algorithm 2 terminates.
In the next section we prove guarantees for TRW-S also in
the case when it has not converged yet.

Theorem C.1. Consider the verification LP defined by g =
(I − PT)f . Let gϕ be an arc-consistent reparametrization.
Then at least one of the two conditions is satisfied:

(a) LB(ϕ)
def
= g0 +

∑
u ϕu = 0 and ϕ is dual optimal;

(b) (∃u ∈ V) Ou(ϕ) ∩ Yu 6= ∅.

Proof. Assume (b) does not hold: (∀u ∈ V) Ou(ϕ)∩Yu =
∅. Then for each node u there is a label zu ∈ Ou(ϕ)\Yu.
By arc consistency, for each edge uv there is a label j ∈
Ou(ϕ) ⊆ Xu\Yu such that gϕuv(zu, j) = 0 and similarly,
there exists i ∈ Ou(ϕ) ⊆ Xu\Yu such that gϕuv(i, zv) = 0.

By construction, guv(i, j) = 0 for all ij ∈ Xuv\Yuv and
therefore the following modularity equality holds:

gϕuv(zu, zv) + gϕuv(i, j) = gϕuv(zu, j) + gϕuv(i, zv). (41)

From local minimality of (zu, j) we have

gϕuv(zu, j) ≤ gϕuv(i, j). (42)

By adding (41) and (42) we obtain

gϕuv(zu, zv) ≤ gϕuv(i, zv) (43)

and hence (zu, zv) is locally minimial too: gϕuv(zu, zv) = 0.
Therefore δ(z) and dual point ϕ satisfy complementar-
ity slackness and hence they are primal-dual optimal and
LB(ϕ) = Eg(z) = 0.

We can now show the result needed to establish termi-
nation of Algorithm 2 based on a solver delivering arc con-
sistency, but not necessarily solving the LP relaxation in all
cases.
Lemma 4.4: ”Let (∀v ∈ V) Ov(ϕ) ∩ Yv = ∅ hold for an
arc consistent dual vector ϕ. Then ϕ is dual optimal”.

Proof. Corollary from Theorem C.1.
For the reduced problem ḡ, a stronger condition is satis-

fied.

13

Theorem C.2. Consider the reduced problem ḡ defined in
Theorem 5.1. Let ḡϕ be an arc-consistent reparametrization.
Then at least one of the two conditions is satisfied:

(a) LB(ϕ) = 0 and ϕ is optimal;
(b) (∃u ∈ V) Ou(ḡϕ) ⊆ Yu.

Proof. Since for problem ḡ all labels in Xu\Yu are equiva-
lent w.r.t. unary and pairwise costs, we can contract these
sets and w.l.o.g. assume that Xu\Yu = {yu}.

Assume (b) does not hold. Then for each node u label
yu is locally minimal: ḡϕ(yu) = mini ḡ

ϕ
u (i). By arc consis-

tency, for each edge uv there is a label j ∈ Xv such that pair
(yu, j) is locally minimal and similarly there exists i ∈ Xv
such that pair (i, yv) is locally minimal. From partial sub-
modularity, inequality (40), follows that the pair (yu, yv) is
locally minimal as well. Therefore, integer labeling y and
dual point ϕ satisfy complementarity slackness and hence
they are primal-dual optimal andLB(ϕ) = Eḡ(y) = 0.

Both proofs above are analogues to how fixed points of
TRW-S or max-sum diffusion are shown to correspond to
exact solutions for submodular problems [22], i.e., we use
the same argument to construct an integer feasible solution
that satisfy complementary slackness.

D. Implementation with TRW-S
When we consider specifically TRW-S there are several

questions regarding correctness and efficiency:
• TRW-S may not achieve arc consistency in finite time.

Can we stop it earlier? Will there be some progress
possible in terms of sets Yu?
• Can we exploit efficient distance transforms on the re-

duced problem?
In this section we answer all the above questions positively.

D.1. Algorithm Details

The algorithm will make use of the reduction, pruning
cuts and the warm start. The warm start is motivated by that
every next outer iteration of Algorithm 1 may result in just
a small adjustment to the problem ḡ and therefore it is de-
sirable to reuse the messages (reparametrization) in TRW-S
from the previous outer iteration. We first give a full spec-
ification in Algorithm 3 and state formal properties of the
algorithm. Then we prove the claims by deriving some new
properties of TRW-S.

Theorem D.1 (Correctness of Algorithm 3). For any stop-
ping condition in line 4, the algorithm terminates in at most∑
v(|Xv| − 1) outer iterations and outputs p ∈ Sf .

Theorem D.2. Message passing in TRW-S for reduced
edge term ḡuv can be computed in O(|Yu| + |Yv|) extra
time compared to the message passing for the original term
fuv .

