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Abstract

Latent subcategory models (LSMs) offer significant im-

provements over training linear support vector machines

(SVMs). Training LSMs is a challenging task due to the

potentially large number of local optima in the objective

function and the increased model complexity which requires

large training set sizes. Often, larger datasets are avail-

able as a collection of heterogeneous datasets. However,

previous work has highlighted the possible danger of sim-

ply training a model from the combined datasets, due to

the presence of bias. In this paper, we present a model

which jointly learns an LSM for each dataset as well as a

compound LSM. The method provides a means to borrow

statistical strength from the datasets while reducing their

inherent bias. In experiments we demonstrate that the com-

pound LSM, when tested on PASCAL, LabelMe, Caltech101

and SUN09 in a leave-one-dataset-out fashion, achieves an

average improvement of over 6.5% over a previous SVM-

based undoing bias approach and an average improvement

of over 8.5% over a standard LSM trained on the concate-

nation of the datasets.

1. Introduction

The problem of object recognition has received much at-

tention in Computer Vision. One of the most successful ob-

ject recognition systems is based on Deformable Part-based

Models (DPM), see [5, 9, 10, 30] and references therein. A

special case of Latent SVMs are latent subcategory models

(LSM) [5, 11, 30]. This approach has proved useful when

the object we wish to classify/detect consists of multiple

components, each of which captures different characteris-

tics of the object class. For example, components may be

associated with different viewpoints, light conditions, etc.

Under these circumstances, training a single global classi-

fier on the full dataset may result in a low complexity model

which underfits the data. To address this, latent subcategory

models train multiple subclassifiers simultaneously, each of

which is associated with a specific linear classifier capturing

specific characteristics of the object class.

Training these models is a challenging task due to the

presence of many local optima in the objective function and

the increased model complexity which requires large train-

ing set sizes. An obvious way to have larger training set

sizes is to merge datasets from different sources. However,

it has been observed by [21, 26] that training from com-

bined datasets needs to be done with care. Although we

would expect training a classifier from all available data to

be beneficial, it may in fact result in decreased performance

because standard machine learning methods do not take into

account the bias inherent in each dataset. To address this

problem several approaches have been considered, some of

which we review in the next section.

The principal contribution of this paper is to extend

LSMs to deal with multiple biased datasets. We address this

problem from a multitask learning perspective [7], combin-

ing ideas from Computer Vision which have been put for-

ward in [15]. This methodology leverages the availability of

multiple biased datasets to tackle a common classification

task (e.g. car classification) in a principled way. Specifi-

cally, we simultaneously learn a set of biased LSMs as well

as a compound LSM (visual world model) which is con-

strained to perform well on a concatenation of all datasets.

Although we focus on LSMs, the framework we present in

this paper extends in a natural manner to training multiple

latent part-based models. We describe a training procedure

for our method and provide experimental analysis, which

indicates that the method offers a significant improvement

over both simply training a latent subcategory model from

the concatenation of all datasets as well as the undoing bias
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Figure 1. Parameter sharing across datasets can help to train a bet-

ter subcategory model of the visual world. Here we have two

datasets (red and blue) of a class (e.g. “dog”), each of which is di-

vided into three subcategories (e.g. viewpoints). The red and blue

classifiers are trained on their respective datasets. Our method, in

black, both learns the subcategories and undoes the bias inherent

in each dataset.

method of [15]. Hence, our approach achieves the best of

both worlds, see Figure 1 for an illustration of the method.

As we noted earlier, training DPMs requires solving a

difficult nonconvex optimization problem, which is prone to

many local minima. Therefore, a good initialization heuris-

tic is important in order to reach a good solution. As a sec-

ond contribution of this paper, we observe that if the positive

examples admit a good K-means clustering, and the regu-

larization parameter associated used in the LSM is small

relative to the cluster separation, then a good suboptimal

solution for the LSM can be obtained by simply clustering

the positive class and then training independent SVMs to

separate each cluster from the negative examples. This re-

sult supports a commonly used heuristic for training subcat-

egory models [5]. Furthermore, we describe how clustering

initialization is performed in the multitask setting.

The paper is organized in the following manner. In Sec-

tion 2 we review previous related work. Section 3 gives a

short account of LSMs and Section 4 provides a justification

for K-means based initialization schemes. Next, Section 5

presents our approach for training multiple LSMs from a

collection of biased datasets. Section 6 reports our exper-

imental results with this new method. Finally, Section 7

summarizes our findings and outlines future directions of

research.

2. Related Work

Latent subcategory models (sometimes also called mix-

ture of template models) [5, 11, 30] are a special case of

DPMs [9, 10] and structured output learning [27]. Closely

related methods have also been considered in machine

learning under the name of multiprototype models or mul-

tiprototype support vector machines [1], as well as in op-

timization [17]. An important issue in training these mod-

els is the initialization of the subclassifier weight vectors.