Algorithm 3: Efficient Iterative Pruning with TRW-S

Input: Problem f ∈ RI , test labeling y ∈ X ;
Output: Improving map q ∈ P2,y ∩ Sf ;

1 (∀s ∈ V) Yu := Xs\{ys};
2 Set ϕ to the initial reparametrization / messages if

available;
3 repeat
4 Construct reduced characterization problem ḡ for

problem f and sets (Yu | u ∈ V) according to
Table 6;

5 repeat
6 Run 10 TRW-S iterations with problem ḡ and

reparametrization ϕ. Provides LBT, ϕ, Ou
and best x;

7 if (∀s ∈ V) Ou ∩ Yu = ∅ then return q;
8 if Eḡ(x) < 0 then
9 Apply pruning cut with x;

10 Apply single node pruning;
11 goto step 4 to rebuild ḡ;

12 until any stopping condition (e.g., iteration limit);
13 Mark immovable: (∀u ∈ V) Yu := Yu\Ou;
14 Apply single node pruning;

Proof (of Theorem D.1). Using Margin Theorem D.3 below,
either current mapping q is returned or whenever we decide
to stop TRW-S iterations, the set of minimal labels Ou for
some s contains a new label to be marked as immovable.
It follows that Algorithm 3 terminates. The convergence of
TRW-S does not affect correctness of our algorithm, only a
possibly non-maximal map q is found due to non-optimal
dual point used in step 13. The termination condition in
step 7 indicates that y is an optimal primal solution and in
this case it must be that LB = 0, therefore current ϕ is an
optimal dual point. In this case O∗u ⊆ Ou, where set O∗u
is the support set of all primal optimal solutions (see Algo-
rithm 1). We therefore have O∗u ⊆ Ou ⊆ Xu\Yu for all u.
It follows that stopping condition of generic Algorithm 1 is
satisfied as well and hence q ∈ Sf .

Note, whenever the algorithm found a pruning cut or
used local pruning conditions, no loss of maximality oc-
curs. In our experiments for some instances, the algorithm
finished before ever reaching the step 13. In such cases the
reduction q ∈ Sf is the maximum.

D.2. Properties of TRW-S

In this section we give several theoretical guarantees for
TRW-S when it is applied to solve the verification problem
(I − [p]T)f or to its reduced version.

TRW-S algorithm, though observed to always converge
in practice to a fixed point, has very weak theoretical con-
vergence guarantees. It is know that there is a convergent
subsequence who’s limit satisifies Week Tree Agreement

14

(WTA) [12]. A finite iteration epsilon variant of this state-
ment exists [21]. In either case we have no guarantee to
obtain an arc consistent solution required to prove Proposi-
tion 4.3. The major obstacles are: (i) WTA is achieved only
in the limit and (ii) there is no guarantee that the set of la-
bels which are in WTA (let alone its AC subset) converges
as well.

Fortunately, TRW-S enjoys very useful for us proper-
ties especially when it is applied to the reduced verification
problem. We first give a short specification of TRW-S. In
our notation, the order of TRW-S updates is fully specified
by orientations of edges in E . For a serial implementation,
this order can be completed to a total order on V by defin-
ing u < v iff uv ∈ E . We specify only the forward pass of
TRW-S as Algorithm 4 and note that the backward pass is
obtained by reversing all edges. In Algorithm 4, nu is the

Algorithm 4: TRW-S Forward Iteration,
c.f . [12, Fig. 3]

Input: Problem f ∈ RI , reparametrization ϕ;
Output: Updated reparametrization ϕ, LBT , best

labeling x, locally optimal labels Ou(ϕ);
1 for u ∈ V do
2 for v ∈ nb(u) | uv ∈ E do
3 ϕvu(j) :=

min
i

[
1
nu
fϕu (i)− ϕuv(i) + fuv(i, j)

]
;

4 Ou(ϕ) := argmini f
ϕ
u (i); xu ∈ Ou(ϕ);

5 LBT(ϕ) :=
∑
u∈V

nterm(u)
nu

min
i
fϕu (i);

number of chains that meet in node u and nterm(u) is the
number of chains that terminate in u.

Viewed as computing the division of costs between the
chains, TRW-S has the following properties. To a chain τ
there is associated its oriented graph (Vτ , Eτ) and its share
of the unary terms in the decomposition, fτ . We assume
thet each pairwise term fuv is associated to exactly one
chain passing through edge uv.

After the first backward pass, the algorithm maintains the
following invariants. Consider the step of processing vertex
u∗ ∈ V . For a chain τ which passes through edge uv ∈ E
there holds:
• If u∗ < u, message ϕuv(i) is equal to the right min-
marginals of the chain:

ϕuv(i) = min
(xw|w>v)
xu=i

(
∑
u∈Vτ
w>u

fτw(xw)+
∑

u′v′∈Eτ
u′≤u

fu′v′(xu′ , xv′)).

(44)

• If u∗ > u, message ϕvu(j) is equal to the left min-

marginals of the chain:

ϕvu(j) = min
(xw|w<v)
xv=j

(
∑
w∈Vτ
w<v

fτw(xw)+
∑

u′v′∈Eτ
u′≤u

fu′v′(xu′ , xv′)).

(45)
Weak tree agreement is the condition when the lower

bound cannot be improved further by TRW-S [12]. It re-
quires that among all optimal assignments of the chains
there is a consistent subset.

We now introduce a measure of how far the TRW-S al-
gorithm is from a fixed integer solution y. For a node u we
define node margin of u as the value

mu(ϕ) = min
i

(fϕu (i)− fϕu (yu)). (46)

The margin is related to the set Ou(ϕ) of local minimizers.
If it is negative,Ou(ϕ) does not contain yu and the negative
value measures how well it is separated. Let us define the
problem margin as the value

m(ϕ) = min
s∈V

mu(ϕ). (47)

For the convenience of analysis, we continue to denote the
cost vector to which Algorithm 4 is applied as f . In the
context of Algorithm 3, we temporarily let f := ḡ.

Theorem D.3 (Margin for TRW-S). For the reduced verifi-
cation problem f and reparametrization ϕ build by TRW-S
there holds:

LBT(ϕ) = 0 iff mu(ϕ) ≥ 0. (48)

Proof. (⇒) Let LBT (ϕ) = 0. By construction, Ef (y) = 0
so the duality gap is zero and therefore ϕ is dual optimal
and δ(y) is primal optimal. By complementary slackness it
must be that (∀u ∈ V) fϕu (yu) is locally minimal. There-
fore problem margin is exactly zero. This part of the proof
holds also for non-reduced verification problem and any
reparametrization such that LBT (ϕ) = 0.

(⇐) Let now the problem margin be non-negative. Let
us consider edge uv ∈ E and let fτ be the cost vector of
the monotonic chain τ passing through edge uv at the be-
ginning of iteration processing node v. Since u was already
processed, the value fϕu is proportional to min-marginals of
chain τ in u and we have mu(ϕ) ≥ 0. It follows that there
is a minimizer x ∈ minx〈fτ , δ(x)〉 such that xu = yu. For
this minimizer there holds

x ∈ argmin
x̃|x̃v=xv

〈fτ , δ(x̃)〉. (49)

This is because we constrained x̃ to coincide with the global
chain minimizer in v. This conditional minimizer however
clearly does not depend on fτv , the unary term associated to
chain τ .

15

Consider the operation of averaging min-marginals over
node v. By assumption, after averaging operation, mv ≥ 0
and therefore the local minimum over each chain is attained
in yv . The averaging operation only changes the value fτv .
The conditional minimizer

x′ ∈ argmin
x̃|x̃v=yv

〈fτ , δ(x̃)〉 (50)

does not depend on fτv .
Let r precede u in τ . Assume for contradiction that x′u 6=

yu. Because u has been processed, the value ϕur(i) is the
left-min-marginal for chain τ in node u and label i ∈ Xu.
Denote

−→
fτu = ϕur(i) + fτu (i). The relations (49) and (50)

can be expressed as

yu ∈ argmin
i

(−→
fτu + fuv(i, xv)

)
; (51a)

x′u ∈ argmin
i

(−→
fτu + fuv(i, yv)

)
. (51b)

From (51a) we have that
−→
fτu (yu)+fuv(yu, xv) ≤

−→
fτu (x′u)+

fuv(x
′
u, xv). We use now the partial submodularity fulfilled

for f ,

fuv(yu, xv) + fuv(x
′
u, yv) ≥ fuv(x′u, xv) (52)

and obtain that
−→
fτu (yu) ≤

−→
fτu (x′u) + fuv(x

′
u, yv). (53)

Adding on the LHS the term fuv(yu, yv) = 0, we get

−→
fτu (yu) + fuv(yu, yv) ≤

−→
fτu (x′u) + fuv(x

′
u, yv). (54)

This inequality allows to conclude that yu is a also a mini-
mizer to (51b). Therefore either x′u = yu or yu is an equally
good substitute.

We have shown that as soon as there is zero margin, for
each chain the part of the minimizer over already processed
nodes can be selected equal to y. By induction, at the end
of the sweep, y is a minimizer for each chain. Hence WTA
is achieved. In this case, there is zero integrality gap and
LBT = Ef (y) = 0.

It follows that on every iteration (but the first initializing
one) of TRW-S either the problem margin is negative and
therefore (∃u)Ou(ϕ)∩Yu 6= ∅ (there is always something
to prune) or WTA is achieved and the algorithm terminates
with y being optimal integer solution. This proves Theo-
rem D.1. Furthermore, if the stopping condition in line 12
is the iteration limit, Algorithm 3 runs in polynomial time.