This issue has been addressed in [5, 11], where clustering

algorithms such as K-means are used to cluster the posi-

tive class and subsequently independent SVMs are trained

to initialize the weight vectors of the subclassifiers. In Sec-

tion 4, we observe that K-means clustering can be justified

as a good initialization heuristic when the positive class ad-

mits a set of compact clusters. Furthermore we discuss how

this initialization can be adapted to our undoing bias setting.

We note that other initialization heuristics are discussed

in [10]. Furthermore other interesting latent subcategory

formulations are presented in [12] and [29]. While we do

not consider their framework here, our method could also

be extended to those settings, leading to interesting future

research directions.

Most related to our paper is the work by Khosla et al.

[15], which considers jointly training multiple linear max-

margin classifiers from corresponding biased datasets. The

classifiers pertain to the same classification (or detection)

task (e.g. “car classification”) but each is trained to per-

form well on a specific “biased” dataset. Their method is

similar to the regularized multitask learning framework of

Evgeniou and Pontil [7] with the addition that the common

weight vector (“visual world” classifier) is constrained to fit

the union of all the training datasets well. A key novelty of

our approach is that we enhance these methods by allowing

the common vector and bias vectors to be LSMs. We show

experimentally that our method improves significantly over

both [15] and a standard LSM trained on the concatenation

of all datasets.

At last, we note that our model is different from the su-

pervised domain adaptation methodology in [23, 16], which

focuses on learning transformations between a source and a

target domain. A key difference compared to these methods

is that they require labels in the target domain, whereas our

setting can be tested on unseen datasets, see also [15] for a

discussion. Other related works include [13, 19, 20, 24].

3. Background on Latent Subcategory Models

In this section, we review latent subcategory models

(LSMs). We let K be the number of linear subclassifiers and

let (w1, b1), . . . , (wK , bK) be the corresponding parame-

ters. A point x belongs to the subclass k if 〈wk,x〉+bk > 0,

where 〈·, ·〉 denotes the standard scalar product between two

vectors. For simplicity, throughout the paper we drop the

threshold bk since it can be incorporated in the weight vec-

tor using the input representation (x, 1). A point x is clas-

sified as positive provided at least one subclassifier gives a

positive output1, that is, maxk 〈wk,x〉 > 0. The geometric

1The model does not exclude that a positive point belongs to more than

one subclass. For example, this would be the case if the subclassifiers are



interpretation of this classification rule is that the negative

class is the intersection of K half-spaces. Alternatively, the

positive class is the union of K half-spaces.

A standard way to learn the parameters is to minimize

the objective function [5, 10, 30]

EK,λ(w) =
m
∑

i=1

L(yi max
k

〈wk,xi〉) + λΩ(w) (1)

where (xi, yi)
m
i=1 is a training sequence, L is the loss func-

tion and, with some abuse of notation, w denotes the con-

catenation of all the weight vectors. In this paper, we restrict

our attention to the hinge loss function, which is defined as

L(z) = max(0, 1 − z). However, our observations extend

to any convex loss function which is monotonic nonincreas-

ing, such as the logistic loss.

We denote by P and N the index sets for the positive and

negative examples, respectively, and decompose the error

term as
∑

i∈P

L(max
k

〈wk,xi〉) +
∑

i∈N

L(−max
k

〈wk,xi〉). (2)

Unless K = 1 or K = |P |, problem (1) is typically non-

convex2 because the loss terms on the positive examples

are nonconvex. To see this, note that L(maxk 〈wk,x〉) =
mink L(〈wk,x〉), which is neither convex nor concave3.

On the other hand the negative terms are convex since

L(−maxk 〈wk,x〉) = maxk L(−〈wk,x〉), and the max-

imum of convex functions remains convex.

The most popular instance of (1) is based on the regular-

izer Ω(w) =
∑

k ‖wk‖
2 [5, 11, 30] and is a special case of

standard DPMs [9]. Note that the case K = 1 corresponds

essentially to a standard SVM, whereas the case K = |P |
reduces to training |P | linear SVMs, each of which sepa-

rates one positive point from the negatives. The latter case

is also known as exemplar SVMs [18].

It has been noted that standard DPMs suffer from the

“evaporating effect”, see e.g. [10] for a discussion. This

means that some of the subclassifiers are redundant, be-

cause they never achieve the maximum output among all

subclassifiers. To overcome this problem, the regularizer

has been modified to [10] Ω(w) = maxk ‖wk‖
2. This

regularizer encourages weight vectors which have the same

size at the optimum (that is, the same margin is sought for

each component), thereby mitigating the evaporating effect.