D.3. Efficient Message Passing

Suppose that some pairwise potentials are specially
structured, so that messages in message passing algorithms

i /∈ Yu ḡu(i) = 0;
i ∈ Yu ḡu(i) = fu(i)− fu(yu);

i /∈ Yu j /∈ Yv ḡuv(i, j) = 0;

i /∈ Yu j ∈ Yv
ḡuv(i, j) = ∆vu(j),

∆vu(j) = min
i′ /∈Yu

[
fuv(i

′, j)− fuv(i′, yv)
]
;

i ∈ Yu j /∈ Yv
ḡuv(i, j) = ∆uv(i),

∆uv(i) = min
j′ /∈Yv

[
fuv(i, j

′)− fuv(yu, j′)
]
;

i ∈ Yu j ∈ Yv
ḡuv(i, j) = min

{
fuv(i, j)− fuv(yu, yv),

∆vu(j) + ∆uv(i)
}
.

Table 6. Components of the Reduced Verification Problem

can be computed in linear time in the number of labels in-
stead of quadratic time, see [5]. This is the case for many
potentials with a linear ordering, e.g. absolute differences,
squared distance and truncated versions thereof, including
the Potts model.

It would be very helpful to be able to compute messages
fast in these cases also for our reduced verification problem
ḡ. The components of ḡ specified by Theorem 5.1 can be
expressed directly in components of f as proposed in Ta-
ble 6. Passing a message on edge uv amounts to calculate
an expression of the form

ϕvu(j) := min
i∈Xu

[
a(i) + ḡuv(i, j)

]
(55)

for some vector a ∈ RXu . For j /∈ Yv , substituting pairwise
terms of ḡ it is expanded as

ϕvu(j) = min
i∈Xu

[
a(i) + ∆uv(i)

]
= min
i∈Xu

[
a(i) + ∆uv(i)

]
+ ∆vu(j), (56)

where we defined that ∆uv(Uu) = ∆vu(Uv) = 0.
For j ∈ Yv , substituting pairwise terms of ḡ and denot-

ing c = fuv(yu, yv) the message is expanded as

min
{

min
i∈Uu

a(i) + ∆vu(j),

min
i∈Yu

[
a(i) + min

{
fuv(i, j)− c,∆uv(i) + ∆vu(j)

}]}
= min

{
min
i∈Yu

[
a(i) + fuv(i, j)

]
− c,

min
i∈Xu\Yu

[
a(i) + ∆uv(i)

]
+ ∆vu(j)

}
.

(57)

We therefore need to calculate (56) for all j ∈ Xu because
the expression reoccurs in (57) for j ∈ Yv . Then for j ∈ Yv
it remains to take the minimum of a regular message and
ϕvu(j) by (56).

16

Algorithm 5: Message Passing for Pruning

Input: Unary term a : Yu ∪ {yu} → R;
Output: Message ϕvu : Yv ∪ {yv} → R;
/* Offset constant in (56) */

1 m1 := min
i∈Yu∪{yu}

[
a(i) + ∆uv(i)

]
;

/* Message passing for f */

2 (∀j ∈ Yv) ϕvu(j) := min
i∈Yu∪{yu}

[
a(i) + fuv(i, j)

]
;

/* Message correction for ḡ */
3 (∀j ∈ Yv) ϕvu(j) := min{ϕvu(j)−c,∆vu(j)+m1};
4 ϕvu(yv) := m1;

We thus have reduced the message passing for ḡ to the
message passing for f , O(|Xu| + |Xv|) operations to cal-
culate expression (56) and O(|Xv|) operations for the outer
minimum. Therefore we can compute the message for the
modified energy in time O(|Xu| + |Xv|). We can take this
complexity down to the theoretical perfection as follows.
Recall that labels in Xu\Yu can be contracted to a single
one. In this case calculating (56) for all j ∈ Yu takes
only O(|Yu| + |Yv|) time. Using the non-uniform min-
convolution algorithm of [37] the message passing for the
labels in the set Yu to labels in Yv can be implemented
in O(|Yu| + |Yv|) time. We have obtained the complexity
matching to the total number of active labels in the problem.
The more labels are marked as immovable in the course of
the algorithm (sets Yu reduce), the less work is required.
The final message update is specified in Algorithm 5, where
the contracted labels Xu\Yu are represented by yu. In the
implementation for each edge uv we need to store the off-
sets ∆uv : Yu → R and ∆vu : Yv → R and c ∈ R.

E. Detailed Experimental Evaluation

Datasets and Evaluation. We give a brief characteriza-
tion of all 38 test problem instances and report the ob-
tained total percentage of persistent variables of our and
competing methods in Table 2. The datasets mrf-stereo
and mrf-photomontage originate from the Middle-
bury MRF benchmark [31]. The color-seg and
color-seg-n4 datasets were taken from the OpenGM
MRF benchmark [10, 9], ProteinFolding originates
from [16, 36]. All datasets are made available in the
OpenGM-format [10, 9].

Detailed quantitative experimental evaluation can be
found in Table 7. In addition to the per-label measure of
partial optimality (15), to allow for future comparisons we
report also the logarithmic measure. It is motivated by the
fact that eliminating one label in a variable with say 2 states
brings more information than eliminating one label in a
variable with 100 states. We propose to measure the to-
tal decrease of the number of configurations of the search

(a)(a)

0

1

2

3

4

5

6

7

8

9

10

11

12

(b)(b)

Figure 2. Instance pfau. (a) Proved part of optimal solution (red
solution not determined / non-unique). (b) Reminder of the opti-
mization problem: number of remaining labels in every pixel.

(a)(a)

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

(b)(b)

Figure 3. Instance ted. (a) Proved part of optimal solution (red =
solution not determined / non-unique). (b) Reminder of the opti-
mization problem: number of remaining labels in every pixel.

space, e.g., from |X | to p(|X |), in the logarithmic domain:

1−
log
∏
v∈V |pv(Xv)|

log
∏
v∈V |Xv|

= 1−
∑
v∈V log |pv(Xv)|∑
v∈V log |Xv|

. (58)

In Figures 2-4 we give examples where the method was
performing well. Figures 5 and 6, on the contrary re-
veal some cases of very poor performance. For example
for photomontage/pano instance, we report 80% solu-
tion completeness, but these 80% only correspond to trivial
hard constraints in the problem. Other methods perform
worse mainly because they consider determining complete
optimal labels only ([29]-TRWS) or intervals of labels
(MQPBO).

17

Figure 4. Instance brain-9mm/brain-0. Slices of the 3D vol-
umetric problem. Proved part of optimal solution (red = solution
not determined / non-unique).

(a)(a) (b)(b)

(c)(c)

0

1

2

3

4

5

6

7

(d)(d)

Figure 5. Instance pano: label encodes the image index for pho-
tomontage. (a) (b) Two labelings by TRW-S with slightly different
initializations. It is clear that there is high ambiguity. (c) Part of
the solution that was proved optimal and unique. (d) Reminder of
the optimization problem (number of non-eliminated labels). It is
clear that the method essentially removed hard constraints implied
by different fields of view of images composing the panorama.

(a)

0

1

2

3

4

5

(b)

Figure 6. Instance family. (a) Labeling by TRW-S. (b) Re-
minder of the optimization problem (number of labels per pixel).
It is clear that the method essentially only followed the hard con-
straints corresponding to the scribbles provided by the user and
constrained very few pixels ontop of that.

18

Instance Algorithm
Time
needed
overall (s)

Time for
initial
solution (s)

#iterations
Algorithm 1,2

#iterations
TRWS

Logarithmic
percentage
partial
optimality

Percentage
excluded
labels

ProteinFolding
1CKK Our-CPLEX 2757.62 1177.62 5 † 14.24% 27.04%

Our-TRWS 5.76 5.00 3 1000+15 13.83% 26.53%
MQPBO-10 5670.00 0.00 0 † 0.00% 0.00%
MQPBO 825.00 0.00 0 † 0.00% 0.00%
[29]-CPLEX 2502.69 2493.65 1 † 0.00% 0.00%
[29]-TRWS 47.57 30.19 2 288+185 0.00% 0.00%

1CM1 Our-CPLEX 4070.00 992.15 7 † 8.38% 34.28%
Our-TRWS 6.03 4.70 4 1000+65 8.07% 29.98%
MQPBO-10 5520.00 0.00 0 † 0.00% 0.00%
MQPBO 723.00 0.00 0 † 0.00% 0.00%
[29]-CPLEX 2388.46 2198.04 3 † 0.00% 0.00%
[29]-TRWS 51.33 21.60 3 242+358 0.00% 0.00%

1SY9 Our-CPLEX 2628.72 416.74 5 † 25.34% 51.30%
Our-TRWS 6.88 5.50 4 1000+15 28.06% 57.98%
MQPBO-10 7494.00 0.00 0 † 0.00% 0.00%
MQPBO 2112.00 0.00 0 † 0.00% 0.11%
[29]-CPLEX 1067.46 910.90 4 † 0.00% 0.00%
[29]-TRWS 66.73 46.77 5 400+174 0.00% 0.00%

2BBN Our-CPLEX 9677.42 5476.81 5 † 2.12% 8.58%
Our-TRWS 10.00 8.60 3 1000+10 2.64% 14.17%
MQPBO-10 1736.00 0.00 0 † 0.00% 0.00%
MQPBO 2429.00 0.00 0 † 0.00% 0.00%
[29]-CPLEX 9776.60 9771.18 1 † 0.00% 0.00%
[29]-TRWS 54.21 42.90 2 242+146 0.00% 0.00%

2BCX Our-CPLEX 36222.90 6998.66 5 † 4.81% 15.66%
Our-TRWS 9.14 7.90 3 1000+55 4.39% 14.21%
MQPBO-10 1008.00 0.00 0 † 0.00% 0.00%
MQPBO 1288.00 0.00 0 † 0.00% 0.00%
[29]-CPLEX 11419.60 11409.90 2 † 0.00% 0.00%
[29]-TRWS 55.26 39.60 2 252+194 0.00% 0.00%