The corresponding optimization problem is slightly more

involved since the above regularizer is not differentiable.

However, similar techniques to those described below can

be applied to solve the problem.

associated to different nearby viewpoints.
2If λ is large enough the objective function in (1) is convex, but this

choice yields a low complexity model which may perform poorly.
3The function L(〈wk,x〉) is convex in wk but the minimum of convex

functions is neither convex or concave in general, see e.g. [3].

A common training procedure to solve (1) is based on

alternating minimization. We fix some starting value for

wk and compute the subclasses Pk = {i ∈ P : k =
argmaxℓ〈wℓ,xi〉}. We then update the weights wk by min-

imizing the convex objective function

FK,λ(w) =

K
∑

k=1

∑

i∈Pk

L(〈wk,x〉)

+
∑

i∈N

L(−max
k

〈wk,xi〉) + λΩ(w1, . . . ,wK). (3)

This process is then iterated a number of times until some

convergence criterion is satisfied. The objective function

decreases at each step and in the limit the process converges

to a local optimum.

A variation to (1) is to replace the error term associated

with the negative examples by
∑

k

∑

i∈N

L(−〈wk,xi〉) (4)

see for example [11, 29]. This results in a simpler train-

ing procedure, in that the updating step reduces to solv-

ing K independent SVMs, each of which separates one

of the clusters from all the negatives. Each step can then

be solved with standard SVM toolboxes. Often in prac-

tice problem (1) is solved by stochastic subgradient meth-

ods, which avoid computations that require all the training

data at once and are especially convenient for distributed

optimization. Since the objective function is nonconvex,

stochastic gradient descent (SGD) is applied to a convex

upper bound to the objective, which uses a DC decompo-

sition (difference of convex functions, see e.g. [2, 14] and

references therein): the objective function is first decom-

posed into a sum of a convex and a concave function and

then the concave term is linearly approximated around the

current solution. This way we obtain an upper bound to the

objective which we then seek to mininimize in the next step.

We refer to [10] for more information.

Finally we note that LSMs are a special case of DPMs

without parts. Specifically, a DPM classifies an image x

into one of two classes according to the sign of the func-

tion maxk,h w
⊤

kφk(x, h). Here k ∈ {1, . . . ,K} is the la-

tent component and h is an additional latent variable which

specifies the position and scale of prescribed parts in the ob-

ject, represented by the feature vector φk(x, h). LSMs do

not consider parts and hence they choose φk(x, h) = x and

discard the maximum over h. Our methodology, presented

below, extends to DPMs in a natural manner, however for

simplicity in this paper we focus on LSMs.

4. Effect of Clustering Initialization

As we noted above, the objective function of an LSM

(1) is nonconvex. In this section, we argue that if the posi-



tive points admit a good K-means clustering, then the min-

imizer of the function (3) provides a good suboptimal so-

lution to the problem of minimizing (1). Our observations

justify a standard initialization heuristic which was advo-

cated in [5, 28].

Specifically, we assume that we have found a good K-

means clustering of the positive data, meaning that the av-

erage distortion error

∑

i∈P

min
k

‖µk − xi‖
2
2 (5)

is small relative to the total variance of the data. In the above

formula µ1, . . . , µK denote the K means. We also let ki be

cluster index of point xi, that is ki = argmink‖xi − µk‖,

we let δi = xi − µki
and ǫ =

∑

i∈P ‖δi‖. Then we can

show that

min
w

FK,λ′(w) ≤ min
w

EK,λ(w) ≤ min
w

FK,λ(w) (6)

where λ′ = λ−2ǫ. In other words, if ǫ is much smaller than

λ then the gap between the upper and lower bounds is also

small. In this case, the initialization induced by K-means

clustering provides a good approximation to the solution of

problem (1).

The right inequality in (6) holds since the objective func-

tion in problem (3) specifies the assignment of each positive

point to a subclassifier and hence this objective is greater or

equal to that in problem (1). The proof of the left inequality

uses the fact that the hinge loss function is Lipschitz with

constant 1, namely |L(ξ) − L(ξ′)| ≤ |ξ − ξ′|. In particu-

lar this allows us to give a good approximation of the loss

mink(1−〈wk,xi〉) in terms of the loss of the corresponding

mean, that is, mink(1 − 〈wk, µki
〉). A detailed derivation

is presented in the supplementary material.

The bound (6) has a number of implications. First, as

K increases, the gap between the upper and lower bound

shrinks, hence the quality of the suboptimal solution im-

proves. As K decreases down to K = 2 the initialization

induced by K-means provides a more coarse approxima-

tion of problem (1), see also [30] for related considerations.

Second, the bound suggests that a better initialization can be

obtained by replacing K-means by K-medians, because the

latter algorithm directly optimizes the quantity ǫ appearing

in the bound.