2BE6 Our-CPLEX 1381.60 765.84 4 † 9.14% 17.68%
Our-TRWS 4.67 3.91 4 1000+60 8.96% 15.12%
MQPBO-10 3728.00 0.00 0 † 0.00% 0.05%
MQPBO 540.00 0.00 0 † 0.00% 0.00%
[29]-CPLEX 1552.95 1552.88 1 † 0.00% 0.00%
[29]-TRWS 40.12 28.12 2 363+230 0.00% 0.00%

2F3Y Our-CPLEX 3628.90 2546.68 5 † 6.22% 10.66%
Our-TRWS 5.83 5.20 3 1000+10 8.39% 13.74%
MQPBO-10 5138.00 0.00 0 † 0.00% 0.00%
MQPBO 928.00 0.00 0 † 0.00% 0.05%
[29]-CPLEX 4618.78 4618.76 1 † 0.00% 0.00%
[29]-TRWS 41.87 33.03 3 321+164 0.00% 0.00%

2FOT Our-CPLEX 7458.75 1996.55 5 † 4.10% 11.64%
Our-TRWS 6.25 5.30 4 1000+25 4.01% 11.01%
MQPBO-10 4961.00 0.00 0 † 0.00% 0.09%
MQPBO 1054.00 0.00 0 † 0.00% 0.07%
[29]-CPLEX 4473.58 4440.51 1 † 0.00% 0.00%
[29]-TRWS 61.92 44.42 2 398+222 0.00% 0.00%

2HQW Our-CPLEX 5721.95 1946.20 6 † 10.30% 17.30%
Our-TRWS 6.49 4.80 6 1000+160 8.33% 18.08%
MQPBO-10 7228.00 0.00 0 † 0.00% 0.00%
MQPBO 1193.00 0.00 0 † 0.00% 0.00%
[29]-CPLEX 2163.98 2161.07 1 † 0.00% 0.00%
[29]-TRWS 44.07 35.46 2 382+121 0.00% 0.00%

2O60 Our-CPLEX 12085.40 3007.95 6 † 4.22% 12.81%
Our-TRWS 7.74 6.50 3 1000+55 4.94% 15.55%
MQPBO-10 7516.00 0.00 0 † 0.00% 0.00%
MQPBO 1997.00 0.00 0 † 0.00% 0.00%
[29]-CPLEX 6137.07 6128.14 1 † 0.00% 0.00%
[29]-TRWS 93.87 46.42 2 352+369 0.00% 0.00%

3BXL Our-CPLEX 3247.11 915.86 7 † 4.97% 17.18%
Our-TRWS 7.44 5.90 4 1000+60 4.66% 12.35%

19

Instance Algorithm
Time
needed
overall (s)

Time for
initial
solution (s)

#iterations
Algorithm 1,2

#iterations
TRWS

Logarithmic
percentage
partial
optimality

Percentage
excluded
labels

MQPBO-10 6709.00 0.00 0 † 0.00% 0.00%
MQPBO 1291.00 0.00 0 † 0.00% 0.00%
[29]-CPLEX 1776.23 1598.07 2 † 0.00% 0.00%
[29]-TRWS 44.71 25.52 2 227+216 0.00% 0.00%

pdb1b25 Our-CPLEX 1599.67 55.01 28 † 76.76% 84.05%
Our-TRWS 5.18 2.92 18 530+150 83.00% 87.84%
MQPBO-10 27.00 0.00 0 † 0.00% 2.53%
MQPBO 2.00 0.00 0 † 0.00% 1.99%
[29]-CPLEX 324.64 72.11 14 † 18.84% 22.32%
[29]-TRWS 119.71 27.62 14 443+1238 18.92% 22.34%

pdb1d2e Our-CPLEX 154.76 25.44 5 † 97.30% 97.98%
Our-TRWS 1.67 1.13 7 420+75 96.97% 98.25%
MQPBO-10 12.00 0.00 0 † 0.00% 4.61%
MQPBO 0.00 0.00 0 † 0.00% 2.74%
[29]-CPLEX 483.55 34.59 25 † 55.53% 58.94%
[29]-TRWS 83.82 6.16 47 190+2775 55.69% 58.98%

pdb1fmj Our-CPLEX 99.33 12.35 7 † 92.58% 94.90%
Our-TRWS 1.05 0.60 14 540+135 83.18% 87.09%
MQPBO-10 6.00 0.00 0 † 0.00% 2.92%
MQPBO 0.00 0.00 0 † 0.00% 2.04%
[29]-CPLEX 77.30 16.97 11 † 15.94% 18.83%
[29]-TRWS 16.67 3.10 11 186+677 16.18% 18.91%

pdb1i24 Our-TRWS 0.06 0.02 2 60+5 99.73% 99.94%
MQPBO-10 3.00 0.00 0 † 0.00% 2.85%
MQPBO 0.00 0.00 0 † 0.00% 3.43%
[29]-CPLEX 5.66 5.66 0 † 100.00% 100.00%
[29]-TRWS 0.82 0.82 0 115+0 100.00% 100.00%

pdb1iqc Our-CPLEX 111.58 18.51 5 † 99.10% 99.63%
Our-TRWS 0.74 0.40 8 200+35 96.39% 97.10%
MQPBO-10 8.00 0.00 0 † 0.00% 6.06%
MQPBO 0.00 0.00 0 † 0.00% 4.90%
[29]-CPLEX 229.09 24.36 20 † 35.32% 41.15%
[29]-TRWS 36.03 4.06 28 169+2058 40.50% 45.56%

pdb1jmx Our-CPLEX 142.20 15.52 9 † 97.24% 98.69%
Our-TRWS 0.67 0.29 10 200+75 93.46% 95.83%
MQPBO-10 8.00 0.00 0 † 0.00% 3.76%
MQPBO 0.00 0.00 0 † 0.00% 3.73%
[29]-CPLEX 121.71 16.21 19 † 35.86% 39.98%
[29]-TRWS 20.02 3.59 24 188+1098 35.26% 39.12%

pdb1kgn Our-CPLEX 196.03 17.97 10 † 89.22% 93.23%
Our-TRWS 1.37 0.76 9 400+170 88.92% 93.16%
MQPBO-10 9.00 0.00 0 † 0.00% 3.24%
MQPBO 0.00 0.00 0 † 0.00% 2.27%
[29]-CPLEX 161.57 24.37 12 † 39.42% 39.67%
[29]-TRWS 53.49 6.45 17 268+1824 13.20% 13.36%

pdb1kwh Our-CPLEX 105.77 9.63 10 † 79.09% 85.64%
Our-TRWS 0.46 0.27 8 440+50 76.53% 83.26%
MQPBO-10 5.00 0.00 0 † 0.00% 2.99%
MQPBO 0.00 0.00 0 † 0.00% 3.43%
[29]-CPLEX 51.33 12.89 9 † 25.54% 31.15%
[29]-TRWS 9.15 2.43 8 208+401 25.43% 31.13%

pdb1m3y Our-CPLEX 73.60 18.58 3 † 98.54% 99.47%
Our-TRWS 0.79 0.65 3 340+10 97.53% 99.08%
MQPBO-10 8.00 0.00 0 † 0.00% 6.38%
MQPBO 0.00 0.00 0 † 0.00% 5.72%
[29]-CPLEX 120.60 25.18 14 † 31.05% 27.97%
[29]-TRWS 28.19 4.82 12 200+1135 31.08% 27.98%

pdb1qks Our-CPLEX 138.12 15.19 8 † 98.30% 98.93%
Our-TRWS 0.30 0.12 4 80+20 98.57% 99.38%
MQPBO-10 9.00 0.00 0 † 0.00% 5.09%
MQPBO 0.00 0.00 0 † 0.00% 3.68%
[29]-CPLEX 96.77 15.82 12 † 28.18% 26.37%

20

Instance Algorithm
Time
needed
overall (s)

Time for
initial
solution (s)

#iterations
Algorithm 1,2

#iterations
TRWS

Logarithmic
percentage
partial
optimality

Percentage
excluded
labels

[29]-TRWS 27.99 3.24 15 161+1154 30.63% 28.46%
color-seg

colseg-cow3 Our-TRWS 66.30 48.10 6 1000+140 99.96% 99.97%
Kovtun 1.00 0.00 0 † 0.00% 99.89%
MQPBO-10 206.00 0.00 0 † 0.00% 43.55%
MQPBO 24.00 0.00 0 † 0.00% 32.06%
[29]-TRWS 7530.72 690.55 14 826+6056 99.95% 99.95%

colseg-cow4 Our-TRWS 91.26 48.31 13 1000+310 99.92% 99.93%
Kovtun 2.00 0.00 0 † 0.00% 99.90%
MQPBO-10 46.00 0.00 0 † 0.00% 0.56%
MQPBO 40.00 0.00 0 † 0.00% 0.37%
[29]-TRWS 7395.03 742.58 10 848+6349 99.80% 99.80%

colseg-garden4 Our-TRWS 0.49 0.15 5 70+20 99.91% 99.94%
Kovtun 0.00 0.00 0 † 0.00% 94.96%
MQPBO-10 14.00 0.00 0 † 0.00% 4.27%
MQPBO 1.00 0.00 0 † 0.00% 0.21%
[29]-TRWS 33.68 6.75 5 167+488 99.89% 99.89%

color-seg-n4
clownfish-small Our-TRWS 1.72 0.68 3 80+10 >99.99% >99.99%

Kovtun 1.00 0.00 0 † 0.00% 74.11%
MQPBO-10 536.00 0.00 0 † 0.00% 15.83%
MQPBO 41.00 0.00 0 † 0.00% 4.67%
[29]-TRWS 151.98 30.01 6 223+610 99.97% 99.97%