We notice that a similar reasoning to the one presented

in this section applies when the negative error term in (1) is

replaced by (4). In this case, clustering the positive points,

and subsequently training K independent SVMs which sep-

arate each cluster from the set of all negative points yields a

good suboptimal solution of the corresponding nonconvex

problem, provided the distortion parameter ǫ is smaller than

the regularization parameter λ.

5. Learning from Multiple Biased Datasets

In this section, we extend LSMs described in Section 2 to

a multitask learning setting [7]. Following [15] we assume

that we have several datasets pertaining to the same object

classification or detection task. Each dataset is collected un-

der specific conditions and so it provides a biased view of

the object class (and possibly the negative class as well).

For example, if the task is people classification one dataset

may be obtained by labelling indoor images as people / not

people, whereas another dataset may be compiled outdoors,

and other datasets may be generated by crawling images

from the internet, etc. Although the classification task is the

same across all datasets, the input data distribution changes

significantly from one dataset to another. Therefore a classi-

fier which performs well on one dataset may perform poorly

on another dataset. Indeed, [15] empirically observed that

training on the concatenation of all the datasets and testing

on a particular dataset is outperformed by simply training

and testing on the same dataset, despite the smaller training

set size.

In the sequel, we let T be the number of datasets and

for t ∈ {1, . . . , T}, we let mt be the sample size in train-

ing dataset t and let Dt = {(xt1, yt1), . . . , (xtmt
, ytmt

)} ⊂
R

d × {−1, 1} be the corresponding data examples. We as-

sume that the images in all the datasets have the same repre-

sentation so the weight vectors can be compared by simply

looking at their pairwise Euclidean distance.

5.1. Undoing Bias SVM

In [15], the authors proposed a modified version of the

multitask learning framework in [7] in which the error term

includes an additional term measuring the performance of a

compound model (visual world classifier) on the concatena-

tion of all the datasets. This term is especially useful when

testing the compound model on an “unseen” dataset, a prob-

lem we return upon in the sequel. Specifically, in [15] the

authors learn a set of linear max-margin classifiers, repre-

sented by weight vectors wt ∈ R
d for each dataset, under

the assumption that the weights are related by the equation

wt = w0 + vt, where w0 is a compound weight vector

(which is denoted as the visual world weight in [15]) and the

vector vt captures the bias of the t-th dataset. The weights

w0 and v1, . . . ,vT are then learned by minimizing a reg-

ularized objective function which leverages the error of the

biased vectors on the corresponding dataset, the error of the

visual world vector on the concatenation of the datasets and

a regularization term which encourages small norms of all

the weight vectors.

5.2. Undoing Bias LSM

We now extend the above framework to the latent sub-

category setting. We let w1
t , . . . ,w

K
t ∈ R

d be the weight



Object Bird Car Person

K-means 33.8 ±0.4 65.8± 0.4 67.5± 0.2
Random 29.4 ±0.6 61.3± 0.5 64.7± 0.5

Table 1. AP (over 30 runs) of our method with and without K-

means initialization for three object classification tasks.

vectors for the t-th dataset, for t = 1, . . . , T . For simplic-

ity, we assume that the number of subclassifiers is the same

across the datasets, but the general case can be handled sim-

ilarly. Following [7, 15], we assume that the weight vectors

representative of the k-th subcategory across the different

datasets are related by the equation

w
k
t = w

k
0 + v

k
t (7)

for k = 1, . . . ,K and t = 1, . . . , T . The weights w
k
0 are

shared across the datasets and the weights v
k
t capture the

bias of the k-th weight vector in the t-th dataset. We learn

all these weights by minimizing the objective function

C1

T
∑

t=1

mt
∑

i=1

L(yti max
k

〈wk
0 + v

k
t ,xti〉) (8)

+ C2

T
∑

t=1

mt
∑

i=1

L(yti max
k

〈wk
0 ,xti〉) (9)

+
K
∑

k=1

(

‖wk
0‖

2 + ρ

T
∑

t=1

‖vk
t ‖

2
)

. (10)

In addition to the number of subclassifiers K, the method

depends on three other nonnegative hyperparameters,

namely C1, C2 and ρ, which can be tuned on a validation

set. Note that the method reduces to that in [15] if K = 1
and to the one in [7] if K = 1 and C2 = 0. Furthermore our

method reduces to training a single LSM on the concatena-

tion of all datasets if C1 = 0.

The parameter ρ plays an especially important role: it

controls the extent to which the datasets are similar, or in

other words the degree of bias of the datasets. Taking the

limit ρ → ∞ (or in practice setting ρ ≫ 1) eliminates the

bias vectors v
k
t , so we simply learn a single LSM on the

concatenation of all the datasets, ignoring any possible bias

present in the individual datasets. Conversely, setting ρ = 0
we learn the bias vectors and visual world model indepen-

dently. The expectation is that a good model lies at an inter-

mediate value of the parameter ρ, which encourages some

sharing between the datasets.

5.3. Implementation

A common method used to optimize latent SVMs as well

as LSMs is stochastic gradient descent (SGD), see for ex-

ample [25]. At each iteration we randomly select a dataset t

and a point xti from that dataset and update the bias weight

vector vk
t and w

k
0 by subgradient descent. We either train

the SGD method with a fixed number of epochs or set a

convergence criterion that tests the maximum change of the

weight vectors. Furthermore, we use the adapting cache

trick: if a point is correctly classified by at least two base

and bias pairs (wk
0 ,w

k
t ) then we give it a long cooldown.

This means that the next 5 or 10 times the point is selected,

we instead skip it. A similar process is used in [9, 15] and

we verified empirically that this results in improved training

times, without any significant loss in accuracy.

5.4. Initialization

It is worth discussing how the weight vectors are initial-

ized. First, we group all the positive points across the differ-

ent datasets and run K-means clustering. Let Pk be the set

of points in cluster k, let Pt,k be the subset of such points

from dataset t and let Nt be the set of negative examples in

the dataset t. For each subcategory k ∈ {1, . . . ,K} we ini-

tialize the corresponding weight vectors wk
0 and v

k
1 , . . . ,v

k
T

as the solution obtained by running the undoing datasets’

bias method from [15], with training sets Dt = {(xti, yti) :
i ∈ Pt,k ∪Nt}. We then iterate the process using SGD for

a number of epochs (we use 100 in our experiments below).

Our observations in Section 4 extend in a natural way

to the undoing bias LSMs setting. The general idea is the

same: if the data admit a good K-means clustering then

the initialization induced by K-means provides a good sub-

optimal solution of the problem. We have experimentally

verified that the improvement offered by this initialization

over a random choice is large. Table 1 reports the perfor-

mance of the our method after 100 epochs of SGD starting

with and without the K-means initialization. Average per-

formance and standard deviation are reported over 30 trials.

As it can be seen K-means initialization offers a substantial

improvement4.

6. Experiments

In this section, we present an empirical study of the pro-

posed method. The goal of the experiments is twofold. On

the one hand, we investigate the advantage offered by our

method over standard LSMs trained on the union (concate-

nation) of all the datasets. Intuitively, we expect our method

to learn a better set of visual world subclassifiers since it fil-

ters out dataset bias. On the other hand, we compare our

method to the “undoing bias” method in [15], where each

dataset is modelled as a linear SVM classifier (so no sub-

classifiers are learned in this case). As we already noted,

both methods are special cases of ours for a certain choice

of the hyperparameters.

4Preliminary experiments further indicate that K-medians improves by

0.4% over K-means, in agreement with our theoretical observations in

Section 4, however but a detailed analysis is deferred to future work.



Test wPASCAL wLabelMe wCaltech101 wSUN09 wvw Aggregate Independent

PASCAL 66.8 (64.8) 55.6 (50.5) 56.3 (54.2) 65.9 (51.2) 66.5 (57.0) 63.7 (57.4) 67.1 (65.9)
LabelMe 73.1 (68.8) 75.2 (72.9) 75.0 (71.2) 71.6 (73.3) 75.1 (72.4) 72.9 (72.9) 72.4 (71.7)

Caltech101 96.5 (94.8) 97.5 (94.6) 98.2 (99.7) 97.6 (95.6) 98.0 (98.9) 98.9 (97.0) 98.8 (99.4)
SUN09 57.2 (40.1) 57.6 (46.5) 57.7 (50.2) 58.0 (59.6) 57.8 (54.1) 53.9 (54.0) 58.9 (55.3)

Average 73.4 (67.1) 71.2 (66.2) 71.8 (68.8) 73.3 (69.9) 74.5 (70.6) 72.4 (70.3) 74.3 (73.0)

Table 2. Average precision (AP) of “car classification” on seen datasets for our method (K = 2) and, within brackets, AP for the undoing

bias method in [15].

In the experiments, we focus on object classification

tasks as this allows us to directly compare with the results

in [15] using the publicly available features provided by

the authors5. However, the method can also be employed

for detection experiments. Following the setting in [15] we

employ four datasets: Caltech101 [8], LabelMe [22], PAS-

CAL2007 [6] and SUN09 [4]. We use the bag-of-words

representation provided by [15]. It is obtained by extract-

ing SIFT descriptors at multiple patches, followed by local

linear coding and a 3-level spatial pyramid with linear ker-

nel. Performance of the methods is evaluated by average

precision (AP).