crops-small Our-TRWS 1.87 1.02 2 120+5 100.00% 100.00%
Kovtun 1.00 0.00 0 † 0.00% 64.70%
MQPBO-10 577.00 0.00 0 † 0.00% 14.32%
MQPBO 33.00 0.00 0 † 0.00% 0.71%
[29]-TRWS 677.08 34.88 40 260+3578 99.00% 99.00%

fourcolors Our-TRWS 0.57 0.08 2 20+5 99.96% 99.97%
Kovtun 0.00 0.00 0 † 0.00% 69.52%
MQPBO-10 37.00 0.00 0 † 0.00% 0.00%
MQPBO 3.00 0.00 0 † 0.00% 0.00%
[29]-TRWS 31.28 2.60 8 34+238 99.92% 99.92%

lake-small Our-TRWS 1.28 0.43 2 50+5 100.00% 100.00%
Kovtun 1.00 0.00 0 † 0.00% 74.87%
MQPBO-10 607.00 0.00 0 † 0.00% 15.31%
MQPBO 31.00 0.00 0 † 0.00% 6.65%
[29]-TRWS 13.75 13.75 0 95+-95 100.00% 100.00%

palm-small Our-TRWS 2.48 1.37 3 160+10 >99.99% >99.99%
Kovtun 1.00 0.00 0 † 0.00% 68.65%
MQPBO-10 510.00 0.00 0 † 0.00% 0.48%
MQPBO 19.00 0.00 0 † 0.00% 0.00%
[29]-TRWS 846.27 39.97 19 291+4582 98.20% 98.20%

penguin-small Our-TRWS 1.21 0.54 2 90+5 100.00% 100.00%
Kovtun 0.00 0.00 0 † 0.00% 91.99%
MQPBO-10 193.00 0.00 0 † 0.00% 1.42%
MQPBO 13.00 0.00 0 † 0.00% 1.03%
[29]-TRWS 15.67 15.67 0 152+-152 100.00% 100.00%

pfau-small Our-TRWS 18.77 7.22 48 950+470 89.43% 93.41%
Kovtun 1.00 0.00 0 † 0.00% 5.59%
MQPBO-10 591.00 0.00 0 † 0.00% 0.70%
MQPBO 16.00 0.00 0 † 0.00% 0.00%
[29]-TRWS 799.08 79.34 44 654+10857 10.43% 10.43%

snail Our-TRWS 0.79 0.23 2 50+5 99.99% 99.99%
Kovtun 0.00 0.00 0 † 0.00% 97.77%
MQPBO-10 7.00 0.00 0 † 0.00% 77.91%
MQPBO 1.00 0.00 0 † 0.00% 58.35%
[29]-TRWS 46.20 6.47 5 83+332 99.98% 99.98%

strawberry-glass-2-small Our-TRWS 1.35 0.60 2 80+5 100.00% 100.00%
Kovtun 1.00 0.00 0 † 0.00% 54.99%
MQPBO-10 528.00 0.00 0 † 0.00% 2.78%
MQPBO 39.00 0.00 0 † 0.00% 0.00%

21

Instance Algorithm
Time
needed
overall (s)

Time for
initial
solution (s)

#iterations
Algorithm 1,2

#iterations
TRWS

Logarithmic
percentage
partial
optimality

Percentage
excluded
labels

[29]-TRWS 311.54 31.00 11 259+1721 99.31% 99.31%
mrf-photomontage

family-gm Our-TRWS 286.40 93.08 77 1000+1265 4.75% 4.80%
MQPBO-10 1087.00 0.00 0 † 0.00% 4.41%
MQPBO 90.00 0.00 0 † 0.00% 4.34%
[29]-TRWS 12726.45 1291.11 50 1015+22483 4.41% 4.41%

pano-gm Our-TRWS 320.00 112.17 59 1000+1105 67.73% 79.17%
MQPBO-10 646.00 0.00 0 † 0.00% 28.06%
MQPBO 97.00 0.00 0 † 0.00% 40.37%
[29]-TRWS 14360.45 1871.14 33 911+11193 27.55% 27.55%

mrf-stereo
ted-gm Our-TRWS 231.97 72.67 119 1000+715 67.27% 72.05%

[29]-TRWS 3837.51 436.30 28 689+10383 38.13% 38.13%
tsu-gm Our-TRWS 19.75 14.67 10 670+75 99.91% 99.94%

[29]-TRWS 9277.99 267.55 54 377+17421 0.39% 0.39%
ven-gm Our-TRWS 108.73 94.44 9 1000+40 0.01% 0.02%

[29]-TRWS 14737.47 1451.83 55 993+16592 0.00% 0.00%

Table 7: Detailed experimental evaluation for Algorithm 1 utilising CPLEX [8] as a sub-
solver, denoted as Our-CPLEX, Algorithm 2 utilising TRW-S [12] as a subsolver, denoted
as Our-TRWS, their counterparts from [29] denoted by [29]-CPLEX and [29]-TRWS
and MQPBO [11] run for one iteration with predefined label order, denoted by MQPBO, and
run 10 iterations in 10 random label orders, denoted by MQPBO-10.

22