We use the same training and test splits provided in [15].

Furthermore, to tune the model parameter C1, C2 and ρ, we

use 75% of training data of each dataset for actual training

and the remaining 25% for validation. We use the following

parameter range for validation: ρ = 10r, for r ranging from

−9 to 4 with a step of 1 and C1, C2 = 10r, for r ranging

from −9 to 4 with a step of 0.5.

In our experiments, the number of subclassifiers K is

regarded as a free hyperparameter chosen from the test set

and we try values from 1 to 10. Although related work by

[5] recommends using values of K up to 50, they consider

detection tasks. However, as we show below, smaller values

of K provide the best results for classification tasks, since

the features employed in this case are extracted from larger

images which are often dominated by the background rather

than the object itself. This makes it more difficult to learn

finer subcategories.

We test the methods in two different scenarios, following

the “seen dataset” and “unseen dataset” settings outlined

in [15]. In the first scenario we test on the same datasets

used for training. The aim of this experiment is to demon-

strate that the visual world model works better than a single

model trained on the concatenation of the datasets, and it is

competitive with a specific model trained only on the same

domain. Furthermore, we show the advantage over setting

K = 1. In the second scenario, we test the model on a new

dataset, which does not contribute any training points. Here

our aim is to show that the visual world model improves

over just training a model on the concatenation of the train-

5See the link http://undoingbias.csail.mit.edu/.

ing datasets as well as the visual world model from [15].

We discuss the results in turn.

6.1. Testing on Seen Datasets

In the first set of experiments, we test our method on

“car classification” datasets. Results are reported in Ta-

ble 2. The main numbers indicate the performance of our

method, while within brackets we report performance for

K = 1, which corresponds to the undoing bias method in

[15]. In columns 2-5 we test the w
k
t on all datasets, for

t ∈ {PASCAL, LabelME, Calthech101, SUN09}. In

column 6 we test the visual world vectors w
k
0 (denoted by

wvw in the tables). As noted above, in this set of exper-

iments we test the method on the same datasets used dur-

ing training (by this we mean that the training and test sets

are selected within the same domain). For this reason and

since the datasets are fairly large, we do not expect much

improvement over training on each dataset independently

(last column in the table). However, the key point of the

table is that training a single LSM model on the union of

all datasets (we call this the aggregate model in the tables)

yields a classifier which neither performs well on any spe-

cific dataset nor does it perform well on average. In particu-

lar, the performance on the “visual world” classifier is much

better than that of the aggregated model. This finding, due

to dataset bias, is in line with results in [15], as are our re-

sults for K = 1. Our results indicate that, on average, using

a LSM as the core classifier provides a significant advan-

tage over using single max-margin linear classifier. The first

case corresponds to a variable number of subclassifiers, the

second case corresponds to K = 1. This is particularly evi-

dent by comparing the performance of the two visual world

classifiers in the two cases.

6.2. Testing on Unseen Datasets

In the next set of experiments, we train our method on

three out of four datasets, retain the visual world classifier

and test it on the dataset left out during training6. Results

are reported in Figure 2, where we show the relative im-

provement over training a single LSM on all datasets (ag-

6That is, we predict as sign(maxk 〈wk

0
,x〉), where w

k

0
are the com-

pound subcategory models in equation (7).
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Figure 2. Relative improvement of undoing dataset bias LSM vs. the baseline LSM trained on all datasets at once (aggregated LSM). On

all datasets at once (P: PASCAL, L: LabelMe, C: Caltech101, S: SUN09, M: mean).
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Figure 3. Relative improvement of undoing dataset bias LSM vs. undoing bias SVM [15]. (Legend as in Figure 2)

gregated LSM), and Figure 3, where we show the relative

improvement of our method over the method in [15]. Over-

all our method gives an average improvement of more than

8.5% over the aggregated LSMs and an average improve-

ment of more than 6.5% over [15]. On some datasets and

objects the improvement is much more pronounced than

others, although overall the method improves in all cases

(with the exception of “chair classification” on the PASCAL

dataset, where our method is slightly worse than the two

baselines). Although our method tends to improve more

over aggregated LSMs than undoing bias SVMs, it is in-

teresting to note that on the Caltech101 “person” or “dog”

datasets, the trend reverses. Indeed, these object classes

contain only one subcategory (for “person” a centered face

image, for “dogs” only Dalmatian dogs) hence when a sin-

gle subcategory model is trained on the remaining three

datasets a more confused classifier is learned.

To further illustrate the advantage offered by the new

method, we display in Figure 4 the car images which

achieved a top score on each of the four datasets for our

method and the visual world classifier from [15]. In our

case we use K = 2 subclassifiers because this gives the

best performance on this object class. Note that among

the two visual world subclassifiers, w1
0 and w

2
0, the former

tends to capture images containing a few cars of small size

with a large portion of background (in order to verify this

property please zoom in the figure), while the latter con-

centrates on images which depict a single car occupying a

larger portion of the image. This effect is especially evident

on the PASCAL and LabelMe datasets. On Caltech101, the

first subclassifier is empty, which is not surprising as this

dataset contains only images with well centered objects, so

no cars belong to the first discovered subcategory. Finally

the SUN09 dataset has fewer images of large cars and con-

tributes less to the second subcategory. Note, however, that

we still find images of single cars although of smaller size.

The right portion of Figure 4 reports similar scores for the

visual world classifier trained in [15] (K = 1). In this case

we see that images of the two different types are present

among the top scores, which indicates that the model is too

simple and underfits the data.

7. Discussion and Conclusion

We presented a method for learning latent subcategories

in presence of multiple biased datasets. Our approach is

a natural extension of previous work on multitask learning

to the setting of latent subcategory models (LSMs). In ad-

dition to the number of subclassifiers, the model depends

upon two futher hyperparameters, which control the fit of

the visual world LSM to all the datasets and the fit of each

biased LSM to the corresponding dataset. In experiments,

we demonstrated that our method provides significant im-

provement over both standard LSMs and previous undoing

bias methods based on SVMs. Both methods are included

in our framework for a particular parameter choice and our

empirical analysis indicates our model achieves the best of



Figure 4. Left and center, the top scoring images for visual world subclassifiers w1

0 and w
2

0 using our method. Right, the top scoring image

for single category classifier w0 from [15].

both worlds: it mitigates the negative effect of dataset bias

and still reaps the benefits of learning object subcategories.

In future work, it would be valuable to extend ideas pre-

sented here to the setting of DPMs, in which the subclassi-

fiers are part-based models. Furthermore, our observations

on K-means initialization may be extended to other clus-

tering schemes and other LSMs such as those described in

[12] and [29]. Finally, learning LSMs across both biased

datasets and different object classes provides an important

direction of research.
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Supplementary Material

A. Derivation of Bound (6)

The right inequality readily follows by noting that the objective function in problem (3) considers an a-priori assignment

of each positive point to a subclassifier, hence the objective is greater or equal to that in (1).

We now prove the left inequality. We consider a more general setting, in which the loss function L is convex and Lipschitz.

The latter property means that there exists a constant φ such that for every ξ, ξ′ ∈ R, |L(ξ)−L(ξ′)| ≤ φ|ξ−ξ′|. For example

the hinge loss is Lipschitz with constant φ = 1.

Choosing ξ = 〈wk,xi〉, ξ
′ = 〈wk, µki

〉 and letting δi = xi − µki
, we obtain

|L(〈wk, µki
〉)− L(〈wk,xi〉)| ≤ φ|〈wk, δi〉| ≤ φ‖wk‖‖δi‖

where the last step follows by Cauchy-Schwarz inequality. Furthermore, using the property that, for every choice of functions

f1, . . . , fK , it holds |mink fk(x)−mink fk(x
′)| ≤ maxk |fk(x)− fk(x

′)|, we have

|min
k

L(〈wk, µki
〉)−min

k
L(〈wk,xi〉)| ≤ max

k
|L(〈wk, µki

〉)−min
k

L(〈wk,xi〉)| ≤ φmax
k

‖wk‖‖δi‖.

Letting ǫ = φ
∑

i∈P ‖δi‖, we conclude, for every choice of the weight vectors w1, . . . ,wK , that

K
∑

k=1

pkL(〈wk, µk〉)− ǫmax
k

‖wk‖ ≤
∑

i∈P

min
k

L(〈wk,xi〉) ≤
K
∑

k=1

pk min
ℓ

L(〈wℓ, µk〉) + ǫmax
k

‖wk‖ (11)

where P is the set of positive points, Pk = {i ∈ P : ki = k} and pk = |Pk|, that is the number of positive points in cluster k.

Now, we define the surrogate convex function

SK,λ(w) =

K
∑

k=1

pkL(〈wk, µk〉) +
∑

i∈N

L(−max
k

〈wk,xi〉) + λmax
k

‖wk‖, (12)

where w is a shorthand for the concatenation of the vectors w1, . . . ,wK . Using equation (??) we obtain that

SK,λ−ǫ(w) ≤ EK,λ(w) ≤ SK,λ+ǫ(w). (13)

Now using the fact that

L(〈wk, µki
〉) ≥ L(〈wk,xi〉)− ‖wk‖‖δi‖

and recalling equation (3), we conclude that

FK,λ−2ǫ(w) =

K
∑

k=1

∑

i∈Pk

L(〈wk,xi〉) +
∑

i∈N

L(−max
k

〈wk,xi〉) + (λ− 2ǫ)max
k

‖wk‖ ≤ SK,λ−ǫ(w).

The result follows by combining the left inequality in (??) with the above inequality and minimizing over the weight vectors

w1, . . . ,wK .

B. Effect of Initialization in Undoing Bias LSM

As we noted in the Section 5.4, the initialization induced by K-means clustering can be extended in a natural way to the

undoing bias LSM setting. We first run K-means on the aggregate set of positive points from all datasets. We let Pt,k be the

subset of positive points in dataset t which belong to cluster k and let Nt be the set of negative points in the same dataset.

For each subcategory k ∈ {1, . . . ,K}, we initialize the corresponding weight vectors w
k
0 and v

k
1 , . . . ,v

k
T as the solution

obtained by running the undoing bias method in [15], with training sets Dt = {(xti, yti) : i ∈ Pt,k ∪Nt}. Specifically, for

each k, we solve the problem

T
∑

t=1

∑

i∈Pt,k∪Nt

[

C1L(yti〈w0 + vt,xti〉) + C2L(yti〈w0,xti〉)
]

+ ‖w0‖
2 + ρ

T
∑

t=1

‖vt‖
2.



Test bird car chair dog person

random 3.9 (0.1) 17.9 (0.1) 7.3 (0.1) 3.6 (0.3) 21.5 (0.1)

random followed by optimization 29.4 (0.6) 61.3 (0.5) 34.5 (0.1) 27.7 (0.8) 64.7 (0.5)

K-means 18.3 (0.3) 51.2 (0.6) 30.2 (0.2) 24.3 (0.3) 61.2 (0.3)

K-means followed by optimization 33.8 (0.4) 65.8 (0.4) 35.2 (0.2) 31.4 (0.3) 67.5 (0.2)

Table 3. Effect of initialization on AP on different image classification problems. Top to bottom: random initialization, random initialization

and optimization (100 epochs of SGD), K-means initialization, K-means initialization and optimization (100 epochs of SGD).

We then attempt to minimize the objective function formed by equations (8)–(10) with SGD for a number of epochs. The

computation of a subgradient for this objective function is outlined in Algorithm ?? below.

Using arguments similar to those outlined above we can show that this initialization gives a good approximation to the

minimum of the non-convex objective (8)–(10), provided the average distortion error
∑

t

∑

i∈P ‖δti‖ is small, where we let

δti = mink ‖xti − µk‖
7.

Table ?? illustrates the importance of this initialization process, using a fixed parameter setting over 30 runs, in a seen

dataset setting. The first row shows the performance (average precision) of a random choice of w0 and v1, . . . ,vT . The sec-

ond row shows the performance of our method starting from this random initialization. The third row shows the performance

of the K-means induced initilization reviewed above. Finally, the fourth row is our method. As we see, K-means based

initialization on its own already provides a fair solution. In particular, for “chair”, “dog” and “person” there is a moderate

gap between the performance of K-means based initialization and K-means followed by optimization. Furthermore, in all

cases K-means followed by optimization provides a better solution than random initialization followed by optimization.

for k ≤ K do

if k = argmaxj〈w
j
0,xti〉 and k = argmaxj〈w

j
0 + v

j
t ,xti〉 and yti〈w

k
0 ,xti〉 ≤ 1 and

yti〈w
k
0 + v

k
t ,xti〉 ≤ 1 then

∂
w

k
0

J = −C1ytixti − C2ytixti +w
k
0

else if k = argmaxj〈w
j
0,xti〉 and yti〈w

k
0 ,xti〉 ≤ 1 then

∂
w

k
0

J = −C2ytixti +w
k
0

else if k = argmaxj〈w
j
0 + v

j
t ,xti〉 and yti〈w

k
0 + v

k
t ,xti〉 ≤ 1 then

∂
w

k
0

J = −C1ytixti +w
k
0

else

∂
w

k
0

J = w
k
0

end

for k ≤ K do

if k = argmaxj〈w
j
0 + v

j
t ,xti〉 and yti〈w

k
0 + v

k
t ,xti〉 ≤ 1 then

∂
v
k
t
= −C1ytixti + ρvk

t

else

∂
v
k
t
= ρvk

t

end

Algorithm 1: Computation of subgradient for the objective function (8)–(10).

7More precisely, our analysis of K-means initialization can be extended to regularizer S(w) =
∑

k
||wk||

2 as well as the formulation in equations

(8)-(10). To this end, we need an additional step using the inequality λS(w) − ǫmaxk ‖wk‖ > (λ − ǫ)S(w) − ǫ/4. We postpone the full details to a

future occasion.


